A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery
Corresponding Author: Shaoming Huang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 67
Abstract
Given the advantages of being abundant in resources, environmental benign and highly safe, rechargeable zinc-ion batteries (ZIBs) enter the global spotlight for their potential utilization in large-scale energy storage. Despite their preliminary success, zinc-ion storage that is able to deliver capacity > 400 mAh g−1 remains a great challenge. Here, we demonstrate the viability of NH4V4O10 (NVO) as high-capacity cathode that breaks through the bottleneck of ZIBs in limited capacity. The first-principles calculations reveal that layered NVO is a good host to provide fast Zn2+ ions diffusion channel along its [010] direction in the interlayer space. On the other hand, to further enhance Zn2+ ion intercalation kinetics and long-term cycling stability, a three-dimensional (3D) flower-like architecture that is self-assembled by NVO nanobelts (3D-NVO) is rationally designed and fabricated through a microwave-assisted hydrothermal method. As a result, such 3D-NVO cathode possesses high capacity (485 mAh g−1) and superior long-term cycling performance (3000 times) at 10 A g−1 (~ 50 s to full discharge/charge). Additionally, based on the excellent 3D-NVO cathode, a quasi-solid-state ZIB with capacity of 378 mAh g−1 is developed.
Highlights:
1 3D flower-like architecture assembled by NH4V4O10 nanobelts (3D-NVO) was fabricated.
2 The Zn2+ ion was intercalated into NVO cathode within the interlayer region (NH4V4O10 ↔ ZnxNH4V4O10).
3 The 3D-NVO cathode could deliver a large reversible capacity of 485 mAh g−1 at a current density of 100 mA g−1 for zinc-ion battery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
- H. Tan, L. Xu, H. Geng, X. Rui, C. Li, S. Huang, Nanostructured Li3V2(PO4)3 cathodes. Small 14, 1800567 (2018). https://doi.org/10.1002/smll.201800567
- L. Wang, J.-L. Shi, H. Su, G. Li, M. Zubair, Y.-G. Guo, H. Yu, Composite-structure material design for high-energy lithium storage. Small 14, 1800887 (2018). https://doi.org/10.1002/smll.201800887
- Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transference kinetics and interface stability for high-performance zinc metal anode. Energy Environ. Sci. (2019). https://doi.org/10.1039/C9EE03545A
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124, 957–959 (2012). https://doi.org/10.1002/ange.201106307
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
- B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
- R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON Structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma, J. Zhou, Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13, 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018). https://doi.org/10.1002/smll.201703850
- M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable alpha-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
- C. Li, X. Shi, S. Liang, X. Ma, M. Han, X. Wu, J. Zhou, Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248 (2020). https://doi.org/10.1016/j.cej.2019.122248
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a gamma-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997 (2017). https://doi.org/10.1039/C7TA00100B
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30, 1800762 (2018). https://doi.org/10.1002/adma.201800762
- T. Wei, Q. Li, G. Yang, C. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 6, 8006–8012 (2018). https://doi.org/10.1039/C8TA02090F
- P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6, 1600826 (2016). https://doi.org/10.1002/aenm.201600826
- P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9, 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Letters 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
- D. Kundu, B.D. Adams, V.D. Ort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
- Q. Zheng, H. Yi, X. Li, H. Zhang, Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 27, 1597–1617 (2018). https://doi.org/10.1016/j.jechem.2018.05.001
- V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
- H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang, C. Li, Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907684
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009). https://doi.org/10.1039/b819629j
- S. Sarkar, P.S. Veluri, S. Mitra, Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance. Electrochim. Acta 132, 448–456 (2014). https://doi.org/10.1016/j.electacta.2014.03.144
- D. Fang, Y. Cao, R. Liu, W. Xu, S. Liu et al., Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl. Surf. Sci. 360, 658–665 (2016). https://doi.org/10.1016/j.apsusc.2015.11.038
- K.-F. Zhang, G.-Q. Zhang, X. Liu, Z.-X. Su, H.-L. Li, Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 157, 528–532 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.043
- E.A. Esparcia Jr., M.S. Chae, J.D. Ocon, S.-T. Hong, Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 30, 3690–3696 (2018). https://doi.org/10.1021/acs.chemmater.8b00462
- H. Fei, X. Liu, Y. Lin, M. Wei, Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes. J. Colloid Interface Sci. 428, 73–77 (2014). https://doi.org/10.1016/j.jcis.2014.04.029
- T. Sarkar, P. Kumar, M.D. Bharadwaj, U. Waghmare, Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the delta-NH4V4O10 electrode: a first-principles study. Phys. Chem. Chem. Phys. 18, 9344–9348 (2016). https://doi.org/10.1039/C5CP07782F
- V. Thuan Ngoc, H. Kim, J. Hur, W. Choi, I.T. Kim, Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J. Mater. Chem. A 6, 22645–22654 (2018). https://doi.org/10.1039/C8TA07831A
- A. Sarkar, S. Sarkar, T. Sarkar, P. Kumar, M.D. Bharadwaj, S. Mitra, Rechargeable sodium-ion battery: high-capacity ammonium vanadate cathode with enhanced stability at high rate. ACS Appl. Mater. Interfaces 7, 17044–17053 (2015). https://doi.org/10.1021/acsami.5b03210
- D. Chen, Q. Zhang, X. Rui, H. Geng, L. Gan et al., Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy 60, 171–178 (2019). https://doi.org/10.1016/j.nanoen.2019.03.034
- X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding, Z. Zhou, Ab initio investigations on bulk and monolayer V2O5 as cathode materials for Li-, Na-, K- and Mg-ion batteries. J. Mater. Chem. A 4, 16606–16611 (2016). https://doi.org/10.1039/C6TA04986A
- N. Wang, W. Chen, L. Mai, Y. Dai, Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate. J. Solid State Chem. 181, 652–657 (2008). https://doi.org/10.1016/j.jssc.2007.12.036
- G. Yang, T. Wei, C. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl. Mater. Interfaces 10, 35079–35089 (2018). https://doi.org/10.1021/acsami.8b10849
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- C. Persson, A.F. da Silva, Strong polaronic effects on rutile TiO2 electronic band edges. Appl. Phys. Lett. 86, 231912 (2005). https://doi.org/10.1063/1.1940739
- G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- J.S. Braithwaite, C.R.A. Catlow, J.D. Gale, J.H. Harding, Lithium intercalation into vanadium pentoxide: a theoretical study. Chem. Mater. 11, 1990–1998 (1999). https://doi.org/10.1021/cm980735r
- H.A. Abbood, H. Peng, X. Gao, B. Tan, K. Huang, Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product. Chem. Eng. J. 209, 245–254 (2012). https://doi.org/10.1016/j.cej.2012.08.027
- D. Chen, H. Tan, X. Rui, Q. Zhang, Y. Feng et al., Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat 1, 251–259 (2019). https://doi.org/10.1002/inf2.12011
- M. Bhattacharya, T. Basak, A review on the susceptor assisted microwave processing of materials. Energy 97, 306–338 (2016). https://doi.org/10.1016/j.energy.2015.11.034
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo et al., Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A 6, 3850–3856 (2018). https://doi.org/10.1039/C7TA11237H
- C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018). https://doi.org/10.1002/adma.201705580
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- X. Chen, W. He, L. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019). https://doi.org/10.1039/C8EE02617C
- Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao, H.H. Wang, Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). https://doi.org/10.1002/aenm.201801433
- H. Xiang, J. Chen, Z. Li, H. Wang, An inorganic membrane as a separator for lithium-ion battery. J. Power Sources 196, 8651–8655 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.055
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
- N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao, F. Cheng, Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 29, 1807331 (2019). https://doi.org/10.1002/adfm.201807331
References
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
H. Tan, L. Xu, H. Geng, X. Rui, C. Li, S. Huang, Nanostructured Li3V2(PO4)3 cathodes. Small 14, 1800567 (2018). https://doi.org/10.1002/smll.201800567
L. Wang, J.-L. Shi, H. Su, G. Li, M. Zubair, Y.-G. Guo, H. Yu, Composite-structure material design for high-energy lithium storage. Small 14, 1800887 (2018). https://doi.org/10.1002/smll.201800887
Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015). https://doi.org/10.1039/C4CS00442F
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transference kinetics and interface stability for high-performance zinc metal anode. Energy Environ. Sci. (2019). https://doi.org/10.1039/C9EE03545A
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 124, 957–959 (2012). https://doi.org/10.1002/ange.201106307
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON Structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma, J. Zhou, Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13, 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018). https://doi.org/10.1002/smll.201703850
M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable alpha-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
C. Li, X. Shi, S. Liang, X. Ma, M. Han, X. Wu, J. Zhou, Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248 (2020). https://doi.org/10.1016/j.cej.2019.122248
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a gamma-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997 (2017). https://doi.org/10.1039/C7TA00100B
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30, 1800762 (2018). https://doi.org/10.1002/adma.201800762
T. Wei, Q. Li, G. Yang, C. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 6, 8006–8012 (2018). https://doi.org/10.1039/C8TA02090F
P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6, 1600826 (2016). https://doi.org/10.1002/aenm.201600826
P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9, 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Letters 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
D. Kundu, B.D. Adams, V.D. Ort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57, 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
Q. Zheng, H. Yi, X. Li, H. Zhang, Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 27, 1597–1617 (2018). https://doi.org/10.1016/j.jechem.2018.05.001
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang, C. Li, Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907684
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009). https://doi.org/10.1039/b819629j
S. Sarkar, P.S. Veluri, S. Mitra, Morphology controlled synthesis of layered NH4V4O10 and the impact of binder on stable high rate electrochemical performance. Electrochim. Acta 132, 448–456 (2014). https://doi.org/10.1016/j.electacta.2014.03.144
D. Fang, Y. Cao, R. Liu, W. Xu, S. Liu et al., Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery. Appl. Surf. Sci. 360, 658–665 (2016). https://doi.org/10.1016/j.apsusc.2015.11.038
K.-F. Zhang, G.-Q. Zhang, X. Liu, Z.-X. Su, H.-L. Li, Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 157, 528–532 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.043
E.A. Esparcia Jr., M.S. Chae, J.D. Ocon, S.-T. Hong, Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 30, 3690–3696 (2018). https://doi.org/10.1021/acs.chemmater.8b00462
H. Fei, X. Liu, Y. Lin, M. Wei, Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes. J. Colloid Interface Sci. 428, 73–77 (2014). https://doi.org/10.1016/j.jcis.2014.04.029
T. Sarkar, P. Kumar, M.D. Bharadwaj, U. Waghmare, Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the delta-NH4V4O10 electrode: a first-principles study. Phys. Chem. Chem. Phys. 18, 9344–9348 (2016). https://doi.org/10.1039/C5CP07782F
V. Thuan Ngoc, H. Kim, J. Hur, W. Choi, I.T. Kim, Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J. Mater. Chem. A 6, 22645–22654 (2018). https://doi.org/10.1039/C8TA07831A
A. Sarkar, S. Sarkar, T. Sarkar, P. Kumar, M.D. Bharadwaj, S. Mitra, Rechargeable sodium-ion battery: high-capacity ammonium vanadate cathode with enhanced stability at high rate. ACS Appl. Mater. Interfaces 7, 17044–17053 (2015). https://doi.org/10.1021/acsami.5b03210
D. Chen, Q. Zhang, X. Rui, H. Geng, L. Gan et al., Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy 60, 171–178 (2019). https://doi.org/10.1016/j.nanoen.2019.03.034
X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding, Z. Zhou, Ab initio investigations on bulk and monolayer V2O5 as cathode materials for Li-, Na-, K- and Mg-ion batteries. J. Mater. Chem. A 4, 16606–16611 (2016). https://doi.org/10.1039/C6TA04986A
N. Wang, W. Chen, L. Mai, Y. Dai, Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate. J. Solid State Chem. 181, 652–657 (2008). https://doi.org/10.1016/j.jssc.2007.12.036
G. Yang, T. Wei, C. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl. Mater. Interfaces 10, 35079–35089 (2018). https://doi.org/10.1021/acsami.8b10849
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
C. Persson, A.F. da Silva, Strong polaronic effects on rutile TiO2 electronic band edges. Appl. Phys. Lett. 86, 231912 (2005). https://doi.org/10.1063/1.1940739
G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
J.S. Braithwaite, C.R.A. Catlow, J.D. Gale, J.H. Harding, Lithium intercalation into vanadium pentoxide: a theoretical study. Chem. Mater. 11, 1990–1998 (1999). https://doi.org/10.1021/cm980735r
H.A. Abbood, H. Peng, X. Gao, B. Tan, K. Huang, Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product. Chem. Eng. J. 209, 245–254 (2012). https://doi.org/10.1016/j.cej.2012.08.027
D. Chen, H. Tan, X. Rui, Q. Zhang, Y. Feng et al., Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat 1, 251–259 (2019). https://doi.org/10.1002/inf2.12011
M. Bhattacharya, T. Basak, A review on the susceptor assisted microwave processing of materials. Energy 97, 306–338 (2016). https://doi.org/10.1016/j.energy.2015.11.034
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo et al., Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A 6, 3850–3856 (2018). https://doi.org/10.1039/C7TA11237H
C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018). https://doi.org/10.1002/adma.201705580
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
X. Chen, W. He, L. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019). https://doi.org/10.1039/C8EE02617C
Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao, H.H. Wang, Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). https://doi.org/10.1002/aenm.201801433
H. Xiang, J. Chen, Z. Li, H. Wang, An inorganic membrane as a separator for lithium-ion battery. J. Power Sources 196, 8651–8655 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.055
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao, F. Cheng, Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 29, 1807331 (2019). https://doi.org/10.1002/adfm.201807331