Enhanced Pseudo-Capacitive Contributions to High-Performance Sodium Storage in TiO2/C Nanofibers via Double Effects of Sulfur Modification
Corresponding Author: Yan Yu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 165
Abstract
Pseudo-capacitive mechanisms can provide higher energy densities than electrical double-layer capacitors while being faster than bulk storage mechanisms. Usually, they suffer from low intrinsic electronic and ion conductivities of the active materials. Here, taking advantage of the combination of TiS2 decoration, sulfur doping, and a nanometer-sized structure, as-spun TiO2/C nanofiber composites are developed that enable rapid transport of sodium ions and electrons, and exhibit enhanced pseudo-capacitively dominated capacities. At a scan rate of 0.5 mV s−1, a high pseudo-capacitive contribution (76% of the total storage) is obtained for the S-doped TiS2/TiO2/C electrode (termed as TiS2/S-TiO2/C). Such enhanced pseudo-capacitive activity allows rapid chemical kinetics and significantly improves the high-rate sodium storage performance of TiO2. The TiS2/S-TiO2/C composite electrode delivers a high capacity of 114 mAh g−1 at a current density of 5000 mA g−1. The capacity maintains at high level (161 mAh g−1) even after 1500 cycles and is still characterized by 58 mAh g−1 at the extreme condition of 10,000 mA g−1 after 10,000 cycles.
Highlights:
1 One-dimensional elongated TiS2-modified and S-doped TiO2/C nanofibers electrode was synthesized through electrospinning, which exhibited a high specific capacity, excellent cyclic stability, and rate capability in sodium-ion battery.
2 An enhanced pseudo-capacitive capacity because of S doping and TiS2 decoration contributes to noticeable sodium storage performance. High capacity of 161 mAh g−1 (at 3000 mA g−1) after 1500 cycles and 58 mAh g−1 (at 10,000 mA g−1) after 10,000 cycles is delivered outstandingly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2014). https://doi.org/10.1039/C3CS60199D
- J. Deng, W. Luo, S. Chou, H. Liu, S. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2017). https://doi.org/10.1002/aenm.201701428
- W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49(2), 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482
- M. Doeff, Y. Ma, S. Visco, L. De Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), L169–L170 (1993). https://doi.org/10.1149/1.2221153
- H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang, L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
- W. Luo, Y. Wang, L. Wang, W. Jiang, S. Chou et al., Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 10(11), 10524–10532 (2016). https://doi.org/10.1002/acsnano.6b06517
- Y. Cao, L. Xiao, M. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
- H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4(1), 1600243 (2016). https://doi.org/10.1002/advs.201600243
- W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge et al., Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 65, 104038 (2019). https://doi.org/10.1016/j.nanoen.2019.104038
- H. Hou, C. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu et al., The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62(8), 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
- W. Wang, Y. Liu, X. Wu, J. Wang, L. Fu et al., Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol. 3(9), 1800004 (2018). https://doi.org/10.1002/admt.201800004
- Y. Zhang, Z. Ding, W. Christopher, C. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
- B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu et al., Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(25), 16009–16015 (2016). https://doi.org/10.1021/acsami.6b03270
- Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173 (2016). https://doi.org/10.1002/aenm.201600173
- M. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- H. Xiong, M. Slater, M. Balasubramanian, C. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
- C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
- H. Zhang, Y. Jiang, Z. Qi, X. Zhong, Y. Yu, Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 12, 37–43 (2018). https://doi.org/10.1016/j.ensm.2017.11.008
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
- J. Kang, S. Zhang, Z. Zhang, Three-dimensional binder-free nanoarchitectures for advanced pseudocapacitors. Adv. Mater. 29(48), 1700515 (2017). https://doi.org/10.1002/adma.201700515
- Y. Zhang, H. Tao, S. Du, X. Yang, Conversion of MoS2 to a ternary MoS2–xSex alloy for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 11(12), 11327–11337 (2019). https://doi.org/10.1021/acsami.8b19701
- D. Winn, J. Shemilt, B. Steele, Titanium disulphide: a solid solution electrode for sodium and lithium. Mater. Res. Bull. 11(5), 559–566 (1976). https://doi.org/10.1016/0025-5408(76)90239-7
- G. Newman, L. Klemann, Ambient-temperature cycling of an Na-TiS2 cell. J. Electrochem. Soc. 127(10), 2097–2099 (1980). https://doi.org/10.1149/1.2129353
- L. Conroy, K. Park, Electrical properties of group IV disulfides TiS2, ZrS2, HfS2, and SnS2. Inorg. Chem. 7(3), 459–463 (1968). https://doi.org/10.1021/ic50061a015
- M. Dresselhaus, I. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1038/35104599
- J. Trevey, C. Stoldt, S. Lee, High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158(12), A1282–A1289 (2011). https://doi.org/10.1149/2.017112jes
- A. Let, D. Mainwaring, C. Rix, P. Murugaraj, Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J. Non-Cryst. Solids 354(15), 1801–1807 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.09.005
- A. Huckaba, S. Gharibzadeh, M. Ralaiarisoa, C. Roldán-Carmona, N. Mohammadian et al., Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 1(10), 1700250 (2017). https://doi.org/10.1002/smtd.201700250
- A. Huckaba, M. Ralaiarisoa, K. Cho, E. Oveisi, N. Koch, M. Nazeeruddin, Intercalation makes the difference with TiS2: boosting electrocatalytic water oxidation activity through co intercalation. J. Mater. Res. 33(5), 528–537 (2017). https://doi.org/10.1557/jmr.2017.431
- J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 28(11), 2259–2265 (2016). https://doi.org/10.1002/adma.201504412
- C. McManamon, J. O’Connell, P. Delaney, S. Rasappa, J.D. Holmes, M.A. Morris, A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. J. Mol. Catal. A: Chem. 406, 51–57 (2015). https://doi.org/10.1016/j.molcata.2015.05.002
- L.G. Devi, R. Kavitha, Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: a new insight into the bulk and surface modification. Mater. Chem. Phys. 143(3), 1300–1308 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.038
- S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.M. Tarascon, On the origin of the extra electrochemical capacity displayed by mo/li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). https://doi.org/10.1149/1.1467947
- Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao et al., TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries. Nano Energy 20, 168–175 (2016). https://doi.org/10.1016/j.nanoen.2015.12.028
- L. Wu, D. Bresser, D. Buchholz, A.G. Guinevere, R.C. Claudia, A. Ochel, S. Passerini, Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 5(2), 1401142 (2014). https://doi.org/10.1002/aenm.201401142
- K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry et al., Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140(11), 4135–4143 (2018). https://doi.org/10.1021/jacs.8b00909
- M. Tahir, B. Oschmann, D. Buchholz, X. Dou, I. Lieberwirth et al., Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 6(4), 1501489 (2015). https://doi.org/10.1002/aenm.201501489
- H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S.O. Steinmueller et al., Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132(20), 6982–6990 (2010). https://doi.org/10.1021/ja9106385
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
- L. Que, F. Yu, Z. Wang, D. Gu, Pseudocapacitance of TiO2−x/CNT anodes for high-performance quasi-solid-state li-ion and na-ion capacitors. Small 14(17), 1704508 (2018). https://doi.org/10.1002/smll.201704508
- T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
- Y. Xiong, J. Ian, Y. Cao, X. Ai, H. Yang, Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(26), 16684–16689 (2016). https://doi.org/10.1021/acsami.6b03757
- Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016). https://doi.org/10.1002/smll.201600606
- Q. Zhao, R. Bi, J. Cui, X. Yang, L. Zhang, TiO2–x nanocages anchored in N-doped carbon fiber films as a flexible anode for high-energy sodium-ion batteries. ACS Appl. Energy Mater. 1(9), 4459–4466 (2018). https://doi.org/10.1021/acsaem.8b00985
- N. Lee, J. Jung, J. Lee, H. Jang, I.D. Kim, W.H. Ryu, Facile and fast na-ion intercalation employing amorphous black TiO2-x/C composite nanofiber anodes. Electrochim. Acta 263, 417–425 (2018). https://doi.org/10.1016/j.electacta.2018.01.085
References
B. Dunn, H. Kamath, J. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
M.S. Islam, C.A.J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43(1), 185–204 (2014). https://doi.org/10.1039/C3CS60199D
J. Deng, W. Luo, S. Chou, H. Liu, S. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2017). https://doi.org/10.1002/aenm.201701428
W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49(2), 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482
M. Doeff, Y. Ma, S. Visco, L. De Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), L169–L170 (1993). https://doi.org/10.1149/1.2221153
H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang, L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
W. Luo, Y. Wang, L. Wang, W. Jiang, S. Chou et al., Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 10(11), 10524–10532 (2016). https://doi.org/10.1002/acsnano.6b06517
Y. Cao, L. Xiao, M. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4(1), 1600243 (2016). https://doi.org/10.1002/advs.201600243
W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge et al., Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 65, 104038 (2019). https://doi.org/10.1016/j.nanoen.2019.104038
H. Hou, C. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu et al., The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62(8), 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
W. Wang, Y. Liu, X. Wu, J. Wang, L. Fu et al., Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol. 3(9), 1800004 (2018). https://doi.org/10.1002/admt.201800004
Y. Zhang, Z. Ding, W. Christopher, C. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu et al., Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(25), 16009–16015 (2016). https://doi.org/10.1021/acsami.6b03270
Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173 (2016). https://doi.org/10.1002/aenm.201600173
M. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
H. Xiong, M. Slater, M. Balasubramanian, C. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011). https://doi.org/10.1021/jz2012066
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan et al., Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
H. Zhang, Y. Jiang, Z. Qi, X. Zhong, Y. Yu, Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 12, 37–43 (2018). https://doi.org/10.1016/j.ensm.2017.11.008
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
J. Kang, S. Zhang, Z. Zhang, Three-dimensional binder-free nanoarchitectures for advanced pseudocapacitors. Adv. Mater. 29(48), 1700515 (2017). https://doi.org/10.1002/adma.201700515
Y. Zhang, H. Tao, S. Du, X. Yang, Conversion of MoS2 to a ternary MoS2–xSex alloy for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 11(12), 11327–11337 (2019). https://doi.org/10.1021/acsami.8b19701
D. Winn, J. Shemilt, B. Steele, Titanium disulphide: a solid solution electrode for sodium and lithium. Mater. Res. Bull. 11(5), 559–566 (1976). https://doi.org/10.1016/0025-5408(76)90239-7
G. Newman, L. Klemann, Ambient-temperature cycling of an Na-TiS2 cell. J. Electrochem. Soc. 127(10), 2097–2099 (1980). https://doi.org/10.1149/1.2129353
L. Conroy, K. Park, Electrical properties of group IV disulfides TiS2, ZrS2, HfS2, and SnS2. Inorg. Chem. 7(3), 459–463 (1968). https://doi.org/10.1021/ic50061a015
M. Dresselhaus, I. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1038/35104599
J. Trevey, C. Stoldt, S. Lee, High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158(12), A1282–A1289 (2011). https://doi.org/10.1149/2.017112jes
A. Let, D. Mainwaring, C. Rix, P. Murugaraj, Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J. Non-Cryst. Solids 354(15), 1801–1807 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.09.005
A. Huckaba, S. Gharibzadeh, M. Ralaiarisoa, C. Roldán-Carmona, N. Mohammadian et al., Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 1(10), 1700250 (2017). https://doi.org/10.1002/smtd.201700250
A. Huckaba, M. Ralaiarisoa, K. Cho, E. Oveisi, N. Koch, M. Nazeeruddin, Intercalation makes the difference with TiS2: boosting electrocatalytic water oxidation activity through co intercalation. J. Mater. Res. 33(5), 528–537 (2017). https://doi.org/10.1557/jmr.2017.431
J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 28(11), 2259–2265 (2016). https://doi.org/10.1002/adma.201504412
C. McManamon, J. O’Connell, P. Delaney, S. Rasappa, J.D. Holmes, M.A. Morris, A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. J. Mol. Catal. A: Chem. 406, 51–57 (2015). https://doi.org/10.1016/j.molcata.2015.05.002
L.G. Devi, R. Kavitha, Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: a new insight into the bulk and surface modification. Mater. Chem. Phys. 143(3), 1300–1308 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.038
S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.M. Tarascon, On the origin of the extra electrochemical capacity displayed by mo/li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). https://doi.org/10.1149/1.1467947
Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao et al., TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries. Nano Energy 20, 168–175 (2016). https://doi.org/10.1016/j.nanoen.2015.12.028
L. Wu, D. Bresser, D. Buchholz, A.G. Guinevere, R.C. Claudia, A. Ochel, S. Passerini, Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 5(2), 1401142 (2014). https://doi.org/10.1002/aenm.201401142
K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry et al., Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140(11), 4135–4143 (2018). https://doi.org/10.1021/jacs.8b00909
M. Tahir, B. Oschmann, D. Buchholz, X. Dou, I. Lieberwirth et al., Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 6(4), 1501489 (2015). https://doi.org/10.1002/aenm.201501489
H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997). https://doi.org/10.1021/jp970490q
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S.O. Steinmueller et al., Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132(20), 6982–6990 (2010). https://doi.org/10.1021/ja9106385
C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
L. Que, F. Yu, Z. Wang, D. Gu, Pseudocapacitance of TiO2−x/CNT anodes for high-performance quasi-solid-state li-ion and na-ion capacitors. Small 14(17), 1704508 (2018). https://doi.org/10.1002/smll.201704508
T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309
Y. Xiong, J. Ian, Y. Cao, X. Ai, H. Yang, Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(26), 16684–16689 (2016). https://doi.org/10.1021/acsami.6b03757
Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016). https://doi.org/10.1002/smll.201600606
Q. Zhao, R. Bi, J. Cui, X. Yang, L. Zhang, TiO2–x nanocages anchored in N-doped carbon fiber films as a flexible anode for high-energy sodium-ion batteries. ACS Appl. Energy Mater. 1(9), 4459–4466 (2018). https://doi.org/10.1021/acsaem.8b00985
N. Lee, J. Jung, J. Lee, H. Jang, I.D. Kim, W.H. Ryu, Facile and fast na-ion intercalation employing amorphous black TiO2-x/C composite nanofiber anodes. Electrochim. Acta 263, 417–425 (2018). https://doi.org/10.1016/j.electacta.2018.01.085