Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials
Corresponding Author: Fenglong Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 178
Abstract
The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes.
Highlights:
1 Fabrication, characterizations and photothermal properties of MXenes are systematically described.
2 Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed.
3 Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Tavakolian, S.M. Jafari, T.G.M. Ven, A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
- J. Huo, Q. Jia, H. Huang, J. Zhang, P. Li et al., Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 50(15), 8762–8789 (2021). https://doi.org/10.1039/d1cs00074h
- Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15(12), 19672–19683 (2021). https://doi.org/10.1021/acsnano.1c06983
- L. Karner, S. Drechsler, M. Metzger, P. Slezak, J. Zipperle et al., Contamination of wounds with fecal bacteria in immuno-suppressed mice. Sci. Rep. 10, 11494 (2020). https://doi.org/10.1038/s41598-020-68323-5
- H. Gao, C. Cui, L. Wang, M. Jacobs-Lorena, S. Wang, Mosquito microbiota and implications for disease control. Trends Parasitol. 36(2), 98–111 (2020). https://doi.org/10.1016/j.pt.2019.12.001
- N.N. Dinh, H. Sze-Fui, H.M. Thi, N.V. Thi, R. Rees et al., Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Sci. Rep. 10, 4151 (2020). https://doi.org/10.1038/s41598-020-61122-y
- F.G.B. Goddard, H.H. Chang, T.F. Clasen, J.A. Sarnat, Exposure measurement error and the characterization of child exposure to fecal contamination in drinking water. Npj Clean Water 3, 19 (2020). https://doi.org/10.1038/s41545-020-0063-9
- H. Xu, Z. Chen, X. Wu, L. Zhao, N. Wang et al., Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci. Total Environ. 758, 143693 (2021). https://doi.org/10.1016/j.scitotenv.2020.143693
- Y. Huang, D. Xu, L. Huang, Y. Lou, J. Muhadesi et al., Responses of soil microbiome to steel corrosion. Npj Biofilms Microbio. 7, 6 (2021). https://doi.org/10.1038/s41522-020-00175-3
- H. Han, J. Yang, X. Li, Y. Qi, Z. Yang et al., Shining light on transition metal sulfides: new choices as highly efficient antibacterial agents. Nano Res. 14(8), 2512–2534 (2021). https://doi.org/10.1007/s12274-021-3293-3
- Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen et al., Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019). https://doi.org/10.1016/j.cej.2018.10.002
- D.I. Andersson, D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8(4), 260–271 (2010). https://doi.org/10.1038/nrmicro2319
- Y. Zhang, X. Xie, W. Ma, Y. Zhan, C. Mao et al., Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett. 12, 74 (2020). https://doi.org/10.1007/s40820-020-0409-3
- Y. Song, Q. Sun, J. Luo, Y. Kong, B. Pan et al., Cationic and anionic antimicrobial agents co-templated mesostructured silica nanocomposites with a spiky nanotopology and enhanced biofilm inhibition performance. Nano-Micro Lett. 14, 83 (2022). https://doi.org/10.1007/s40820-022-00826-4
- H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice et al., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94
- J. Li, Z. Li, X. Liu, C. Li, Y. Zheng et al., Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 12, 1224 (2021). https://doi.org/10.1038/s41467-021-21435-6
- Q. Wu, L. Tan, X. Liu, Z. Li, Y. Zhang et al., The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Appl. Catal. B 297, 120500 (2021). https://doi.org/10.1016/j.apcatb.2021.120500
- X. Cai, J. Tian, J. Zhu, J. Chen, L. Li et al., Photodynamic and photothermal co-driven CO-enhanced multi-mode synergistic antibacterial nanoplatform to effectively fight against biofilm infections. Chem. Eng. J. 426, 131919 (2021). https://doi.org/10.1016/j.cej.2021.131919
- J.M.A. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J.V. Piddock, Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). https://doi.org/10.1038/nrmicro3380
- N. Thuy-Khanh, H.T.T. Duong, R. Selvanayagam, C. Boyer, N. Barraud, Iron oxide nanop-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci. Rep. 5, 18385 (2015). https://doi.org/10.1038/srep18385
- T. Wang, Z. Bai, W. Wei, F. Hou, W. Guo et al., β-cyclodextrin-derivative-functionalized graphene oxide/graphitic carbon nitride composites with a synergistic effect for rapid and efficient sterilization. ACS Appl. Mater. Interfaces 14(1), 474–483 (2022). https://doi.org/10.1021/acsami.1c24047
- X. Zhou, Z. Wang, Y.K. Chan, Y. Yang, Z. Jiao et al., Infection micromilieu-activated nanocatalytic membrane for orchestrating rapid sterilization and stalled chronic wound regeneration. Adv. Funct. Mater. 32(7), 2109469 (2021). https://doi.org/10.1002/adfm.202109469
- H. Han, X. Xu, H. Kan, Y. Tang, C. Liu et al., Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. J. Colloid Interface Sci. 616, 304–315 (2022). https://doi.org/10.1016/j.jcis.2022.02.068
- Q. Zhao, J. Wang, C. Yin, P. Zhang, J. Zhang et al., Near-infrared light-sensitive nano neuro-immune blocker capsule relieves pain and enhances the innate immune response for necrotizing infection. Nano Lett. 19(9), 5904–5914 (2019). https://doi.org/10.1021/acs.nanolett.9b01459
- C. Liu, W. Wang, M. Zhang, C. Zhang, C. Ma et al., Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chem. Eng. J. 430, 132663 (2022). https://doi.org/10.1016/j.cej.2021.132663
- D. Wang, H. Wang, L. Ji, M. Xu, B. Bai et al., Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano 15(5), 8694–8705 (2021). https://doi.org/10.1021/acsnano.1c00772
- Y. Yang, X. Zhou, Y.K. Chan, Z. Wang, L. Li et al., Photo-activated nanofibrous membrane with self-rechargeable antibacterial function for stubborn infected cutaneous regeneration. Small 18(12), 2105988 (2022). https://doi.org/10.1002/smll.202105988
- Z. Yu, L. Jiang, R. Liu, W. Zhao, Z. Yang et al., Versatile self-assembled MXene-Au nanocomposites for SERS detection of bacteria, antibacterial and photothermal sterilization. Chem. Eng. J. 426, 131914 (2021). https://doi.org/10.1016/j.cej.2021.131914
- Y. Liang, H. Zhang, H. Yuan, W. Lu, Z. Li et al., Conjugated polymer and triphenylamine derivative codoped nanops for photothermal and photodynamic antimicrobial therapy. ACS Appl. Bio Mater. 3(6), 3494–3499 (2020). https://doi.org/10.1021/acsabm.0c00320
- Y. Yang, Y. Deng, J. Huang, X. Fan, C. Cheng et al., Size-transformable metal-organic framework-derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv. Funct. Mater. 29(33), 1900143 (2019). https://doi.org/10.1002/adfm.201900143
- J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28(21), 1800136 (2018). https://doi.org/10.1002/adfm.201800136
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- E.A. Hussein, M.M. Zagho, B.R. Rizeq, N.N. Younes, G. Pintus et al., Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 14, 4529–4539 (2019). https://doi.org/10.2147/ijn.S202208
- A.V. Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), abf1581 (2021). https://doi.org/10.1126/science.abf1581
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- F. Wu, H. Zheng, W. Wang, Q. Wu, Q. Zhang et al., Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 64(3), 748–758 (2021). https://doi.org/10.1007/s40843-020-1451-7
- G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9(46), 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
- Y. Liu, Y. Tian, Q. Han, J. Yin, J. Zhang et al., Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem. Eng. J. 410, 128209 (2021). https://doi.org/10.1016/j.cej.2020.128209
- Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu et al., Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater. 142, 113–123 (2022). https://doi.org/10.1016/j.actbio.2022.02.019
- X. Zhu, Y. Zhu, K. Jia, B.S. Abraha, Y. Li et al., A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Txfor effective synergetic antibacterial applications. Nanoscale 12(37), 19129–19141 (2020). https://doi.org/10.1039/d0nr04925e
- W. Qu, H. Zhao, Q. Zhang, D. Xia, Z. Tang et al., Multifunctional Au/Ti3C2 photothermal membrane with antibacterial ability for stable and efficient solar water purification under the full spectrum. ACS Sustain. Chem. Eng. 9(34), 11372–11387 (2021). https://doi.org/10.1021/acssuschemeng.1c03096
- Y. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/d0cs00022a
- H. Liu, Y. Liu, L. Wang, X. Qin, J. Yu, Nanofiber-based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon 177, 199–206 (2021). https://doi.org/10.1016/j.carbon.2021.02.081
- B. Yan, M. Zhou, X. Liao, P. Wang, Y. Yu et al., Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl. Mater. Interfaces 13(36), 43414–43425 (2021). https://doi.org/10.1021/acsami.1c12915
- M. Gong, L. Yue, J. Kong, X. Lin, L. Zhang et al., Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies. ACS Appl. Mater. Interfaces 13(7), 9053–9063 (2021). https://doi.org/10.1021/acsami.1c00864
- R.P. Pandey, P.A. Rasheed, T. Gomez, K. Rasool, J. Ponraj et al., Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets. ACS Appl. Nano Mater. 3(11), 11372–11382 (2020). https://doi.org/10.1021/acsanm.0c02463
- H. Feng, W. Wang, M. Zhang, S. Zhu, Q. Wang et al., 2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications. Appl. Catal. B 266, 118609 (2020). https://doi.org/10.1016/j.apcatb.2020.118609
- Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang et al., Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15(3), 3996–4017 (2021). https://doi.org/10.1021/acsnano.1c00248
- A. Guo, X. Zhang, S. Wang, J. Zhu, L. Yang et al., Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2/poly(vinylidene fluoride) composites. ChemPlusChem 81(12), 1305–1311 (2016). https://doi.org/10.1002/cplu.201600370
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanop hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
- Y.J. Kim, S.J. Kim, D. Seo, Y. Chae, M. Anayee et al., Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33(16), 6346–6355 (2021). https://doi.org/10.1021/acs.chemmater.1c01263
- F. Liu, A. Zhou, J. Chen, J. Jin, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
- R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2TX MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
- C.F. Zhang, S.N. Park, A. Seral-Ascaso, S. Barwich, N. McEyoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
- C.F. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
- F. Du, H. Tang, L.M. Pan, T. Zhang, H.M. Lu et al., Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017). https://doi.org/10.1016/j.electacta.2017.03.153
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- K. Liang, A. Tabassum, A. Majed, C. Dun, F.P. Yang et al., Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 3(12), 1422–1430 (2021). https://doi.org/10.1002/inf2.12269
- H.T. He, Q.X. Xia, B.X. Wang, L.B. Wang, Q.K. Hu et al., Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chin. Chem. Lett. 31(4), 984–987 (2020). https://doi.org/10.1016/j.cclet.2019.08.025
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- L. Verger, C. Xu, V. Natu, H. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23(3), 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
- X.H. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L.V. Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- F.F. Liu, J. Zhou, S.W. Wang, B.X. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as li-ion batteries. J. Electrochem. Soc. 164(4), A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
- A. Rosenkranz, G. Perini, J.Y. Aguilar-Hurtado, D.F. Zambrano, B. Wang et al., Laser-mediated antibacterial effects of few- and multi-layer Ti3C2Tx MXenes. Appl. Surf. Sci. 567, 150795 (2021). https://doi.org/10.1016/j.apsusc.2021.150795
- V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
- Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing et al., The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. 7(5), 1902236 (2020). https://doi.org/10.1002/advs.201902236
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55(47), 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/c5dt01247c
- M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 8(1), 1801137 (2019). https://doi.org/10.1002/adhm.201801137
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Pinero, M. Naguib et al., The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8(17), 9128–9133 (2016). https://doi.org/10.1039/c6nr01462c
- H. Wang, J. Zhang, Y. Wu, H. Huang, G. Li et al., Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl. Surf. Sci. 384, 287–293 (2016). https://doi.org/10.1016/j.apsusc.2016.05.060
- J. Ran, G. Gao, F. Li, T. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- J.B. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu, D. Placha et al., CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 51(2), 640–667 (2016). https://doi.org/10.1007/s10853-015-9440-z
- J.B. Pang, A. Bachmatiuk, L. Fu, C.L. Yan, M.Q. Zeng et al., Oxidation as a means to remove surface contaminants on cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C 119(23), 13363–13368 (2015). https://doi.org/10.1021/acs.jpcc.5b03911
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
- M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu et al., NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016). https://doi.org/10.1039/c6cp00330c
- X.F. Wang, X. Shen, Y.R. Gao, Z.X. Wang, R.C. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- I. Persson, J. Halim, T.W. Hansen, J.B. Wagner, V. Darakchieva et al., How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 30(47), 1909005 (2020). https://doi.org/10.1002/adfm.201909005
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for li ion batteries? computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 8(36), 24256–24264 (2016). https://doi.org/10.1021/acsami.6b08413
- K. Zheng, K. Li, T.H. Chang, J. Xie, P.Y. Chen, Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv. Funct. Mater. 29(46), 1904603 (2019). https://doi.org/10.1002/adfm.201904603
- L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie et al., Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10(2), 757–781 (2020). https://doi.org/10.7150/thno.39701
- D.B. Wang, Y.X. Fang, W. Yu, L.L. Wang, H.Q. Xie et al., Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol. Energy Mater. Sol. Cells 220, 110850 (2021). https://doi.org/10.1016/j.solmat.2020.110850
- K. Wen, H. Tan, Q. Peng, H. Chen, H. Ma et al., Achieving efficient NIR-II type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv. Mater. 34(7), 2108146 (2022). https://doi.org/10.1002/adma.202108146
- Y. Qiao, J. He, W. Chen, Y. Yu, W. Li et al., Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano 14(3), 3299–3315 (2020). https://doi.org/10.1021/acsnano.9b08930
- L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5(3), 323–343 (2018). https://doi.org/10.1039/c7mh01064h
- D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30(47), 2000712 (2020). https://doi.org/10.1002/adfm.202000712
- X.Q. Fan, L. Liu, X. Jin, W.T. Wang, S.F. Zhang et al., MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J. Mater. Chem. A 7(23), 14319–14327 (2019). https://doi.org/10.1039/c9ta03962g
- Z. Li, Y. Chen, Y. Sun, X. Zhang, Platinum-doped prussian blue nanozymes for multiwavelength bioimaging guided photothermal therapy of tumor and anti-inflammation. ACS Nano 15(3), 5189–5200 (2021). https://doi.org/10.1021/acsnano.0c10388
- T. He, C. Jiang, J. He, Y. Zhang, G. He et al., Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 33(13), 2008540 (2021). https://doi.org/10.1002/adma.202008540
- J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011). https://doi.org/10.1038/nmat3004
- A.R. Mallah, M.N.M. Zubir, O.A. Alawi, K.M.S. Newaz, A.B.M. Badry, Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: fundamentals and applications. Sol. Energy Mater. Sol. Cells 201, 110084 (2019). https://doi.org/10.1016/j.solmat.2019.110084
- V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau et al., Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B 89(23), 235428 (2014). https://doi.org/10.1103/PhysRevB.89.235428
- J.K. El-Demellawi, S. Lopatin, J. Yin, O.F. Mohammed, H.N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2TX MXene flakes. ACS Nano 12(8), 8485–8493 (2018). https://doi.org/10.1021/acsnano.8b04029
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26(23), 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- X. Wu, J. Wang, Z. Wang, F. Sun, Y. Liu et al., Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem. Int. Ed. 60(17), 9416–9420 (2021). https://doi.org/10.1002/anie.202016181
- G. Cebrian, S. Condon, P. Manas, Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods 6(12), 107 (2017). https://doi.org/10.3390/foods6120107
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
- J. Gou, L. Zhao, Y. Li, J. Zhang, Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 4(11), 12308–12315 (2021). https://doi.org/10.1021/acsanm.1c02783
- Q. Zhong, Y. Li, G. Zhang, Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 409, 128099 (2021). https://doi.org/10.1016/j.cej.2020.128099
- X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/c7nr05997c
- M. Marcen, V. Ruiz, M.J. Serrano, S. Condon, P. Manas, Oxidative stress in E. coli cells upon exposure to heat treatments. Int. J. Food Microbiol. 241, 198–205 (2017). https://doi.org/10.1016/j.ijfoodmicro.2016.10.023
- B. Kramer, J. Thielmann, Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J. Microbiol. Methods 123, 24–30 (2016). https://doi.org/10.1016/j.mimet.2016.02.009
- I. Leguerinel, I. Spegagne, O. Couvert, L. Coroller, P. Mafart, Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. Int. J. Food Microbiol. 116(1), 88–95 (2007). https://doi.org/10.1016/j.ijfoodmicro.2006.12.016
- S. Zamenhof, Gene unstabilization induced by heat and by nitrous acid. J. Bacteriol. 81(1), 111–117 (1961). https://doi.org/10.1128/jb.81.1.111-117.1961
- A. Schon, E. Freire, Reversibility and irreversibility in the temperature denaturation of monoclonal antibodies. Anal. Biochem. 626, 114240 (2021). https://doi.org/10.1016/j.ab.2021.114240
- C.J. Nelson, M.J. Laconte, B.E. Bowler, Direct detection of heat and cold denaturation for partial unfolding of a protein. J. Am. Chem. Soc. 123(30), 7453–7454 (2001). https://doi.org/10.1021/ja016144a
- X. Xu, M. Fan, Z. Yu, Y. Zhao, H. Zhang et al., A removable photothermal antibacterial “warm paste” target for cariogenic bacteria. Chem. Eng. J. 429, 132491 (2022). https://doi.org/10.1016/j.cej.2021.132491
- S.Y. Wang, B.H. Chen, L.P. Ouyang, D.H. Wang, J. Tan et al., A novel stimuli-responsive injectable antibacterial hydrogel to achieve synergetic photothermal/gene-targeted therapy towards uveal melanoma. Adv. Sci. 8(18), 2004721 (2021). https://doi.org/10.1002/advs.202004721
- D. Han, Y. Han, J. Li, X. Liu, K.W.K. Yeung et al., Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B 261, 118248 (2020). https://doi.org/10.1016/j.apcatb.2019.118248
- Q. Jia, Q. Song, P. Li, W. Huang, Rejuvenated photodynamic therapy for bacterial infections. Adv. Healthc. Mater. 8(14), 1900608 (2019). https://doi.org/10.1002/adhm.201900608
- Q. Zheng, X. Liu, Y. Zheng, K.W.K. Yeung, Z. Cui et al., The recent progress on metal-organic frameworks for phototherapy. Chem. Soc. Rev. 50(8), 5086–5125 (2021). https://doi.org/10.1039/d1cs00056j
- E.H. Morales, C.A. Pinto, R. Luraschi, C.M. Munoz-Villagran, F.A. Cornejo et al., Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat. Commun. 8, 15320 (2017). https://doi.org/10.1038/ncomms15320
- W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
- Q. Li, W. Wang, H. Feng, L. Cao, H. Wang et al., NIR-triggered photocatalytic and photothermal performance for sterilization based on copper sulfide nanops anchored on Ti3C2Tx MXene. J. Colloid Interface Sci. 604, 810–822 (2021). https://doi.org/10.1016/j.jcis.2021.07.048
- K. Rajavel, S. Shen, T. Ke, D. Lin, Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanops. Appl. Surf. Sci. 538, 148083 (2021). https://doi.org/10.1016/j.apsusc.2020.148083
- B. Yan, X. Bao, X. Liao, P. Wang, M. Zhou et al., Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC. ACS Appl. Mater. Interfaces 14(1), 2132–2145 (2021). https://doi.org/10.1021/acsami.1c22740
- S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng et al., V2C nanosheets as dual-functional antibacterial agents. ACS Appl. Bio Mater. 4(5), 4215–4223 (2021). https://doi.org/10.1021/acsabm.1c00008
- X. Nie, S. Wu, F. Huang, W. Li, H. Qiao et al., “Dew-of-Leaf” structure multiple synergetic antimicrobial modality hybrid: a rapid and long lasting bactericidal material. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129072
- W. Wang, H. Feng, J. Liu, M. Zhang, S. Liu et al., A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124116
- S. Lv, B. Song, F. Han, Z. Li, B. Fan et al., MXene-based hybrid system exhibits excellent synergistic antibiosis. Nanotechnology 33(8), 085101 (2022). https://doi.org/10.1088/1361-6528/ac385d
- Q. He, H. Hu, J. Han, Z. Zhao, Double transition-metal TiVCTX MXene with dual-functional antibacterial capability. Mater. Lett. 308, 131100 (2022). https://doi.org/10.1016/j.matlet.2021.131100
- J. He, M. Shi, Y. Liang, B. Guo, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020). https://doi.org/10.1016/j.cej.2020.124888
- Y. Li, M. Han, Y. Cai, B. Jiang, Y. Zhang et al., Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater. Sci. 10(4), 1068–1082 (2021). https://doi.org/10.1039/d1bm01604k
- Z. Yang, X. Fu, D. Ma, Y. Wang, L. Peng et al., Growth factor-decorated Ti3C2 MXene/MoS2 2D bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue. Small 17(50), 2103993 (2021). https://doi.org/10.1002/smll.202103993
- C. Yang, Y. Luo, H. Lin, M. Ge, J. Shi et al., Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 15(1), 1086–1099 (2021). https://doi.org/10.1021/acsnano.0c08045
- X. Wang, M. Yao, L. Ma, P. Yu, T. Lu et al., NIR-responsive Ti3C2 MXene colloidal solution for curing purulent subcutaneous infection through the “nanothermal blade” effect. Adv. Healthc. Mater. 10(14), 2100392 (2021). https://doi.org/10.1002/adhm.202100392
- X. Zha, X. Zhao, J. Pu, L. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- I. Mahar, F.H. Memon, J.W. Lee, K.H. Kim, R. Ahmed et al., Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications. Membranes 11(11), 869 (2021). https://doi.org/10.3390/membranes11110869
- Z.W. Lei, X.T. Sun, S.F. Zhu, K. Dong, X.Q. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2022). https://doi.org/10.1007/s40820-021-00748-7
- H. Guan, T. Fan, H. Bai, Y. Su, Z. Liu et al., A waste biomass-derived photothermic material with high salt-resistance for efficient solar evaporation. Carbon 188, 265–275 (2022). https://doi.org/10.1016/j.carbon.2021.12.029
- Y. Li, T. Wu, H. Shen, S. Yang, Y. Qin et al., Flexible MXene-based Janus porous fibrous membranes for sustainable solar-driven desalination and emulsions separation. J. Cleaner Produc. 347, 131324 (2022). https://doi.org/10.1016/j.jclepro.2022.131324
- X. Nie, S. Wu, F. Huang, Q. Wang, Q. Wei, Smart textiles with self-disinfection and photothermochromic effects. ACS Appl. Mater. Interfaces 13(2), 2245–2255 (2021). https://doi.org/10.1021/acsami.0c18474
- L. Liu, W. Chen, H. Zhang, Q. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- S. Zhang, J. Ye, X. Liu, Y. Wang, C. Li et al., Titanium carbide/zeolite imidazole framework-8/polylactic acid electrospun membrane for near-infrared regulated photothermal/photodynamic therapy of drug-resistant bacterial infections. J. Colloid Interface Sci. 599, 390–403 (2021). https://doi.org/10.1016/j.jcis.2021.04.109
- W. Zhai, Y. Cao, Y. Li, M. Zheng, Z. Wang, MoO3-x QDs/MXene (Ti3C2Tx) self-assembled heterostructure for multifunctional application with antistatic, smoke suppression, and antibacterial on polyester fabric. J. Mater. Sci. 57(4), 2597–2609 (2022). https://doi.org/10.1007/s10853-021-06690-8
References
M. Tavakolian, S.M. Jafari, T.G.M. Ven, A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
J. Huo, Q. Jia, H. Huang, J. Zhang, P. Li et al., Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 50(15), 8762–8789 (2021). https://doi.org/10.1039/d1cs00074h
Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15(12), 19672–19683 (2021). https://doi.org/10.1021/acsnano.1c06983
L. Karner, S. Drechsler, M. Metzger, P. Slezak, J. Zipperle et al., Contamination of wounds with fecal bacteria in immuno-suppressed mice. Sci. Rep. 10, 11494 (2020). https://doi.org/10.1038/s41598-020-68323-5
H. Gao, C. Cui, L. Wang, M. Jacobs-Lorena, S. Wang, Mosquito microbiota and implications for disease control. Trends Parasitol. 36(2), 98–111 (2020). https://doi.org/10.1016/j.pt.2019.12.001
N.N. Dinh, H. Sze-Fui, H.M. Thi, N.V. Thi, R. Rees et al., Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Sci. Rep. 10, 4151 (2020). https://doi.org/10.1038/s41598-020-61122-y
F.G.B. Goddard, H.H. Chang, T.F. Clasen, J.A. Sarnat, Exposure measurement error and the characterization of child exposure to fecal contamination in drinking water. Npj Clean Water 3, 19 (2020). https://doi.org/10.1038/s41545-020-0063-9
H. Xu, Z. Chen, X. Wu, L. Zhao, N. Wang et al., Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci. Total Environ. 758, 143693 (2021). https://doi.org/10.1016/j.scitotenv.2020.143693
Y. Huang, D. Xu, L. Huang, Y. Lou, J. Muhadesi et al., Responses of soil microbiome to steel corrosion. Npj Biofilms Microbio. 7, 6 (2021). https://doi.org/10.1038/s41522-020-00175-3
H. Han, J. Yang, X. Li, Y. Qi, Z. Yang et al., Shining light on transition metal sulfides: new choices as highly efficient antibacterial agents. Nano Res. 14(8), 2512–2534 (2021). https://doi.org/10.1007/s12274-021-3293-3
Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen et al., Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019). https://doi.org/10.1016/j.cej.2018.10.002
D.I. Andersson, D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8(4), 260–271 (2010). https://doi.org/10.1038/nrmicro2319
Y. Zhang, X. Xie, W. Ma, Y. Zhan, C. Mao et al., Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett. 12, 74 (2020). https://doi.org/10.1007/s40820-020-0409-3
Y. Song, Q. Sun, J. Luo, Y. Kong, B. Pan et al., Cationic and anionic antimicrobial agents co-templated mesostructured silica nanocomposites with a spiky nanotopology and enhanced biofilm inhibition performance. Nano-Micro Lett. 14, 83 (2022). https://doi.org/10.1007/s40820-022-00826-4
H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice et al., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94
J. Li, Z. Li, X. Liu, C. Li, Y. Zheng et al., Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 12, 1224 (2021). https://doi.org/10.1038/s41467-021-21435-6
Q. Wu, L. Tan, X. Liu, Z. Li, Y. Zhang et al., The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Appl. Catal. B 297, 120500 (2021). https://doi.org/10.1016/j.apcatb.2021.120500
X. Cai, J. Tian, J. Zhu, J. Chen, L. Li et al., Photodynamic and photothermal co-driven CO-enhanced multi-mode synergistic antibacterial nanoplatform to effectively fight against biofilm infections. Chem. Eng. J. 426, 131919 (2021). https://doi.org/10.1016/j.cej.2021.131919
J.M.A. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J.V. Piddock, Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). https://doi.org/10.1038/nrmicro3380
N. Thuy-Khanh, H.T.T. Duong, R. Selvanayagam, C. Boyer, N. Barraud, Iron oxide nanop-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci. Rep. 5, 18385 (2015). https://doi.org/10.1038/srep18385
T. Wang, Z. Bai, W. Wei, F. Hou, W. Guo et al., β-cyclodextrin-derivative-functionalized graphene oxide/graphitic carbon nitride composites with a synergistic effect for rapid and efficient sterilization. ACS Appl. Mater. Interfaces 14(1), 474–483 (2022). https://doi.org/10.1021/acsami.1c24047
X. Zhou, Z. Wang, Y.K. Chan, Y. Yang, Z. Jiao et al., Infection micromilieu-activated nanocatalytic membrane for orchestrating rapid sterilization and stalled chronic wound regeneration. Adv. Funct. Mater. 32(7), 2109469 (2021). https://doi.org/10.1002/adfm.202109469
H. Han, X. Xu, H. Kan, Y. Tang, C. Liu et al., Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. J. Colloid Interface Sci. 616, 304–315 (2022). https://doi.org/10.1016/j.jcis.2022.02.068
Q. Zhao, J. Wang, C. Yin, P. Zhang, J. Zhang et al., Near-infrared light-sensitive nano neuro-immune blocker capsule relieves pain and enhances the innate immune response for necrotizing infection. Nano Lett. 19(9), 5904–5914 (2019). https://doi.org/10.1021/acs.nanolett.9b01459
C. Liu, W. Wang, M. Zhang, C. Zhang, C. Ma et al., Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chem. Eng. J. 430, 132663 (2022). https://doi.org/10.1016/j.cej.2021.132663
D. Wang, H. Wang, L. Ji, M. Xu, B. Bai et al., Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano 15(5), 8694–8705 (2021). https://doi.org/10.1021/acsnano.1c00772
Y. Yang, X. Zhou, Y.K. Chan, Z. Wang, L. Li et al., Photo-activated nanofibrous membrane with self-rechargeable antibacterial function for stubborn infected cutaneous regeneration. Small 18(12), 2105988 (2022). https://doi.org/10.1002/smll.202105988
Z. Yu, L. Jiang, R. Liu, W. Zhao, Z. Yang et al., Versatile self-assembled MXene-Au nanocomposites for SERS detection of bacteria, antibacterial and photothermal sterilization. Chem. Eng. J. 426, 131914 (2021). https://doi.org/10.1016/j.cej.2021.131914
Y. Liang, H. Zhang, H. Yuan, W. Lu, Z. Li et al., Conjugated polymer and triphenylamine derivative codoped nanops for photothermal and photodynamic antimicrobial therapy. ACS Appl. Bio Mater. 3(6), 3494–3499 (2020). https://doi.org/10.1021/acsabm.0c00320
Y. Yang, Y. Deng, J. Huang, X. Fan, C. Cheng et al., Size-transformable metal-organic framework-derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv. Funct. Mater. 29(33), 1900143 (2019). https://doi.org/10.1002/adfm.201900143
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28(21), 1800136 (2018). https://doi.org/10.1002/adfm.201800136
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
E.A. Hussein, M.M. Zagho, B.R. Rizeq, N.N. Younes, G. Pintus et al., Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 14, 4529–4539 (2019). https://doi.org/10.2147/ijn.S202208
A.V. Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), abf1581 (2021). https://doi.org/10.1126/science.abf1581
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
F. Wu, H. Zheng, W. Wang, Q. Wu, Q. Zhang et al., Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 64(3), 748–758 (2021). https://doi.org/10.1007/s40843-020-1451-7
G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9(46), 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
Y. Liu, Y. Tian, Q. Han, J. Yin, J. Zhang et al., Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem. Eng. J. 410, 128209 (2021). https://doi.org/10.1016/j.cej.2020.128209
Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu et al., Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater. 142, 113–123 (2022). https://doi.org/10.1016/j.actbio.2022.02.019
X. Zhu, Y. Zhu, K. Jia, B.S. Abraha, Y. Li et al., A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Txfor effective synergetic antibacterial applications. Nanoscale 12(37), 19129–19141 (2020). https://doi.org/10.1039/d0nr04925e
W. Qu, H. Zhao, Q. Zhang, D. Xia, Z. Tang et al., Multifunctional Au/Ti3C2 photothermal membrane with antibacterial ability for stable and efficient solar water purification under the full spectrum. ACS Sustain. Chem. Eng. 9(34), 11372–11387 (2021). https://doi.org/10.1021/acssuschemeng.1c03096
Y. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/d0cs00022a
H. Liu, Y. Liu, L. Wang, X. Qin, J. Yu, Nanofiber-based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon 177, 199–206 (2021). https://doi.org/10.1016/j.carbon.2021.02.081
B. Yan, M. Zhou, X. Liao, P. Wang, Y. Yu et al., Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl. Mater. Interfaces 13(36), 43414–43425 (2021). https://doi.org/10.1021/acsami.1c12915
M. Gong, L. Yue, J. Kong, X. Lin, L. Zhang et al., Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies. ACS Appl. Mater. Interfaces 13(7), 9053–9063 (2021). https://doi.org/10.1021/acsami.1c00864
R.P. Pandey, P.A. Rasheed, T. Gomez, K. Rasool, J. Ponraj et al., Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets. ACS Appl. Nano Mater. 3(11), 11372–11382 (2020). https://doi.org/10.1021/acsanm.0c02463
H. Feng, W. Wang, M. Zhang, S. Zhu, Q. Wang et al., 2D titanium carbide-based nanocomposites for photocatalytic bacteriostatic applications. Appl. Catal. B 266, 118609 (2020). https://doi.org/10.1016/j.apcatb.2020.118609
Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang et al., Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15(3), 3996–4017 (2021). https://doi.org/10.1021/acsnano.1c00248
A. Guo, X. Zhang, S. Wang, J. Zhu, L. Yang et al., Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2/poly(vinylidene fluoride) composites. ChemPlusChem 81(12), 1305–1311 (2016). https://doi.org/10.1002/cplu.201600370
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanop hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
Y.J. Kim, S.J. Kim, D. Seo, Y. Chae, M. Anayee et al., Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33(16), 6346–6355 (2021). https://doi.org/10.1021/acs.chemmater.1c01263
F. Liu, A. Zhou, J. Chen, J. Jin, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2TX MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
C.F. Zhang, S.N. Park, A. Seral-Ascaso, S. Barwich, N. McEyoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
C.F. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
F. Du, H. Tang, L.M. Pan, T. Zhang, H.M. Lu et al., Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017). https://doi.org/10.1016/j.electacta.2017.03.153
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014). https://doi.org/10.1021/cm500641a
K. Liang, A. Tabassum, A. Majed, C. Dun, F.P. Yang et al., Synthesis of new two-dimensional titanium carbonitride Ti2C0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 3(12), 1422–1430 (2021). https://doi.org/10.1002/inf2.12269
H.T. He, Q.X. Xia, B.X. Wang, L.B. Wang, Q.K. Hu et al., Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chin. Chem. Lett. 31(4), 984–987 (2020). https://doi.org/10.1016/j.cclet.2019.08.025
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
L. Verger, C. Xu, V. Natu, H. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23(3), 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
X.H. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L.V. Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
F.F. Liu, J. Zhou, S.W. Wang, B.X. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as li-ion batteries. J. Electrochem. Soc. 164(4), A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
A. Rosenkranz, G. Perini, J.Y. Aguilar-Hurtado, D.F. Zambrano, B. Wang et al., Laser-mediated antibacterial effects of few- and multi-layer Ti3C2Tx MXenes. Appl. Surf. Sci. 567, 150795 (2021). https://doi.org/10.1016/j.apsusc.2021.150795
V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing et al., The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. 7(5), 1902236 (2020). https://doi.org/10.1002/advs.201902236
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55(47), 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/c5dt01247c
M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 8(1), 1801137 (2019). https://doi.org/10.1002/adhm.201801137
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Pinero, M. Naguib et al., The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8(17), 9128–9133 (2016). https://doi.org/10.1039/c6nr01462c
H. Wang, J. Zhang, Y. Wu, H. Huang, G. Li et al., Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl. Surf. Sci. 384, 287–293 (2016). https://doi.org/10.1016/j.apsusc.2016.05.060
J. Ran, G. Gao, F. Li, T. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
J.B. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu, D. Placha et al., CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 51(2), 640–667 (2016). https://doi.org/10.1007/s10853-015-9440-z
J.B. Pang, A. Bachmatiuk, L. Fu, C.L. Yan, M.Q. Zeng et al., Oxidation as a means to remove surface contaminants on cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C 119(23), 13363–13368 (2015). https://doi.org/10.1021/acs.jpcc.5b03911
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu et al., NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016). https://doi.org/10.1039/c6cp00330c
X.F. Wang, X. Shen, Y.R. Gao, Z.X. Wang, R.C. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
I. Persson, J. Halim, T.W. Hansen, J.B. Wagner, V. Darakchieva et al., How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 30(47), 1909005 (2020). https://doi.org/10.1002/adfm.201909005
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for li ion batteries? computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 8(36), 24256–24264 (2016). https://doi.org/10.1021/acsami.6b08413
K. Zheng, K. Li, T.H. Chang, J. Xie, P.Y. Chen, Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv. Funct. Mater. 29(46), 1904603 (2019). https://doi.org/10.1002/adfm.201904603
L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie et al., Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10(2), 757–781 (2020). https://doi.org/10.7150/thno.39701
D.B. Wang, Y.X. Fang, W. Yu, L.L. Wang, H.Q. Xie et al., Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol. Energy Mater. Sol. Cells 220, 110850 (2021). https://doi.org/10.1016/j.solmat.2020.110850
K. Wen, H. Tan, Q. Peng, H. Chen, H. Ma et al., Achieving efficient NIR-II type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv. Mater. 34(7), 2108146 (2022). https://doi.org/10.1002/adma.202108146
Y. Qiao, J. He, W. Chen, Y. Yu, W. Li et al., Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano 14(3), 3299–3315 (2020). https://doi.org/10.1021/acsnano.9b08930
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5(3), 323–343 (2018). https://doi.org/10.1039/c7mh01064h
D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30(47), 2000712 (2020). https://doi.org/10.1002/adfm.202000712
X.Q. Fan, L. Liu, X. Jin, W.T. Wang, S.F. Zhang et al., MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J. Mater. Chem. A 7(23), 14319–14327 (2019). https://doi.org/10.1039/c9ta03962g
Z. Li, Y. Chen, Y. Sun, X. Zhang, Platinum-doped prussian blue nanozymes for multiwavelength bioimaging guided photothermal therapy of tumor and anti-inflammation. ACS Nano 15(3), 5189–5200 (2021). https://doi.org/10.1021/acsnano.0c10388
T. He, C. Jiang, J. He, Y. Zhang, G. He et al., Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 33(13), 2008540 (2021). https://doi.org/10.1002/adma.202008540
J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011). https://doi.org/10.1038/nmat3004
A.R. Mallah, M.N.M. Zubir, O.A. Alawi, K.M.S. Newaz, A.B.M. Badry, Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: fundamentals and applications. Sol. Energy Mater. Sol. Cells 201, 110084 (2019). https://doi.org/10.1016/j.solmat.2019.110084
V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau et al., Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B 89(23), 235428 (2014). https://doi.org/10.1103/PhysRevB.89.235428
J.K. El-Demellawi, S. Lopatin, J. Yin, O.F. Mohammed, H.N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2TX MXene flakes. ACS Nano 12(8), 8485–8493 (2018). https://doi.org/10.1021/acsnano.8b04029
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26(23), 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
X. Wu, J. Wang, Z. Wang, F. Sun, Y. Liu et al., Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem. Int. Ed. 60(17), 9416–9420 (2021). https://doi.org/10.1002/anie.202016181
G. Cebrian, S. Condon, P. Manas, Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods 6(12), 107 (2017). https://doi.org/10.3390/foods6120107
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
J. Gou, L. Zhao, Y. Li, J. Zhang, Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 4(11), 12308–12315 (2021). https://doi.org/10.1021/acsanm.1c02783
Q. Zhong, Y. Li, G. Zhang, Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 409, 128099 (2021). https://doi.org/10.1016/j.cej.2020.128099
X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45), 17859–17864 (2017). https://doi.org/10.1039/c7nr05997c
M. Marcen, V. Ruiz, M.J. Serrano, S. Condon, P. Manas, Oxidative stress in E. coli cells upon exposure to heat treatments. Int. J. Food Microbiol. 241, 198–205 (2017). https://doi.org/10.1016/j.ijfoodmicro.2016.10.023
B. Kramer, J. Thielmann, Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J. Microbiol. Methods 123, 24–30 (2016). https://doi.org/10.1016/j.mimet.2016.02.009
I. Leguerinel, I. Spegagne, O. Couvert, L. Coroller, P. Mafart, Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. Int. J. Food Microbiol. 116(1), 88–95 (2007). https://doi.org/10.1016/j.ijfoodmicro.2006.12.016
S. Zamenhof, Gene unstabilization induced by heat and by nitrous acid. J. Bacteriol. 81(1), 111–117 (1961). https://doi.org/10.1128/jb.81.1.111-117.1961
A. Schon, E. Freire, Reversibility and irreversibility in the temperature denaturation of monoclonal antibodies. Anal. Biochem. 626, 114240 (2021). https://doi.org/10.1016/j.ab.2021.114240
C.J. Nelson, M.J. Laconte, B.E. Bowler, Direct detection of heat and cold denaturation for partial unfolding of a protein. J. Am. Chem. Soc. 123(30), 7453–7454 (2001). https://doi.org/10.1021/ja016144a
X. Xu, M. Fan, Z. Yu, Y. Zhao, H. Zhang et al., A removable photothermal antibacterial “warm paste” target for cariogenic bacteria. Chem. Eng. J. 429, 132491 (2022). https://doi.org/10.1016/j.cej.2021.132491
S.Y. Wang, B.H. Chen, L.P. Ouyang, D.H. Wang, J. Tan et al., A novel stimuli-responsive injectable antibacterial hydrogel to achieve synergetic photothermal/gene-targeted therapy towards uveal melanoma. Adv. Sci. 8(18), 2004721 (2021). https://doi.org/10.1002/advs.202004721
D. Han, Y. Han, J. Li, X. Liu, K.W.K. Yeung et al., Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B 261, 118248 (2020). https://doi.org/10.1016/j.apcatb.2019.118248
Q. Jia, Q. Song, P. Li, W. Huang, Rejuvenated photodynamic therapy for bacterial infections. Adv. Healthc. Mater. 8(14), 1900608 (2019). https://doi.org/10.1002/adhm.201900608
Q. Zheng, X. Liu, Y. Zheng, K.W.K. Yeung, Z. Cui et al., The recent progress on metal-organic frameworks for phototherapy. Chem. Soc. Rev. 50(8), 5086–5125 (2021). https://doi.org/10.1039/d1cs00056j
E.H. Morales, C.A. Pinto, R. Luraschi, C.M. Munoz-Villagran, F.A. Cornejo et al., Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat. Commun. 8, 15320 (2017). https://doi.org/10.1038/ncomms15320
W. Wu, D. Mao, F. Hu, S. Xu, C. Chen et al., A highly efficient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy. Adv. Mater. 29(33), 1700548 (2017). https://doi.org/10.1002/adma.201700548
Q. Li, W. Wang, H. Feng, L. Cao, H. Wang et al., NIR-triggered photocatalytic and photothermal performance for sterilization based on copper sulfide nanops anchored on Ti3C2Tx MXene. J. Colloid Interface Sci. 604, 810–822 (2021). https://doi.org/10.1016/j.jcis.2021.07.048
K. Rajavel, S. Shen, T. Ke, D. Lin, Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanops. Appl. Surf. Sci. 538, 148083 (2021). https://doi.org/10.1016/j.apsusc.2020.148083
B. Yan, X. Bao, X. Liao, P. Wang, M. Zhou et al., Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC. ACS Appl. Mater. Interfaces 14(1), 2132–2145 (2021). https://doi.org/10.1021/acsami.1c22740
S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng et al., V2C nanosheets as dual-functional antibacterial agents. ACS Appl. Bio Mater. 4(5), 4215–4223 (2021). https://doi.org/10.1021/acsabm.1c00008
X. Nie, S. Wu, F. Huang, W. Li, H. Qiao et al., “Dew-of-Leaf” structure multiple synergetic antimicrobial modality hybrid: a rapid and long lasting bactericidal material. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129072
W. Wang, H. Feng, J. Liu, M. Zhang, S. Liu et al., A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124116
S. Lv, B. Song, F. Han, Z. Li, B. Fan et al., MXene-based hybrid system exhibits excellent synergistic antibiosis. Nanotechnology 33(8), 085101 (2022). https://doi.org/10.1088/1361-6528/ac385d
Q. He, H. Hu, J. Han, Z. Zhao, Double transition-metal TiVCTX MXene with dual-functional antibacterial capability. Mater. Lett. 308, 131100 (2022). https://doi.org/10.1016/j.matlet.2021.131100
J. He, M. Shi, Y. Liang, B. Guo, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020). https://doi.org/10.1016/j.cej.2020.124888
Y. Li, M. Han, Y. Cai, B. Jiang, Y. Zhang et al., Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater. Sci. 10(4), 1068–1082 (2021). https://doi.org/10.1039/d1bm01604k
Z. Yang, X. Fu, D. Ma, Y. Wang, L. Peng et al., Growth factor-decorated Ti3C2 MXene/MoS2 2D bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue. Small 17(50), 2103993 (2021). https://doi.org/10.1002/smll.202103993
C. Yang, Y. Luo, H. Lin, M. Ge, J. Shi et al., Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 15(1), 1086–1099 (2021). https://doi.org/10.1021/acsnano.0c08045
X. Wang, M. Yao, L. Ma, P. Yu, T. Lu et al., NIR-responsive Ti3C2 MXene colloidal solution for curing purulent subcutaneous infection through the “nanothermal blade” effect. Adv. Healthc. Mater. 10(14), 2100392 (2021). https://doi.org/10.1002/adhm.202100392
X. Zha, X. Zhao, J. Pu, L. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
I. Mahar, F.H. Memon, J.W. Lee, K.H. Kim, R. Ahmed et al., Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications. Membranes 11(11), 869 (2021). https://doi.org/10.3390/membranes11110869
Z.W. Lei, X.T. Sun, S.F. Zhu, K. Dong, X.Q. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2022). https://doi.org/10.1007/s40820-021-00748-7
H. Guan, T. Fan, H. Bai, Y. Su, Z. Liu et al., A waste biomass-derived photothermic material with high salt-resistance for efficient solar evaporation. Carbon 188, 265–275 (2022). https://doi.org/10.1016/j.carbon.2021.12.029
Y. Li, T. Wu, H. Shen, S. Yang, Y. Qin et al., Flexible MXene-based Janus porous fibrous membranes for sustainable solar-driven desalination and emulsions separation. J. Cleaner Produc. 347, 131324 (2022). https://doi.org/10.1016/j.jclepro.2022.131324
X. Nie, S. Wu, F. Huang, Q. Wang, Q. Wei, Smart textiles with self-disinfection and photothermochromic effects. ACS Appl. Mater. Interfaces 13(2), 2245–2255 (2021). https://doi.org/10.1021/acsami.0c18474
L. Liu, W. Chen, H. Zhang, Q. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
S. Zhang, J. Ye, X. Liu, Y. Wang, C. Li et al., Titanium carbide/zeolite imidazole framework-8/polylactic acid electrospun membrane for near-infrared regulated photothermal/photodynamic therapy of drug-resistant bacterial infections. J. Colloid Interface Sci. 599, 390–403 (2021). https://doi.org/10.1016/j.jcis.2021.04.109
W. Zhai, Y. Cao, Y. Li, M. Zheng, Z. Wang, MoO3-x QDs/MXene (Ti3C2Tx) self-assembled heterostructure for multifunctional application with antistatic, smoke suppression, and antibacterial on polyester fabric. J. Mater. Sci. 57(4), 2597–2609 (2022). https://doi.org/10.1007/s10853-021-06690-8