Enhancing Green Ammonia Electrosynthesis Through Tuning Sn Vacancies in Sn-Based MXene/MAX Hybrids
Corresponding Author: Tianyi Ma
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 89
Abstract
Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC–V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC–V exhibits an optimal NH3 yield of 28.4 µg h−1 mgcat−1 with an excellent FE of 15.57% at − 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h−1 mg−1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.
Highlights:
1 Sn-based MAX/MXene hybrids with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC–V, fabricated by controlled etching method, are demonstrated to be an excellent electrocatalyst for N2 electroreduction.
2 An economic “NH3 farm” has been developed based on Sn@Ti2CTX/Ti2SnC–V electrode, demonstrated by a commercial electrochemical photovoltaic cell, which may open a novel avenue for solar energy-driven synthesis of ammonia directly from air and water.
3 The potential of the “NH3 farm” was demonstrated by a systematic technical economic analysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
- T.-Y. An, S. Surendran, S.C. Jesudass, H. Lee, D.J. Moon et al., Promoting electrochemical ammonia synthesis by synergized performances of Mo2C–Mo2N heterostructure. Front. Chem. 11, 1122150 (2023). https://doi.org/10.3389/fchem.2023.1122150
- M.S. Yu, S.C. Jesudass, S. Surendran, J.Y. Kim, U. Sim et al., Synergistic interaction of MoS2 nanoflakes on La2Zr2O7 nanofibers for improving photoelectrochemical nitrogen reduction. ACS Appl. Mater. Interfaces 14, 31889–31899 (2022). https://doi.org/10.1021/acsami.2c05653
- P. Yang, H. Guo, H. Wu, F. Zhang, J. Liu et al., Boosting charge-transfer in tuned Au nanops on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J. Colloid Interface Sci. 636, 184–193 (2023). https://doi.org/10.1016/j.jcis.2023.01.002
- Q. Wu, Y. Sun, Q. Zhao, H. Li, Z. Ju et al., Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: proton donation effect of phosphorus dopants. Nano Res. 16, 4574–4581 (2023). https://doi.org/10.1007/s12274-022-4765-9
- Y. Sun, Q. Wu, H. Li, S. Jiang, J. Wang et al., Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon 195, 199–206 (2022). https://doi.org/10.1016/j.carbon.2022.04.026
- D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal–organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
- S. Lin, J.-B. Ma, J.-J. Fu, L. Sun, H. Zhang et al., Constructing the Vo-TiO2/Ag/TiO2 heterojunction for efficient photoelectrochemical nitrogen reduction to ammonia. J. Phys. Chem. C 127, 1345–1354 (2023). https://doi.org/10.1021/acs.jpcc.2c08279
- S. Assad, T. Tariq, M. Zaeem Idrees, A. Mannan Butt, K. Bakhat et al., Recent progress in Pd based electrocatalysts for electrochemical nitrogen reduction to ammonia. J. Electroanal. Chem. 931, 117174 (2023). https://doi.org/10.1016/j.jelechem.2023.117174
- R. Zhao, Y. Chen, H. Xiang, Y. Guan, C. Yang et al., Two-dimensional ordered double-transition metal carbides for the electrochemical nitrogen reduction reaction. ACS Appl. Mater. Interfaces 15, 6797–6806 (2023). https://doi.org/10.1021/acsami.2c19911
- Y. Wan, M. Zheng, R. Lv, Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Mater. Today Energy 32, 101240 (2023). https://doi.org/10.1016/j.mtener.2022.101240
- Y. Wang, J. Wang, H. Li, Y. Li, J. Li et al., Nitrogen reduction reaction: heteronuclear double-atom electrocatalysts. Small Struct. 4, 2200306 (2023). https://doi.org/10.1002/sstr.202200306
- D. Kim, K. Alam, M.-K. Han, S. Surendran, J. Lim et al., Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction. J. Colloid Interface Sci. 633, 53–59 (2023). https://doi.org/10.1016/j.jcis.2022.11.052
- X. Feng, J. Liu, L. Chen, Y. Kong, Z. Zhang et al., Hydrogen radical-induced electrocatalytic N2 reduction at a low potential. J. Am. Chem. Soc. 145, 10259–10267 (2023). https://doi.org/10.1021/jacs.3c01319
- X. Peng, R. Zhang, Y. Mi, H.-T. Wang, Y.-C. Huang et al., Disordered Au nanoclusters for efficient ammonia electrosynthesis. Chemsuschem 16, 2201385 (2023). https://doi.org/10.1002/cssc.202201385
- S.C. Jesudass, S. Surendran, J.Y. Kim, T.-Y. An, G. Janani et al., Pathways of the electrochemical nitrogen reduction reaction: from ammonia synthesis to metal-N2 batteries. Electrochem. Energy Rev. 6, 27 (2023). https://doi.org/10.1007/s41918-023-00186-6
- S. Wageh, A.A. Al-Ghamdi, Q. Xu, Core–shell Au@NiS1+x cocatalyst for excellent TiO2 photocatalytic H2 production. Acta Phys. Chim. Sin. 38, 2202001 (2022). https://doi.org/10.3866/pku.whxb202202001
- P.E.P. Win, D. Yu, W. Song, X. Huang, P. Zhu et al., To molecularly block hydrogen evolution sites of molybdenum disulfide toward improved catalytic performance for electrochemical nitrogen reduction. Small Methods 7, e2201463 (2023). https://doi.org/10.1002/smtd.202201463
- D.-K. Lee, S.-J. Wee, K.-J. Jang, M.-K. Han, S. Surendran et al., 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J. Korean Ceram. Soc. 58, 679–687 (2021). https://doi.org/10.1007/s43207-021-00142-4
- A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano-Micro Lett. 14, 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
- P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang et al., Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 15, e1902535 (2019). https://doi.org/10.1002/smll.201902535
- Y.-P. Liu, Y.-B. Li, H. Zhang, K. Chu, Boosted electrocatalytic N2 reduction on fluorine-doped SnO2 mesoporous nanosheets. Inorg. Chem. 58, 10424–10431 (2019). https://doi.org/10.1021/acs.inorgchem.9b01823
- L. Zhang, H. Zhou, X. Yang, S. Zhang, H. Zhang et al., Boosting electroreduction kinetics of nitrogen to ammonia via atomically dispersed Sn protuberance. Angew. Chem. Int. Ed. 62, e202217473 (2023). https://doi.org/10.1002/anie.202217473
- C. Lv, J. Liu, C. Lee, Q. Zhu, J. Xu et al., Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16, 15512–15527 (2022). https://doi.org/10.1021/acsnano.2c07260
- Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
- S. Li, Y. Wang, Y. Du, X.-D. Zhu, J. Gao et al., P-block metal-based electrocatalysts for nitrogen reduction to ammonia: a minireview. Small 19, 2206776 (2023). https://doi.org/10.1002/smll.202206776
- R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
- X. Yang, Y. Yao, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv. Funct. Mater. 32(10), 2109479 (2022). https://doi.org/10.1002/adfm.202109479.
- R. Luo, R. Li, C. Jiang, R. Qi, M. Liu et al., Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrog. Energy 46, 32536–32545 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.110
- D. Zheng, L. Yu, W. Liu, X. Dai, X. Niu et al., Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep. Phys. Sci. 2, 100443 (2021). https://doi.org/10.1016/j.xcrp.2021.100443
- Z. Zhao, Y. Cao, F. Dong, F. Wu, B. Li et al., The activation of oxygen through oxygen vacancies in BiOCl/PPy to inhibit toxic intermediates and enhance the activity of photocatalytic nitric oxide removal. Nanoscale 11, 6360–6367 (2019). https://doi.org/10.1039/c8nr10356a
- Y. Zhao, C. Ding, J. Zhu, W. Qin, X. Tao et al., A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 59, 9653–9658 (2020). https://doi.org/10.1002/anie.202001438
- J.W. Yang, Y.J. Ahn, D.K. Cho, J.Y. Kim, H.W. Jang, Halide perovskite photovoltaic-electrocatalysis for solar fuel generation. Inorg. Chem. Front. 10, 3781–3807 (2023). https://doi.org/10.1039/d3qi00714f
- Y. Zhou, H. Dong, X. Wang, C. Yan, Preparation of Ti2SnC by solid–liquid reaction synthesis and simultaneous densification method. Mater. Res. Innov. 6, 219–225 (2002). https://doi.org/10.1007/s10019-002-0200-8
- Q. Zhang, J. Tang, H. Tang, Z. Tian, P. Zhang et al., Method for inhibiting Sn whisker growth on Ti2SnC. J. Mater. Sci. 57, 20462–20471 (2022). https://doi.org/10.1007/s10853-022-07867-5
- X. Xie, N. Zhang, Positioning MXenes in the photocatalysis landscape: competitiveness, challenges, and future perspectives. Adv. Funct. Mater. 30, 2002528 (2020). https://doi.org/10.1002/adfm.202002528
- Y. Yuan, H. Li, L. Wang, L. Zhang, D. Shi et al., Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene). ACS Sustain. Chem. Eng. 7, 4266–4273 (2019). https://doi.org/10.1021/acssuschemeng.8b06045
- Y.C. Zhou, H.Y. Dong, X.H. Wang, S.Q. Chen, Electronic structure of the layered ternary carbides Ti2SnC and Ti2GeC. J. Phys. Condens. Matter 12, 9617–9627 (2000). https://doi.org/10.1088/0953-8984/12/46/309
- Y.C. Zhou, H.Y. Dong, B.H. Yu, Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation. Mater. Res. Innov. 4, 36–41 (2000). https://doi.org/10.1007/s100190000065
- H. Wu, J. Zhu, L. Liu, K. Cao, D. Yang et al., Intercalation and delamination of Ti2SnC with high lithium ion storage capacity. Nanoscale 13, 7355–7361 (2021). https://doi.org/10.1039/d0nr06260j
- L. Xie, J. Bi, Z. Xing, X. Gao, L. Meng et al., Hybridization of Ti2SnC with carbon nanofibers via electrospinning for improved lithium ion storage performance. J. Power. Sources 547, 232011 (2022). https://doi.org/10.1016/j.jpowsour.2022.232011
- P.P. Prosini, M. Carewska, C. Cento, G. Tarquini, F. Maroni et al., Tin-decorated reduced graphene oxide and NaLi0.2Ni0.25Mn0.75Oδ as electrode materials for sodium-ion batteries. Materials 12, 1074 (2019). https://doi.org/10.3390/ma12071074
- H.-Y. Sun, X. Kong, W. Sen, Z.-Z. Yi, B.-S. Wang et al., Effects of different Sn contents on formation of Ti2SnC by self-propagating high-temperature synthesis method in Ti–Sn–C and Ti–Sn–C–TiC systems. Mater. Sci. Pol. 32, 696–701 (2014). https://doi.org/10.2478/s13536-014-0252-7
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations. J. Mater. Res. 24, 39–49 (2009). https://doi.org/10.1557/JMR.2009.0012
- V. Kumar, V. Kumar, S. Som, J.H. Neethling, M. Lee et al., The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25, 135701 (2014). https://doi.org/10.1088/0957-4484/25/13/135701
- E.M. Golden, S.A. Basun, D.R. Evans, A.A. Grabar, I.M. Stoika et al., Sn vacancies in photorefractive Sn2P2S6 crystals: an electron paramagnetic resonance study of an optically active hole trap. J. Appl. Phys. 120, 133101 (2016). https://doi.org/10.1063/1.4963825
- Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/C8EE03781G
- X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu et al., Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 8, 1801357 (2018). https://doi.org/10.1002/aenm.201801357
- C. Yang, Y. Zhu, J. Liu, Y. Qin, H. Wang et al., Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 77, 105126 (2020). https://doi.org/10.1016/j.nanoen.2020.105126
- I.E. Khalil, C. Xue, W. Liu, X. Li, Y. Shen et al., The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features. Adv. Funct. Mater. 31, 2010052 (2021). https://doi.org/10.1002/adfm.202010052
- S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3, 1800211 (2019). https://doi.org/10.1002/smtd.201800211
- Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
- X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- J. Fu, J. Yun, S. Wu, L. Li, L. Yu et al., Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10, 34212–34221 (2018). https://doi.org/10.1021/acsami.8b10195
- B. Salah, K. Eid, A.M. Abdelgwad, Y. Ibrahim, A.M. Abdullah, M.K. Hassan, K.I. Ozoemena, Titanium carbide (Ti3C2Tx) MXene ornamented with pallidum nanops for electrochemical CO oxidation. Electroanalysis 34(4), 573–771 (2021). https://doi.org/10.1002/elan.202100269
- N. Xue, X. Li, L. Han, H. Zhu, X. Zhao et al., Fluorine-free synthesis of ambient-stable delaminated Ti2CTx (MXene). J. Mater. Chem. A 10, 7960–7967 (2022). https://doi.org/10.1039/D1TA09981G
- X. Li, X. Yin, M. Han, C. Song, X. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5, 7621–7628 (2017). https://doi.org/10.1039/C7TC01991B
- Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu et al., Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped Barium titanate. Sci. Rep. 7, 42274 (2017). https://doi.org/10.1038/srep42274
- J.B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann et al., Water reduction with visible light: synergy between optical transitions and electron transfer in Au–TiO2 catalysts visualized by In situ EPR spectroscopy. Angew. Chem. Int. Ed. 52, 11420–11424 (2013). https://doi.org/10.1002/anie.201306504
- Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li et al., Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 29, 100766 (2021). https://doi.org/10.1016/j.coelec.2021.100766
- X. Wang, J. Yang, M. Salla, S. Xi, Y. Yang et al., Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation. Angew. Chem. Int. Ed. 60, 18721–18727 (2021). https://doi.org/10.1002/anie.202105536
- X. Lv, F. Wang, J. Du, Q. Liu, Y. Luo et al., Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. Sustain. Energy Fuels 4, 4469–4472 (2020). https://doi.org/10.1039/D0SE00828A
- J. Xia, H. Guo, G. Yu, Q. Chen, Y. Liu et al., 2D vanadium carbide (MXene) for electrochemical synthesis of ammonia under ambient conditions. Catal. Lett. 151, 3516–3522 (2021). https://doi.org/10.1007/s10562-021-03589-6
- X. He, H. Guo, T. Liao, Y. Pu, L. Lai et al., Electrochemically synthesized SnO2 with tunable oxygen vacancies for efficient electrocatalytic nitrogen fixation. Nanoscale 13, 16307–16315 (2021). https://doi.org/10.1039/d1nr04621g
- J. Zhao, L. Zhang, X.-Y. Xie, X. Li, Y. Ma et al., Ti3C2Tx(T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 6, 24031–24035 (2018). https://doi.org/10.1039/c8ta09840a
- W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng et al., Nitrogen fixation: spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2070110 (2020). https://doi.org/10.1002/aenm.202070110
- S. Zhang, H. Zhuo, S. Li, Z. Bao, S. Deng et al., Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catal. Today 368, 187–195 (2021). https://doi.org/10.1016/j.cattod.2020.02.002
- J. Ren, H. Zong, Y. Sun, S. Gong, Y. Feng et al., 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm 22, 1395–1403 (2020). https://doi.org/10.1039/C9CE01777A
- Z. Sun, K. Ba, D. Pu, X. Yang, T. Ye et al., Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4086835
- H. He, H.-M. Wen, H.-K. Li, P. Li, J. Wang et al., Hydrophobicity tailoring of ferric covalent organic framework/MXene nanosheets for high-efficiency nitrogen electroreduction to ammonia. Adv. Sci. 10, e2206933 (2023). https://doi.org/10.1002/advs.202206933
- F. Si, M. Wei, M. Li, X. Xie, Q. Gao et al., Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam. J. Power Sources 538, 231536 (2022). https://doi.org/10.1016/j.jpowsour.2022.231536
- X. Liu, Z. Shen, X. Peng, L. Tian, R. Hao et al., A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. J. Energy Chem. 68, 826–834 (2022). https://doi.org/10.1016/j.jechem.2021.12.021
References
Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
T.-Y. An, S. Surendran, S.C. Jesudass, H. Lee, D.J. Moon et al., Promoting electrochemical ammonia synthesis by synergized performances of Mo2C–Mo2N heterostructure. Front. Chem. 11, 1122150 (2023). https://doi.org/10.3389/fchem.2023.1122150
M.S. Yu, S.C. Jesudass, S. Surendran, J.Y. Kim, U. Sim et al., Synergistic interaction of MoS2 nanoflakes on La2Zr2O7 nanofibers for improving photoelectrochemical nitrogen reduction. ACS Appl. Mater. Interfaces 14, 31889–31899 (2022). https://doi.org/10.1021/acsami.2c05653
P. Yang, H. Guo, H. Wu, F. Zhang, J. Liu et al., Boosting charge-transfer in tuned Au nanops on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J. Colloid Interface Sci. 636, 184–193 (2023). https://doi.org/10.1016/j.jcis.2023.01.002
Q. Wu, Y. Sun, Q. Zhao, H. Li, Z. Ju et al., Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: proton donation effect of phosphorus dopants. Nano Res. 16, 4574–4581 (2023). https://doi.org/10.1007/s12274-022-4765-9
Y. Sun, Q. Wu, H. Li, S. Jiang, J. Wang et al., Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon 195, 199–206 (2022). https://doi.org/10.1016/j.carbon.2022.04.026
D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal–organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
S. Lin, J.-B. Ma, J.-J. Fu, L. Sun, H. Zhang et al., Constructing the Vo-TiO2/Ag/TiO2 heterojunction for efficient photoelectrochemical nitrogen reduction to ammonia. J. Phys. Chem. C 127, 1345–1354 (2023). https://doi.org/10.1021/acs.jpcc.2c08279
S. Assad, T. Tariq, M. Zaeem Idrees, A. Mannan Butt, K. Bakhat et al., Recent progress in Pd based electrocatalysts for electrochemical nitrogen reduction to ammonia. J. Electroanal. Chem. 931, 117174 (2023). https://doi.org/10.1016/j.jelechem.2023.117174
R. Zhao, Y. Chen, H. Xiang, Y. Guan, C. Yang et al., Two-dimensional ordered double-transition metal carbides for the electrochemical nitrogen reduction reaction. ACS Appl. Mater. Interfaces 15, 6797–6806 (2023). https://doi.org/10.1021/acsami.2c19911
Y. Wan, M. Zheng, R. Lv, Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Mater. Today Energy 32, 101240 (2023). https://doi.org/10.1016/j.mtener.2022.101240
Y. Wang, J. Wang, H. Li, Y. Li, J. Li et al., Nitrogen reduction reaction: heteronuclear double-atom electrocatalysts. Small Struct. 4, 2200306 (2023). https://doi.org/10.1002/sstr.202200306
D. Kim, K. Alam, M.-K. Han, S. Surendran, J. Lim et al., Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction. J. Colloid Interface Sci. 633, 53–59 (2023). https://doi.org/10.1016/j.jcis.2022.11.052
X. Feng, J. Liu, L. Chen, Y. Kong, Z. Zhang et al., Hydrogen radical-induced electrocatalytic N2 reduction at a low potential. J. Am. Chem. Soc. 145, 10259–10267 (2023). https://doi.org/10.1021/jacs.3c01319
X. Peng, R. Zhang, Y. Mi, H.-T. Wang, Y.-C. Huang et al., Disordered Au nanoclusters for efficient ammonia electrosynthesis. Chemsuschem 16, 2201385 (2023). https://doi.org/10.1002/cssc.202201385
S.C. Jesudass, S. Surendran, J.Y. Kim, T.-Y. An, G. Janani et al., Pathways of the electrochemical nitrogen reduction reaction: from ammonia synthesis to metal-N2 batteries. Electrochem. Energy Rev. 6, 27 (2023). https://doi.org/10.1007/s41918-023-00186-6
S. Wageh, A.A. Al-Ghamdi, Q. Xu, Core–shell Au@NiS1+x cocatalyst for excellent TiO2 photocatalytic H2 production. Acta Phys. Chim. Sin. 38, 2202001 (2022). https://doi.org/10.3866/pku.whxb202202001
P.E.P. Win, D. Yu, W. Song, X. Huang, P. Zhu et al., To molecularly block hydrogen evolution sites of molybdenum disulfide toward improved catalytic performance for electrochemical nitrogen reduction. Small Methods 7, e2201463 (2023). https://doi.org/10.1002/smtd.202201463
D.-K. Lee, S.-J. Wee, K.-J. Jang, M.-K. Han, S. Surendran et al., 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J. Korean Ceram. Soc. 58, 679–687 (2021). https://doi.org/10.1007/s43207-021-00142-4
A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano-Micro Lett. 14, 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang et al., Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 15, e1902535 (2019). https://doi.org/10.1002/smll.201902535
Y.-P. Liu, Y.-B. Li, H. Zhang, K. Chu, Boosted electrocatalytic N2 reduction on fluorine-doped SnO2 mesoporous nanosheets. Inorg. Chem. 58, 10424–10431 (2019). https://doi.org/10.1021/acs.inorgchem.9b01823
L. Zhang, H. Zhou, X. Yang, S. Zhang, H. Zhang et al., Boosting electroreduction kinetics of nitrogen to ammonia via atomically dispersed Sn protuberance. Angew. Chem. Int. Ed. 62, e202217473 (2023). https://doi.org/10.1002/anie.202217473
C. Lv, J. Liu, C. Lee, Q. Zhu, J. Xu et al., Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16, 15512–15527 (2022). https://doi.org/10.1021/acsnano.2c07260
Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
S. Li, Y. Wang, Y. Du, X.-D. Zhu, J. Gao et al., P-block metal-based electrocatalysts for nitrogen reduction to ammonia: a minireview. Small 19, 2206776 (2023). https://doi.org/10.1002/smll.202206776
R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
X. Yang, Y. Yao, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv. Funct. Mater. 32(10), 2109479 (2022). https://doi.org/10.1002/adfm.202109479.
R. Luo, R. Li, C. Jiang, R. Qi, M. Liu et al., Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrog. Energy 46, 32536–32545 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.110
D. Zheng, L. Yu, W. Liu, X. Dai, X. Niu et al., Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep. Phys. Sci. 2, 100443 (2021). https://doi.org/10.1016/j.xcrp.2021.100443
Z. Zhao, Y. Cao, F. Dong, F. Wu, B. Li et al., The activation of oxygen through oxygen vacancies in BiOCl/PPy to inhibit toxic intermediates and enhance the activity of photocatalytic nitric oxide removal. Nanoscale 11, 6360–6367 (2019). https://doi.org/10.1039/c8nr10356a
Y. Zhao, C. Ding, J. Zhu, W. Qin, X. Tao et al., A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 59, 9653–9658 (2020). https://doi.org/10.1002/anie.202001438
J.W. Yang, Y.J. Ahn, D.K. Cho, J.Y. Kim, H.W. Jang, Halide perovskite photovoltaic-electrocatalysis for solar fuel generation. Inorg. Chem. Front. 10, 3781–3807 (2023). https://doi.org/10.1039/d3qi00714f
Y. Zhou, H. Dong, X. Wang, C. Yan, Preparation of Ti2SnC by solid–liquid reaction synthesis and simultaneous densification method. Mater. Res. Innov. 6, 219–225 (2002). https://doi.org/10.1007/s10019-002-0200-8
Q. Zhang, J. Tang, H. Tang, Z. Tian, P. Zhang et al., Method for inhibiting Sn whisker growth on Ti2SnC. J. Mater. Sci. 57, 20462–20471 (2022). https://doi.org/10.1007/s10853-022-07867-5
X. Xie, N. Zhang, Positioning MXenes in the photocatalysis landscape: competitiveness, challenges, and future perspectives. Adv. Funct. Mater. 30, 2002528 (2020). https://doi.org/10.1002/adfm.202002528
Y. Yuan, H. Li, L. Wang, L. Zhang, D. Shi et al., Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene). ACS Sustain. Chem. Eng. 7, 4266–4273 (2019). https://doi.org/10.1021/acssuschemeng.8b06045
Y.C. Zhou, H.Y. Dong, X.H. Wang, S.Q. Chen, Electronic structure of the layered ternary carbides Ti2SnC and Ti2GeC. J. Phys. Condens. Matter 12, 9617–9627 (2000). https://doi.org/10.1088/0953-8984/12/46/309
Y.C. Zhou, H.Y. Dong, B.H. Yu, Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation. Mater. Res. Innov. 4, 36–41 (2000). https://doi.org/10.1007/s100190000065
H. Wu, J. Zhu, L. Liu, K. Cao, D. Yang et al., Intercalation and delamination of Ti2SnC with high lithium ion storage capacity. Nanoscale 13, 7355–7361 (2021). https://doi.org/10.1039/d0nr06260j
L. Xie, J. Bi, Z. Xing, X. Gao, L. Meng et al., Hybridization of Ti2SnC with carbon nanofibers via electrospinning for improved lithium ion storage performance. J. Power. Sources 547, 232011 (2022). https://doi.org/10.1016/j.jpowsour.2022.232011
P.P. Prosini, M. Carewska, C. Cento, G. Tarquini, F. Maroni et al., Tin-decorated reduced graphene oxide and NaLi0.2Ni0.25Mn0.75Oδ as electrode materials for sodium-ion batteries. Materials 12, 1074 (2019). https://doi.org/10.3390/ma12071074
H.-Y. Sun, X. Kong, W. Sen, Z.-Z. Yi, B.-S. Wang et al., Effects of different Sn contents on formation of Ti2SnC by self-propagating high-temperature synthesis method in Ti–Sn–C and Ti–Sn–C–TiC systems. Mater. Sci. Pol. 32, 696–701 (2014). https://doi.org/10.2478/s13536-014-0252-7
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations. J. Mater. Res. 24, 39–49 (2009). https://doi.org/10.1557/JMR.2009.0012
V. Kumar, V. Kumar, S. Som, J.H. Neethling, M. Lee et al., The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25, 135701 (2014). https://doi.org/10.1088/0957-4484/25/13/135701
E.M. Golden, S.A. Basun, D.R. Evans, A.A. Grabar, I.M. Stoika et al., Sn vacancies in photorefractive Sn2P2S6 crystals: an electron paramagnetic resonance study of an optically active hole trap. J. Appl. Phys. 120, 133101 (2016). https://doi.org/10.1063/1.4963825
Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12, 1730–1750 (2019). https://doi.org/10.1039/C8EE03781G
X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu et al., Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 8, 1801357 (2018). https://doi.org/10.1002/aenm.201801357
C. Yang, Y. Zhu, J. Liu, Y. Qin, H. Wang et al., Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 77, 105126 (2020). https://doi.org/10.1016/j.nanoen.2020.105126
I.E. Khalil, C. Xue, W. Liu, X. Li, Y. Shen et al., The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features. Adv. Funct. Mater. 31, 2010052 (2021). https://doi.org/10.1002/adfm.202010052
S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3, 1800211 (2019). https://doi.org/10.1002/smtd.201800211
Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
J. Fu, J. Yun, S. Wu, L. Li, L. Yu et al., Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10, 34212–34221 (2018). https://doi.org/10.1021/acsami.8b10195
B. Salah, K. Eid, A.M. Abdelgwad, Y. Ibrahim, A.M. Abdullah, M.K. Hassan, K.I. Ozoemena, Titanium carbide (Ti3C2Tx) MXene ornamented with pallidum nanops for electrochemical CO oxidation. Electroanalysis 34(4), 573–771 (2021). https://doi.org/10.1002/elan.202100269
N. Xue, X. Li, L. Han, H. Zhu, X. Zhao et al., Fluorine-free synthesis of ambient-stable delaminated Ti2CTx (MXene). J. Mater. Chem. A 10, 7960–7967 (2022). https://doi.org/10.1039/D1TA09981G
X. Li, X. Yin, M. Han, C. Song, X. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5, 7621–7628 (2017). https://doi.org/10.1039/C7TC01991B
Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu et al., Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped Barium titanate. Sci. Rep. 7, 42274 (2017). https://doi.org/10.1038/srep42274
J.B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann et al., Water reduction with visible light: synergy between optical transitions and electron transfer in Au–TiO2 catalysts visualized by In situ EPR spectroscopy. Angew. Chem. Int. Ed. 52, 11420–11424 (2013). https://doi.org/10.1002/anie.201306504
Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li et al., Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 29, 100766 (2021). https://doi.org/10.1016/j.coelec.2021.100766
X. Wang, J. Yang, M. Salla, S. Xi, Y. Yang et al., Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation. Angew. Chem. Int. Ed. 60, 18721–18727 (2021). https://doi.org/10.1002/anie.202105536
X. Lv, F. Wang, J. Du, Q. Liu, Y. Luo et al., Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. Sustain. Energy Fuels 4, 4469–4472 (2020). https://doi.org/10.1039/D0SE00828A
J. Xia, H. Guo, G. Yu, Q. Chen, Y. Liu et al., 2D vanadium carbide (MXene) for electrochemical synthesis of ammonia under ambient conditions. Catal. Lett. 151, 3516–3522 (2021). https://doi.org/10.1007/s10562-021-03589-6
X. He, H. Guo, T. Liao, Y. Pu, L. Lai et al., Electrochemically synthesized SnO2 with tunable oxygen vacancies for efficient electrocatalytic nitrogen fixation. Nanoscale 13, 16307–16315 (2021). https://doi.org/10.1039/d1nr04621g
J. Zhao, L. Zhang, X.-Y. Xie, X. Li, Y. Ma et al., Ti3C2Tx(T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 6, 24031–24035 (2018). https://doi.org/10.1039/c8ta09840a
W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng et al., Nitrogen fixation: spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2070110 (2020). https://doi.org/10.1002/aenm.202070110
S. Zhang, H. Zhuo, S. Li, Z. Bao, S. Deng et al., Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catal. Today 368, 187–195 (2021). https://doi.org/10.1016/j.cattod.2020.02.002
J. Ren, H. Zong, Y. Sun, S. Gong, Y. Feng et al., 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm 22, 1395–1403 (2020). https://doi.org/10.1039/C9CE01777A
Z. Sun, K. Ba, D. Pu, X. Yang, T. Ye et al., Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4086835
H. He, H.-M. Wen, H.-K. Li, P. Li, J. Wang et al., Hydrophobicity tailoring of ferric covalent organic framework/MXene nanosheets for high-efficiency nitrogen electroreduction to ammonia. Adv. Sci. 10, e2206933 (2023). https://doi.org/10.1002/advs.202206933
F. Si, M. Wei, M. Li, X. Xie, Q. Gao et al., Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam. J. Power Sources 538, 231536 (2022). https://doi.org/10.1016/j.jpowsour.2022.231536
X. Liu, Z. Shen, X. Peng, L. Tian, R. Hao et al., A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. J. Energy Chem. 68, 826–834 (2022). https://doi.org/10.1016/j.jechem.2021.12.021