Quasi-Three-Dimensional Cyclotriphosphazene-Based Covalent Organic Framework Nanosheet for Efficient Oxygen Reduction
Corresponding Author: Qianrong Fang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 159
Abstract
Metal-free carbon-based materials are considered as promising oxygen reduction reaction (ORR) electrocatalysts for clean energy conversion, and their highly dense and exposed carbon active sites are crucial for efficient ORR. In this work, two unique quasi-three-dimensional cyclotriphosphazene-based covalent organic frameworks (Q3CTP-COFs) and their nanosheets were successfully synthesized and applied as ORR electrocatalysts. The abundant electrophilic structure in Q3CTP-COFs induces a high density of carbon active sites, and the unique bilayer stacking of [6 + 3] imine-linked backbone facilitates the exposure of active carbon sites and accelerates mass diffusion during ORR. In particular, bulk Q3CTP-COFs can be easily exfoliated into thin COF nanosheets (NSs) due to the weak interlayer π–π interactions. Q3CTP-COF NSs exhibit highly efficient ORR catalytic activity (half-wave potential of 0.72 V vs. RHE in alkaline electrolyte), which is one of the best COF-based ORR electrocatalysts reported so far. Furthermore, Q3CTP-COF NSs can serve as a promising cathode for Zn-air batteries (delivered power density of 156 mW cm–2 at 300 mA cm–2). This judicious design and accurate synthesis of such COFs with highly dense and exposed active sites and their nanosheets will promote the development of metal-free carbon-based electrocatalysts.
Highlights:
1 JUC-610-nanosheet exhibits highly efficient oxygen reduction reaction (ORR) catalytic activity in alkaline electrolyte with half-wave potential of 0.72 V versus reversible hydrogen electrode, which is one of the best covalent organic frameworks (COF)-based ORR electrocatalysts reported so far.
2 It has been confirmed by experiments and density functional theory calculations that the abundant electrophilic structure in Q3CTP-COFs induces a highly density of carbon active sites, and the unique bilayer stacking facilitates the exposure of active carbon sites and accelerates the mass diffusion during ORR.
3 JUC-610-nanosheet can also serve as a promising cathode for Zn-air batteries (power density of 156 mW cm–2 at 300 mA cm–2), which promotes the development of metal-free carbon-based electrocatalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kumar, Y. Zhang, W. Liu, X. Sun, The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coord. Chem. Rev. 402, 213047 (2020). https://doi.org/10.1016/j.ccr.2019.213047
- A. Kumar, V.K. Vashistha, D.K. Das, Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coord. Chem. Rev. 431, 213678 (2021). https://doi.org/10.1016/j.ccr.2020.213678
- Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang et al., Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 13, 1090 (2020). https://doi.org/10.1007/s12274-020-2751-7
- C. Li, N.C.S. Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
- C. Zhang, X. Shen, Y. Pan, Z. Peng, A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 11, 268 (2017). https://doi.org/10.1007/s11708-017-0466-6
- H. Cruz-Martinez, H. Rojas-Chavez, P.T. Matadamas-Ortiz, J.C. Ortiz-Herrera, E. Lopez-Chavez et al., Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater. Today Phys. 19, 100406 (2021). https://doi.org/10.1016/j.mtphys.2021.100406
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2, 688 (2019). https://doi.org/10.1038/s41929-019-0297-4
- Q. Xu, Y. Tang, X. Zhang, Y. Oshima, Q. Chen et al., Template conversion of covalent organic frameworks into 2d conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 30, 1706330 (2018). https://doi.org/10.1002/adma.201706330
- J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin et al., Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 1, 9889 (2013). https://doi.org/10.1039/c3ta11849e
- D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
- Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5, 1371 (2019). https://doi.org/10.1038/s41929-019-0297-4
- J. Zhang, G. Chen, K. Muellen, X. Feng, Carbon-rich nanomaterials: fascinating hydrogen and oxygen electrocatalysts. Adv. Mater. 30, 1800528 (2018). https://doi.org/10.1002/adma.201800528
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-023-01024-6
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
- X. Feng, X. Ding, D. Jiang, Covalent organic frameworks. Chem. Soc. Rev. 41, 6010 (2012). https://doi.org/10.1039/c2cs35157a
- X. Guan, F. Chen, Q. Fang, S. Qiu, Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357 (2020). https://doi.org/10.1039/c9cs00911f
- Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Postsynthetic functionalization of covalent organic frameworks. National Sci. Rev. 7, 170 (2020). https://doi.org/10.1093/nsr/nwz122
- D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142, 8104 (2020). https://doi.org/10.1021/jacs.0c02225
- S. Roy, S. Mari, M.K. Sai, S.C. Sarma, S. Sarkar et al., Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale 12, 22718 (2020). https://doi.org/10.1039/d0nr05337f
- J.H. Park, C.H. Lee, J.-M. Ju, J.-H. Lee, J. Seol et al., Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-Air batteries. Adv. Funct. Mater. 31, 2101727 (2021). https://doi.org/10.1002/adfm.202101727
- Y. Yue, T. Wang, X. Wu, P. Yang, Y. Ma et al., Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. 57, 12619 (2021). https://doi.org/10.1039/d1cc04928c
- B. Yang, J. Miao, F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496 (2012). https://doi.org/10.1002/anie.201206720
- Y. Su, Z. Yao, F. Zhang, H. Wang, Z. Mics et al., Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen Co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Adv. Funct. Mater. 26, 5893 (2016). https://doi.org/10.1002/adfm.201602158
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009). https://doi.org/10.1126/science.1168049
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361 (2016). https://doi.org/10.1126/science.aad0832
- Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo et al., Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 8, 2715 (2022). https://doi.org/10.1016/j.chempr.2022.06.013
- D. Li, X. Long, Y. Wu, H. Hou, X. Wang et al., Hierarchically porous and defective carbon fiber cathode for efficient Zn-air batteries and microbial fuel cells. Adv. Fiber. Mater. 4, 795 (2022). https://doi.org/10.1007/s42765-022-00139-6
- B. Gui, H. Ding, Y. Cheng, A. Mal, C. Wang, Structural design and determination of 3D covalent organic frameworks. Trends Chem. 5, 437 (2022). https://doi.org/10.1016/j.trechm.2022.01.002
- C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan et al., Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 3, 5481 (2020). https://doi.org/10.1021/acsanm.0c00786
- X.-T. Wang, X.-F. Lin, D.-S. Yu, Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Met. 41, 1160 (2022). https://doi.org/10.1007/s12598-021-01873-3
- Y. Liu, J. Ren, Y. Wang, X. Zhu, X. Guan et al., A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition. CCS Chem 4, 1 (2022). https://doi.org/10.31635/ccschem.022.202202352
- X. Ren, C. Li, W. Kang, L. He, T. Na et al., Enormously promoted photocatalytic activity by using a near-single layer COFs. CCS Chem. 7, 2429 (2021). https://doi.org/10.31635/ccschem.021.202101090
- X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian et al., Colyliform crystalline 2d covalent organic frameworks (COFs) with quasi-3d topologies for rapid I(2)adsorption. Angew. Chem. Int. Ed. 59, 22697 (2020). https://doi.org/10.1002/anie.202010829
- X. Li, S. Xu, K. Leng, S.W. Chee, X. Zhao et al., Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat. Chem. 12, 1115 (2020). https://doi.org/10.1038/s41557-020-00562-5
- H.S. Sasmal, A.K. Mahato, P. Majumder, R. Banerjee, Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482 (2022). https://doi.org/10.1021/jacs.2c02301
- S. Mohata, K. Dey, S. Bhunia, N. Thomas, E.B. Gowd et al., Dual nanomechanics in anisotropic porous covalent organic framework janus-type thin films. J. Am. Chem. Soc. 144, 400 (2022). https://doi.org/10.1021/jacs.1c10263
- A.K. Mahato, S. Bag, H.S. Sasmal, K. Dey et al., Crystallizing sub 10 nm covalent organic framework thin films via interfacial–residual concomitance. J. Am. Chem. Soc. 143, 20916 (2021). https://doi.org/10.1021/jacs.1c09740
- K. Dey, S. Mohata, R. Banerjee, Covalent organic frameworks and supramolecular nano-synthesis. ACS Nano 15, 12723 (2021). https://doi.org/10.1021/acsnano.1c05194
- Y. Ding, J. Gao, Q. Wang, Y. Zhang, G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki–miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816 (2021). https://doi.org/10.1021/ja206846p
- F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe et al., A crystalline imine-linked 3-d porous covalent organic framework. J. Am. Chem. Soc. 131, 4570 (2009). https://doi.org/10.1021/ja8096256
- Materials Studio v.7.0 (Accelrys Inc, 2013). http://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio
- M.O. Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782 (2008). https://doi.org/10.1021/ar800124u
- Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang et al., 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352 (2015). https://doi.org/10.1021/jacs.5b04147
- C. Ji, K. Su, W. Wang, J. Chang et al., Tunable cage based three-dimensional covalent organic frameworks. CCS Chem. 9, 3095 (2021). https://doi.org/10.31635/ccschem.021.202101453
- Y. Liu, C. Wu, Q. Sun, F. Hu, Q. Pan et al., Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst. CCS Chem. 4, 2418 (2020). https://doi.org/10.31635/ccschem.020.202000493
- T.-M. Geng, F.-Q. Wang, X.-C. Fang, H. Xu, Dual functional N,O,P containing covalent organic frameworks for adsorbing iodine and fluorescence sensing to p-nitrophenol and iodine. Microporous Mesoporous Mater. 317, 111001 (2021). https://doi.org/10.1016/j.micromeso.2021.111001
- R. Ditchfield, W.J. Hehre, J.A. Pople, An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902
- W.J. Hehre, R. Ditchfield, J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56(5), 2257–2261 (1972). https://doi.org/10.1063/1.1677527
References
A. Kumar, Y. Zhang, W. Liu, X. Sun, The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coord. Chem. Rev. 402, 213047 (2020). https://doi.org/10.1016/j.ccr.2019.213047
A. Kumar, V.K. Vashistha, D.K. Das, Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coord. Chem. Rev. 431, 213678 (2021). https://doi.org/10.1016/j.ccr.2020.213678
Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang et al., Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 13, 1090 (2020). https://doi.org/10.1007/s12274-020-2751-7
C. Li, N.C.S. Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 (2023). https://doi.org/10.1007/s40820-023-01060-2
C. Zhang, X. Shen, Y. Pan, Z. Peng, A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 11, 268 (2017). https://doi.org/10.1007/s11708-017-0466-6
H. Cruz-Martinez, H. Rojas-Chavez, P.T. Matadamas-Ortiz, J.C. Ortiz-Herrera, E. Lopez-Chavez et al., Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater. Today Phys. 19, 100406 (2021). https://doi.org/10.1016/j.mtphys.2021.100406
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2, 688 (2019). https://doi.org/10.1038/s41929-019-0297-4
Q. Xu, Y. Tang, X. Zhang, Y. Oshima, Q. Chen et al., Template conversion of covalent organic frameworks into 2d conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 30, 1706330 (2018). https://doi.org/10.1002/adma.201706330
J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin et al., Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 1, 9889 (2013). https://doi.org/10.1039/c3ta11849e
D. Li, Y. Jia, G. Chang, J. Chen, H. Liu et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345 (2018). https://doi.org/10.1016/j.chempr.2018.07.005
Y. Jia, K. Jiang, H. Wang, X. Yao, The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 5, 1371 (2019). https://doi.org/10.1038/s41929-019-0297-4
J. Zhang, G. Chen, K. Muellen, X. Feng, Carbon-rich nanomaterials: fascinating hydrogen and oxygen electrocatalysts. Adv. Mater. 30, 1800528 (2018). https://doi.org/10.1002/adma.201800528
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-023-01024-6
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
X. Feng, X. Ding, D. Jiang, Covalent organic frameworks. Chem. Soc. Rev. 41, 6010 (2012). https://doi.org/10.1039/c2cs35157a
X. Guan, F. Chen, Q. Fang, S. Qiu, Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357 (2020). https://doi.org/10.1039/c9cs00911f
Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Postsynthetic functionalization of covalent organic frameworks. National Sci. Rev. 7, 170 (2020). https://doi.org/10.1093/nsr/nwz122
D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142, 8104 (2020). https://doi.org/10.1021/jacs.0c02225
S. Roy, S. Mari, M.K. Sai, S.C. Sarma, S. Sarkar et al., Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale 12, 22718 (2020). https://doi.org/10.1039/d0nr05337f
J.H. Park, C.H. Lee, J.-M. Ju, J.-H. Lee, J. Seol et al., Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-Air batteries. Adv. Funct. Mater. 31, 2101727 (2021). https://doi.org/10.1002/adfm.202101727
Y. Yue, T. Wang, X. Wu, P. Yang, Y. Ma et al., Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. 57, 12619 (2021). https://doi.org/10.1039/d1cc04928c
B. Yang, J. Miao, F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496 (2012). https://doi.org/10.1002/anie.201206720
Y. Su, Z. Yao, F. Zhang, H. Wang, Z. Mics et al., Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen Co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Adv. Funct. Mater. 26, 5893 (2016). https://doi.org/10.1002/adfm.201602158
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009). https://doi.org/10.1126/science.1168049
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361 (2016). https://doi.org/10.1126/science.aad0832
Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo et al., Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 8, 2715 (2022). https://doi.org/10.1016/j.chempr.2022.06.013
D. Li, X. Long, Y. Wu, H. Hou, X. Wang et al., Hierarchically porous and defective carbon fiber cathode for efficient Zn-air batteries and microbial fuel cells. Adv. Fiber. Mater. 4, 795 (2022). https://doi.org/10.1007/s42765-022-00139-6
B. Gui, H. Ding, Y. Cheng, A. Mal, C. Wang, Structural design and determination of 3D covalent organic frameworks. Trends Chem. 5, 437 (2022). https://doi.org/10.1016/j.trechm.2022.01.002
C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan et al., Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 3, 5481 (2020). https://doi.org/10.1021/acsanm.0c00786
X.-T. Wang, X.-F. Lin, D.-S. Yu, Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Met. 41, 1160 (2022). https://doi.org/10.1007/s12598-021-01873-3
Y. Liu, J. Ren, Y. Wang, X. Zhu, X. Guan et al., A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition. CCS Chem 4, 1 (2022). https://doi.org/10.31635/ccschem.022.202202352
X. Ren, C. Li, W. Kang, L. He, T. Na et al., Enormously promoted photocatalytic activity by using a near-single layer COFs. CCS Chem. 7, 2429 (2021). https://doi.org/10.31635/ccschem.021.202101090
X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian et al., Colyliform crystalline 2d covalent organic frameworks (COFs) with quasi-3d topologies for rapid I(2)adsorption. Angew. Chem. Int. Ed. 59, 22697 (2020). https://doi.org/10.1002/anie.202010829
X. Li, S. Xu, K. Leng, S.W. Chee, X. Zhao et al., Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat. Chem. 12, 1115 (2020). https://doi.org/10.1038/s41557-020-00562-5
H.S. Sasmal, A.K. Mahato, P. Majumder, R. Banerjee, Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482 (2022). https://doi.org/10.1021/jacs.2c02301
S. Mohata, K. Dey, S. Bhunia, N. Thomas, E.B. Gowd et al., Dual nanomechanics in anisotropic porous covalent organic framework janus-type thin films. J. Am. Chem. Soc. 144, 400 (2022). https://doi.org/10.1021/jacs.1c10263
A.K. Mahato, S. Bag, H.S. Sasmal, K. Dey et al., Crystallizing sub 10 nm covalent organic framework thin films via interfacial–residual concomitance. J. Am. Chem. Soc. 143, 20916 (2021). https://doi.org/10.1021/jacs.1c09740
K. Dey, S. Mohata, R. Banerjee, Covalent organic frameworks and supramolecular nano-synthesis. ACS Nano 15, 12723 (2021). https://doi.org/10.1021/acsnano.1c05194
Y. Ding, J. Gao, Q. Wang, Y. Zhang, G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki–miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816 (2021). https://doi.org/10.1021/ja206846p
F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe et al., A crystalline imine-linked 3-d porous covalent organic framework. J. Am. Chem. Soc. 131, 4570 (2009). https://doi.org/10.1021/ja8096256
Materials Studio v.7.0 (Accelrys Inc, 2013). http://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio
M.O. Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782 (2008). https://doi.org/10.1021/ar800124u
Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang et al., 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352 (2015). https://doi.org/10.1021/jacs.5b04147
C. Ji, K. Su, W. Wang, J. Chang et al., Tunable cage based three-dimensional covalent organic frameworks. CCS Chem. 9, 3095 (2021). https://doi.org/10.31635/ccschem.021.202101453
Y. Liu, C. Wu, Q. Sun, F. Hu, Q. Pan et al., Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst. CCS Chem. 4, 2418 (2020). https://doi.org/10.31635/ccschem.020.202000493
T.-M. Geng, F.-Q. Wang, X.-C. Fang, H. Xu, Dual functional N,O,P containing covalent organic frameworks for adsorbing iodine and fluorescence sensing to p-nitrophenol and iodine. Microporous Mesoporous Mater. 317, 111001 (2021). https://doi.org/10.1016/j.micromeso.2021.111001
R. Ditchfield, W.J. Hehre, J.A. Pople, An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902
W.J. Hehre, R. Ditchfield, J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56(5), 2257–2261 (1972). https://doi.org/10.1063/1.1677527