Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe–Mn Dual Atoms for Fuel Cells
Corresponding Author: Jinzhan Su
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 88
Abstract
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction (ORR) represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells. Herein, we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe–Mn dual-metal sites on N-doped carbon (denoted (FeMn-DA)–N–C) for both anion-exchange membrane fuel cells (AEMFC) and proton exchange membrane fuel cells (PEMFC). The (FeMn-DA)–N–C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N4 and Mn-N4 sites on the carbon surface, yielded via a facile doping-adsorption-pyrolysis route. The introduction of Mn carries several advantageous attributes: increasing the number of active sites, effectively anchoring Fe due to effective electron transfer to Mn (revealed by X-ray absorption spectroscopy and density-functional theory (DFT), thus preventing the aggregation of Fe), and effectively circumventing the occurrence of Fenton reaction, thus reducing the consumption of Fe. The (FeMn-DA)–N–C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO4, respectively, as well as outstanding stability. As manifested by DFT calculations, the introduction of Mn affects the electronic structure of Fe, down-shifts the d-band Fe active center, accelerates the desorption of OH groups, and creates higher limiting potentials. The AEMFC and PEMFC with (FeMn-DA)–N–C as the cathode catalyst display high power densities of 1060 and 746 mW cm−2, respectively, underscoring their promising potential for practical applications. Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices.
Highlights:
1 Fe–Mn dual-atom catalysts exhibit superior oxygen reduction reaction (ORR) activity and stability, with high half-wave potentials in both alkaline and acidic conditions.
2 Synergistic Mn incorporation effectively anchors Fe atoms, mitigates the Fenton reaction, and enhances the durability of ORR catalysts.
3 Advanced characterization and density-functional theory calculations reveal Mn-induced electronic structure modifications, promoting superior ORR kinetics and active site performance.
4 (FeMn-DA)-N-C catalysts show remarkable potential for practical fuel cell applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Wang, H. Wang, H. Cao, C.-W. Tung, W. Liu et al., Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 6, 916–926 (2023). https://doi.org/10.1038/s41929-023-01017-z
- L. Zhang, Y. Dong, L. Li, L. Wei, J. Su et al., Enhanced oxygen reduction activity and stability of double-layer nitrogen-doped carbon catalyst with abundant Fe–Co dual-atom sites. Nano Energy 117, 108854 (2023). https://doi.org/10.1016/j.nanoen.2023.108854
- W. Xue, Q. Zhou, X. Cui, J. Zhang, S. Zuo et al., Atomically dispersed FeN2P2 motif with high activity and stability for oxygen reduction reaction over the entire pH range. Angew. Chem. Int. Ed. 62, e202307504 (2023). https://doi.org/10.1002/anie.202307504
- S. Chandrasekaran, R. Hu, L. Yao, L. Sui, Y. Liu et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
- Q. An, S. Bo, J. Jiang, C. Gong, H. Su et al., Atomic-level interface engineering for boosting oxygen electrocatalysis performance of single-atom catalysts: from metal active center to the first coordination sphere. Adv. Sci. 10, e2205031 (2023). https://doi.org/10.1002/advs.202205031
- Y. Gao, B. Liu, D. Wang, Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 35, e2209654 (2023). https://doi.org/10.1002/adma.202209654
- B. Wang, X. Zhu, X. Pei, W. Liu, Y. Leng et al., Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 13788–13795 (2023). https://doi.org/10.1021/jacs.3c02364
- Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
- D. Xia, X. Yang, L. Xie, Y. Wei, W. Jiang et al., Direct growth of carbon nanotubes doped with single atomic Fe–N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 29, 1906174 (2019). https://doi.org/10.1002/adfm.201906174
- S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
- D. Xia, X. Tang, S. Dai, R. Ge, A. Rykov et al., Ultrastable Fe–N–C fuel cell electrocatalysts by eliminating non-coordinating nitrogen and regulating coordination structures at high temperatures. Adv. Mater. 35, 2204474 (2023). https://doi.org/10.1002/adma.202204474
- S. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei et al., The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton-/anion-exchange membrane fuel cells. Appl. Catal. B Environ. 317, 121770 (2022). https://doi.org/10.1016/j.apcatb.2022.121770
- J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati et al., Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew. Chem. Int. Ed. 56, 8809–8812 (2017). https://doi.org/10.1002/anie.201704356
- R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12, 2103564 (2022). https://doi.org/10.1002/aenm.202103564
- Y. Ying, X. Luo, J. Qiao, H. Huang, “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
- J. Wang, C.-X. Zhao, J.-N. Liu, Y.-W. Song, J.-Q. Huang et al., Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 104, 107927 (2022). https://doi.org/10.1016/j.nanoen.2022.107927
- J. Xu, S. Lai, D. Qi, M. Hu, X. Peng et al., Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 14, 1374–1381 (2021). https://doi.org/10.1007/s12274-020-3186-x
- Y. He, X. Yang, Y. Li, L. Liu, S. Guo et al., Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries. ACS Catal. 12, 1216–1227 (2022). https://doi.org/10.1021/acscatal.1c04550
- M. Jiang, F. Wang, F. Yang, H. He, J. Yang et al., Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022). https://doi.org/10.1016/j.nanoen.2021.106793
- Y. Zhong, X. Liang, Z. He, W. Tan, J. Zhu et al., The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl. Catal. B Environ. 150, 612–618 (2014). https://doi.org/10.1016/j.apcatb.2014.01.007
- S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos et al., Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017). https://doi.org/10.1021/acscatal.7b02949
- X. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke et al., Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale 7, 20290–20298 (2015). https://doi.org/10.1039/c5nr05864c
- Q. Shi, Y. He, X. Bai, M. Wang, D.A. Cullen et al., Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 13, 3544–3555 (2020). https://doi.org/10.1039/D0EE01968B
- X. Zhang, L. Truong-Phuoc, T. Asset, S. Pronkin, C. Pham-Huu, Are Fe–N–C electrocatalysts an alternative to Pt-based electrocatalysts for the next generation of proton exchange membrane fuel cells? ACS Catal. 12, 13853–13875 (2022). https://doi.org/10.1021/acscatal.2c02146
- Y.-C. Wang, W. Huang, L.-Y. Wan, J. Yang, R.-J. Xie et al., Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Sci. Adv. 8, eadd8873 (2022). https://doi.org/10.1126/sciadv.add8873
- X. Zhao, X. Yang, M. Wang, S. Hwang, S. Karakalos et al., Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells. Appl. Catal. B Environ. 279, 119400 (2020). https://doi.org/10.1016/j.apcatb.2020.119400
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- Y. He, H. Guo, S. Hwang, X. Yang, Z. He et al., Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 32, e2003577 (2020). https://doi.org/10.1002/adma.202003577
- Y. He, Q. Shi, W. Shan, X. Li, A.J. Kropf et al., Dynamically unveiling metal-nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed. 60(17), 9516–9526 (2021). https://doi.org/10.1002/anie.202017288
- L. Li, J. Qu, L. Zhang, L. Wei, J. Su et al., RuSe2 and CoSe2 nanops incorporated nitrogen-doped carbon as efficient trifunctional electrocatalyst for zinc-air batteries and water splitting. ACS Appl. Mater. Interfaces 16, 24660–24670 (2024). https://doi.org/10.1021/acsami.4c02766
- J. Zhu, Z. Fang, X. Yang, M. Chen, Z. Chen et al., Core–shell structured Fe–N–C catalysts with enriched iron sites in surface layers for proton-exchange membrane fuel cells. ACS Catal. 12, 6409–6417 (2022). https://doi.org/10.1021/acscatal.2c01358
- L. Sun, Y. Yin, B. Ren, Y. Qin, G. Wen et al., ZIF-derived ternary Pt-Co-Ni alloy as the superior active and durable catalyst for PEMFC. Nano Energy 120, 109154 (2024). https://doi.org/10.1016/j.nanoen.2023.109154
- W. Zhu, H. Liu, Y. Pei, T. Liu, J. Zhang et al., Defect-Engineered ZIF-derived Non-Pt cathode catalyst at 1.5 Mg cm−2 loading for proton exchange membrane fuel cells. Small 19, e2302090 (2023). https://doi.org/10.1002/smll.202302090
- Z.-X. Liang, H.-Y. Song, S.-J. Liao, Hemin: a highly effective electrocatalyst mediating the oxygen reduction reaction. J. Phys. Chem. C 115, 2604–2610 (2011). https://doi.org/10.1021/jp1112334
- S. Ding, J.A. Barr, Q. Shi, Y. Zeng, P. Tieu et al., Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022). https://doi.org/10.1021/acsnano.2c06459
- W. Liu, L. Chu, C. Zhang, P. Ni, Y. Jiang et al., Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 415, 128876 (2021). https://doi.org/10.1016/j.cej.2021.128876
- B.-C. Hu, Z.-Y. Wu, S.-Q. Chu, H.-W. Zhu, H.-W. Liang et al., SiO2-protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 11, 2208–2215 (2018). https://doi.org/10.1039/C8EE00673C
- X. Chen, D.-D. Ma, B. Chen, K. Zhang, R. Zou et al., Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B Environ. 267, 118720 (2020). https://doi.org/10.1016/j.apcatb.2020.118720
- J. Wang, Z.Q. Huang, W. Liu, C.R. Chang, H.L. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- O.L. Li, S. Chiba, Y. Wada, G. Panomsuwan, T. Ishizaki, Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 5, 2073–2082 (2017). https://doi.org/10.1039/C6TA08962C
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
- C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7, 18770–18779 (2015). https://doi.org/10.1039/c5nr04994f
- W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 125, 11971–11975 (2013). https://doi.org/10.1002/ange.201303924
- Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc–air batteries. Adv. Funct. Mater. 28, 1802596 (2018). https://doi.org/10.1002/adfm.201802596
- Y. Yu, D. Xiao, J. Ma, C. Chen, K. Li et al., The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe–N coordination for the oxygen reduction reaction. RSC Adv. 8, 24509–24516 (2018). https://doi.org/10.1039/c8ra03672a
- X. Lu, P. Yang, Y. Wan, H. Zhang, H. Xu et al., Active site engineering toward atomically dispersed M−N−C catalysts for oxygen reduction reaction. Coord. Chem. Rev. 495, 215400 (2023). https://doi.org/10.1016/j.ccr.2023.215400
- S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013). https://doi.org/10.1002/jcc.23424
- R. Nelson, C. Ertural, J. George, V.L. Deringer, G. Hautier et al., LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41, 1931–1940 (2020). https://doi.org/10.1002/jcc.26353
References
Q. Wang, H. Wang, H. Cao, C.-W. Tung, W. Liu et al., Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 6, 916–926 (2023). https://doi.org/10.1038/s41929-023-01017-z
L. Zhang, Y. Dong, L. Li, L. Wei, J. Su et al., Enhanced oxygen reduction activity and stability of double-layer nitrogen-doped carbon catalyst with abundant Fe–Co dual-atom sites. Nano Energy 117, 108854 (2023). https://doi.org/10.1016/j.nanoen.2023.108854
W. Xue, Q. Zhou, X. Cui, J. Zhang, S. Zuo et al., Atomically dispersed FeN2P2 motif with high activity and stability for oxygen reduction reaction over the entire pH range. Angew. Chem. Int. Ed. 62, e202307504 (2023). https://doi.org/10.1002/anie.202307504
S. Chandrasekaran, R. Hu, L. Yao, L. Sui, Y. Liu et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
Q. An, S. Bo, J. Jiang, C. Gong, H. Su et al., Atomic-level interface engineering for boosting oxygen electrocatalysis performance of single-atom catalysts: from metal active center to the first coordination sphere. Adv. Sci. 10, e2205031 (2023). https://doi.org/10.1002/advs.202205031
Y. Gao, B. Liu, D. Wang, Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 35, e2209654 (2023). https://doi.org/10.1002/adma.202209654
B. Wang, X. Zhu, X. Pei, W. Liu, Y. Leng et al., Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 13788–13795 (2023). https://doi.org/10.1021/jacs.3c02364
Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
D. Xia, X. Yang, L. Xie, Y. Wei, W. Jiang et al., Direct growth of carbon nanotubes doped with single atomic Fe–N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 29, 1906174 (2019). https://doi.org/10.1002/adfm.201906174
S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
D. Xia, X. Tang, S. Dai, R. Ge, A. Rykov et al., Ultrastable Fe–N–C fuel cell electrocatalysts by eliminating non-coordinating nitrogen and regulating coordination structures at high temperatures. Adv. Mater. 35, 2204474 (2023). https://doi.org/10.1002/adma.202204474
S. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei et al., The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton-/anion-exchange membrane fuel cells. Appl. Catal. B Environ. 317, 121770 (2022). https://doi.org/10.1016/j.apcatb.2022.121770
J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati et al., Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew. Chem. Int. Ed. 56, 8809–8812 (2017). https://doi.org/10.1002/anie.201704356
R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12, 2103564 (2022). https://doi.org/10.1002/aenm.202103564
Y. Ying, X. Luo, J. Qiao, H. Huang, “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
J. Wang, C.-X. Zhao, J.-N. Liu, Y.-W. Song, J.-Q. Huang et al., Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 104, 107927 (2022). https://doi.org/10.1016/j.nanoen.2022.107927
J. Xu, S. Lai, D. Qi, M. Hu, X. Peng et al., Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 14, 1374–1381 (2021). https://doi.org/10.1007/s12274-020-3186-x
Y. He, X. Yang, Y. Li, L. Liu, S. Guo et al., Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries. ACS Catal. 12, 1216–1227 (2022). https://doi.org/10.1021/acscatal.1c04550
M. Jiang, F. Wang, F. Yang, H. He, J. Yang et al., Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022). https://doi.org/10.1016/j.nanoen.2021.106793
Y. Zhong, X. Liang, Z. He, W. Tan, J. Zhu et al., The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl. Catal. B Environ. 150, 612–618 (2014). https://doi.org/10.1016/j.apcatb.2014.01.007
S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos et al., Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017). https://doi.org/10.1021/acscatal.7b02949
X. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke et al., Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale 7, 20290–20298 (2015). https://doi.org/10.1039/c5nr05864c
Q. Shi, Y. He, X. Bai, M. Wang, D.A. Cullen et al., Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 13, 3544–3555 (2020). https://doi.org/10.1039/D0EE01968B
X. Zhang, L. Truong-Phuoc, T. Asset, S. Pronkin, C. Pham-Huu, Are Fe–N–C electrocatalysts an alternative to Pt-based electrocatalysts for the next generation of proton exchange membrane fuel cells? ACS Catal. 12, 13853–13875 (2022). https://doi.org/10.1021/acscatal.2c02146
Y.-C. Wang, W. Huang, L.-Y. Wan, J. Yang, R.-J. Xie et al., Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Sci. Adv. 8, eadd8873 (2022). https://doi.org/10.1126/sciadv.add8873
X. Zhao, X. Yang, M. Wang, S. Hwang, S. Karakalos et al., Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells. Appl. Catal. B Environ. 279, 119400 (2020). https://doi.org/10.1016/j.apcatb.2020.119400
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
Y. He, H. Guo, S. Hwang, X. Yang, Z. He et al., Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 32, e2003577 (2020). https://doi.org/10.1002/adma.202003577
Y. He, Q. Shi, W. Shan, X. Li, A.J. Kropf et al., Dynamically unveiling metal-nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed. 60(17), 9516–9526 (2021). https://doi.org/10.1002/anie.202017288
L. Li, J. Qu, L. Zhang, L. Wei, J. Su et al., RuSe2 and CoSe2 nanops incorporated nitrogen-doped carbon as efficient trifunctional electrocatalyst for zinc-air batteries and water splitting. ACS Appl. Mater. Interfaces 16, 24660–24670 (2024). https://doi.org/10.1021/acsami.4c02766
J. Zhu, Z. Fang, X. Yang, M. Chen, Z. Chen et al., Core–shell structured Fe–N–C catalysts with enriched iron sites in surface layers for proton-exchange membrane fuel cells. ACS Catal. 12, 6409–6417 (2022). https://doi.org/10.1021/acscatal.2c01358
L. Sun, Y. Yin, B. Ren, Y. Qin, G. Wen et al., ZIF-derived ternary Pt-Co-Ni alloy as the superior active and durable catalyst for PEMFC. Nano Energy 120, 109154 (2024). https://doi.org/10.1016/j.nanoen.2023.109154
W. Zhu, H. Liu, Y. Pei, T. Liu, J. Zhang et al., Defect-Engineered ZIF-derived Non-Pt cathode catalyst at 1.5 Mg cm−2 loading for proton exchange membrane fuel cells. Small 19, e2302090 (2023). https://doi.org/10.1002/smll.202302090
Z.-X. Liang, H.-Y. Song, S.-J. Liao, Hemin: a highly effective electrocatalyst mediating the oxygen reduction reaction. J. Phys. Chem. C 115, 2604–2610 (2011). https://doi.org/10.1021/jp1112334
S. Ding, J.A. Barr, Q. Shi, Y. Zeng, P. Tieu et al., Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022). https://doi.org/10.1021/acsnano.2c06459
W. Liu, L. Chu, C. Zhang, P. Ni, Y. Jiang et al., Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 415, 128876 (2021). https://doi.org/10.1016/j.cej.2021.128876
B.-C. Hu, Z.-Y. Wu, S.-Q. Chu, H.-W. Zhu, H.-W. Liang et al., SiO2-protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 11, 2208–2215 (2018). https://doi.org/10.1039/C8EE00673C
X. Chen, D.-D. Ma, B. Chen, K. Zhang, R. Zou et al., Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B Environ. 267, 118720 (2020). https://doi.org/10.1016/j.apcatb.2020.118720
J. Wang, Z.Q. Huang, W. Liu, C.R. Chang, H.L. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
O.L. Li, S. Chiba, Y. Wada, G. Panomsuwan, T. Ishizaki, Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 5, 2073–2082 (2017). https://doi.org/10.1039/C6TA08962C
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li et al., Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7, 18770–18779 (2015). https://doi.org/10.1039/c5nr04994f
W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 125, 11971–11975 (2013). https://doi.org/10.1002/ange.201303924
Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc–air batteries. Adv. Funct. Mater. 28, 1802596 (2018). https://doi.org/10.1002/adfm.201802596
Y. Yu, D. Xiao, J. Ma, C. Chen, K. Li et al., The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe–N coordination for the oxygen reduction reaction. RSC Adv. 8, 24509–24516 (2018). https://doi.org/10.1039/c8ra03672a
X. Lu, P. Yang, Y. Wan, H. Zhang, H. Xu et al., Active site engineering toward atomically dispersed M−N−C catalysts for oxygen reduction reaction. Coord. Chem. Rev. 495, 215400 (2023). https://doi.org/10.1016/j.ccr.2023.215400
S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013). https://doi.org/10.1002/jcc.23424
R. Nelson, C. Ertural, J. George, V.L. Deringer, G. Hautier et al., LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41, 1931–1940 (2020). https://doi.org/10.1002/jcc.26353