Controllable Vapor Growth of Large-Area Aligned CdSxSe1−x Nanowires for Visible Range Integratable Photodetectors
Corresponding Author: Anlian Pan
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 58
Abstract
The controllable growth of large area band gap engineered-semiconductor nanowires (NWs) with precise orientation and position is of immense significance in the development of integrated optoelectronic devices. In this study, we have achieved large area in-plane-aligned CdSxSe1−x nanowires via chemical vapor deposition method. The orientation and position of the alloyed CdSxSe1−x NWs could be controlled well by the graphoepitaxial effect and the patterns of Au catalyst. Microstructure characterizations of these as-grown samples reveal that the aligned CdSxSe1−x NWs possess smooth surface and uniform diameter. The aligned CdSxSe1−x NWs have strong photoluminescence and high-quality optical waveguide emission covering almost the entire visible wavelength range. Furthermore, photodetectors were constructed based on individual alloyed CdSxSe1−x NWs. These devices exhibit high performance and fast response speed with photoresponsivity ~ 670 A W−1 and photoresponse time ~ 76 ms. Present work provides a straightforward way to realize in-plane aligned bandgap engineering in semiconductor NWs for the development of large area NW arrays, which exhibit promising applications in future optoelectronic integrated circuits.
Highlights:
1 The growth of tunable composition-directional CdSxSe1−x nanowires was successfully realized by controllable chemical vapor deposition using graphoepitaxial effect.
2 Photodetectors based on CdSxSe1−x nanowires with different compositions covering the visible spectral range on faceted M-plane substrate were constructed.
3 The as-grown nanowires not only exhibited superior optical properties such as strong emission and perfectly aligned waveguide but also demonstrated high-performance photodetection as compared to previous single crystalline CdSSe photodetectors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
- P. Guo, W. Hu, Q.L. Zhang, X. Zhuang, X. Zhu, H. Zhou, Z. Shan, J. Xu, A. Pan, Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv. Mater. 26(18), 2844–2849 (2014). https://doi.org/10.1002/adma.201304967
- V.J. Logeeswaran, J. Oh, A.P. Nayak, A.M. Katzenmeyer, K.H. Gilchrist et al., A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011). https://doi.org/10.1109/JSTQE.2010.2093508
- A. Pan, P.L. Nichols, C.Z. Ning, Semiconductor alloy nanowires and nanobelts with tunable optical properties. IEEE J. Sel. Top. Quantum Electron. 17(4), 808–818 (2011). https://doi.org/10.1109/JSTQE.2010.2064159
- A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B. Zou, C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009). https://doi.org/10.1021/nl803456k
- H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan et al., Single-crystalline ingaas nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett. 8(1), 29–35 (2016). https://doi.org/10.1007/s40820-015-0058-0
- M. Liu, Z. Wu, W.M. Lau, J. Yang, Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett. 4(3), 142–153 (2012). https://doi.org/10.1007/bf03353705
- X.-X. Yu, H. Yin, H.-X. Li, W. Zhang, H. Zhao, C. Li, M.-Q. Zhu, Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS:P3Ht microwires. Nano Energy 34, 155–163 (2017). https://doi.org/10.1016/j.nanoen.2017.02.033
- H. Yin, Q. Li, M. Cao, W. Zhang, H. Zhao, C. Li, K. Huo, M. Zhu, Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 10(6), 2156–2167 (2017). https://doi.org/10.1007/s12274-016-1408-z
- H. Yin, M.-L. Cao, X.-X. Yu, H. Zhao, Y. Shen, C. Li, M.-Q. Zhu, Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 1(8), 1615–1621 (2017). https://doi.org/10.1039/C7QM00128B
- C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, Synthesis of cds and zns nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125(38), 11498–11499 (2003). https://doi.org/10.1021/ja036990g
- K. Deng, L. Li, Cds nanoscale photodetectors. Adv. Mater. 26(17), 2619–2635 (2014). https://doi.org/10.1002/adma.201304621
- X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi et al., Single-crystalline zns nanobelts as ultraviolet-light sensors. Adv. Mater. 21(20), 2034–3039 (2009). https://doi.org/10.1002/adma.200802441
- A. Fasoli, A. Colli, F. Martelli, S. Pisana, P.H. Tan, A.C. Ferrari, Photoluminescence of cdse nanowires grown with and without metal catalyst. Nano Res. 4(4), 343–359 (2011). https://doi.org/10.1007/s12274-010-0089-2
- H. Frenzel, A. Lajn, H. von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grundmann, Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv. Mater. 22(47), 5332–5349 (2010). https://doi.org/10.1002/adma.201001375
- L. Li, Y. Zhang, Z. Chew, A Cu/ZnO nanowire/Cu resistive switching device. Nano-Micro Lett. 5(3), 159–162 (2013). https://doi.org/10.1007/BF03353745
- X.-X. Yu, H. Yin, H.-X. Li, H. Zhao, C. Li, M.-Q. Zhu, A novel high-performance self-powered UV-Vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation. J. Mater. Chem. C 6(3), 630–636 (2018). https://doi.org/10.1039/C7TC05224C
- X. Wu, Y. Lei, Y. Zheng, F. Qu, Controlled growth and cathodoluminescence property of zns nanobelts with large aspect ratio. Nano-Micro Lett. 2(4), 272–276 (2010). https://doi.org/10.1007/BF03353854
- C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017). https://doi.org/10.1038/natrevmats.2017.70
- Y.J. Hsu, S.Y. Lu, Y.F. Lin, One-step preparation of coaxial CdS–ZnS and Cd1−xZnxS–ZnS nanowires. Adv. Funct. Mater. 15(8), 1350–1357 (2005). https://doi.org/10.1002/adfm.200400563
- Y. Liang, H. Xu, S. Hark, Epitaxial growth and composition-dependent optical properties of vertically aligned ZnS1−xSex alloy nanowire arrays. Cryst. Growth Des. 10(10), 4206–4210 (2010). https://doi.org/10.1021/cg9014493
- J. Lu, H. Liu, M. Zheng, H. Zhang, S.X. Lim, E.S. Tok, C.H. Sow, Laser modified zno/cdsse core-shell nanowire arrays for micro-steganography and improved photoconduction. Sci. Rep. 4, 6350 (2014). https://doi.org/10.1038/srep06350
- O. Maksimov, N. Samarth, H. Lu, M. Muñoz, M.C. Tamargo, Efficient free exciton emission at room temperature in Zn0.5Cd0.5Se/MgxZnyCd1−x−ySe quantum wells. Solid State Commun. 132(1), 1–5 (2004). https://doi.org/10.1016/j.ssc.2004.07.022
- P.L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, C.Z. Ning, CdxPb1−xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett. 15(2), 909–916 (2015). https://doi.org/10.1021/nl503640x
- C. Yiyan, W. Zhiming, N. Jianchao, A.B. Waseem, L. Jing, L. Shuping, H. Kai, K. Junyong, Type-ii core/shell nanowire heterostructures and their photovol-taic applications. Nano-Micro Lett. 4(3), 135–141 (2012). https://doi.org/10.3786/nml.v4i3.p135-141
- G.Z. Dai, R.B. Liu, Q. Wan, Q.L. Zhang, A.L. Pan, B.S. Zou, Color-tunable periodic spatial emission of alloyed CdS1−xSex/Sn: Cds1−xSex superlattice microwires. Opt. Mater. Express 1(7), 1185–1191 (2011). https://doi.org/10.1364/OME.1.001185
- J.-P. Kim, J.A. Christians, H. Choi, S. Krishnamurthy, P.V. Kamat, Cdses nanowires: compositionally controlled band gap and exciton dynamics. J. Phys. Chem. Lett. 5(7), 1103–1109 (2014). https://doi.org/10.1021/jz500280g
- L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando, D. Golberg, Bandgap-graded CdsxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 25(8), 1109–1113 (2013). https://doi.org/10.1002/adma.201204434
- A. Pan, R. Liu, F. Wang, S. Xie, B. Zou, M. Zacharias, Z.L. Wang, High-quality alloyed CdsxSe1−x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110(45), 22313–22317 (2006). https://doi.org/10.1021/jp064664s
- A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. Wang, Color-tunable photoluminescence of alloyed CdsxSe1−x nanobelts. J. Am. Chem. Soc. 127(45), 15692–15693 (2005). https://doi.org/10.1021/ja056116i
- J. Pan, M.I.B. Utama, Q. Zhang, X. Liu, B. Peng, L.M. Wong, T.C. Sum, S. Wang, Q. Xiong, Composition-tunable vertically aligned CdSxSe1−x nanowire arrays via van der waals epitaxy: investigation of optical properties and photocatalytic behavior. Adv. Mater. 24(30), 4151–4156 (2012). https://doi.org/10.1002/adma.201104996
- P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu et al., Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires. Nano Lett. 13(3), 1251–1256 (2013). https://doi.org/10.1021/nl3047893
- J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu et al., Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2, 820 (2012). https://doi.org/10.1038/srep00820
- F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, A. Pan, Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133(7), 2037–2039 (2011). https://doi.org/10.1021/ja110092a
- J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang et al., Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. Nano Lett. 12(9), 5003–5007 (2012). https://doi.org/10.1021/nl302693c
- P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10(9), 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
- D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011). https://doi.org/10.1126/science.1208455
- X. Wang, N. Aroonyadet, Y. Zhang, M. Mecklenburg, X. Fang, H. Chen, E. Goo, C. Zhou, Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett. 14(6), 3014–3022 (2014). https://doi.org/10.1021/nl404289z
- G. Reut, E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Guided growth of horizontal p-type ZnTe nanowires. J. Phys. Chem. C 120(30), 17087–17100 (2016). https://doi.org/10.1021/acs.jpcc.6b05191
- J. Xu, E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls. J. Am. Chem. Soc. 139(44), 15958–15967 (2017). https://doi.org/10.1021/jacs.7b09423
- E. Shalev, E. Oksenberg, K. Rechav, R. Popovitz-Biro, E. Joselevich, Guided cdse nanowires parallelly integrated into fast visible-range photodetectors. ACS Nano 11(1), 213–220 (2017). https://doi.org/10.1021/acsnano.6b04469
- D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, Guided growth of horizontal zno nanowires with controlled orientations on flat and faceted sapphire surfaces. ACS Nano 6(7), 6433–6445 (2012). https://doi.org/10.1021/nn3020695
- E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue–UV photodetectors. Adv. Mater. 27(27), 3999–4005 (2015). https://doi.org/10.1002/adma.201500736
- R. Gabai, A. Ismach, E. Joselevich, Nanofacet lithography: A new bottom-up approach to nanopatterning and nanofabrication by soft replication of spontaneously faceted crystal surfaces. Adv. Mater. 19(10), 1325–1330 (2007). https://doi.org/10.1002/adma.200601625
- K.A. Bal, A. Savitri, P.S. Yadav, K. Sudhir, Ab initio calculation of electronic properties of Ga1−xAlxN alloys. J. Phys.: Condens. Mater. 9(8), 1763 (1997). https://doi.org/10.1088/0953-8984/9/8/008
- A. Zunger, J.E. Jaffe, Structural origin of optical bowing in semiconductor alloys. Phys. Rev. Lett. 51(8), 662–665 (1983). https://doi.org/10.1103/PhysRevLett.51.662
- J.A. Van Vechten, T.K. Bergstresser, Electronic structures of semiconductor alloys. Phys. Rev. B 1(8), 3351–3358 (1970). https://doi.org/10.1103/PhysRevB.1.3351
- A. Pan, X. Wang, P. He, Q. Zhang, Q. Wan, M. Zacharias, X. Zhu, B. Zou, Color-changeable optical transport through se-doped cds 1D nanostructures. Nano Lett. 7(10), 2970–2975 (2007). https://doi.org/10.1021/nl0710295
- J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Photoconductive characteristics of single-crystal Cds nanoribbons. Nano Lett. 6(9), 1887–1892 (2006). https://doi.org/10.1021/nl060867g
- P. Ren, W. Hu, Q. Zhang, X. Zhu, X. Zhuang et al., Band-selective infrared photodetectors with complete-composition-range InAs(x)P(1−x) alloy nanowires. Adv. Mater. 26(44), 7444–7449 (2014). https://doi.org/10.1002/adma.201402945
- Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, S.T. Lee, Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 17(11), 1795–1800 (2007). https://doi.org/10.1002/adfm.200600351
- M. Shoaib, X. Zhang, X. Wang, H. Zhou, T. Xu et al., Directional growth of ultralong CsPbBr 3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139(44), 15592–15595 (2017). https://doi.org/10.1021/jacs.7b08818
- M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22(20), 1065–1068 (1969). https://doi.org/10.1103/PhysRevLett.22.1065
References
N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014). https://doi.org/10.1002/adma.201305929
P. Guo, W. Hu, Q.L. Zhang, X. Zhuang, X. Zhu, H. Zhou, Z. Shan, J. Xu, A. Pan, Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv. Mater. 26(18), 2844–2849 (2014). https://doi.org/10.1002/adma.201304967
V.J. Logeeswaran, J. Oh, A.P. Nayak, A.M. Katzenmeyer, K.H. Gilchrist et al., A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011). https://doi.org/10.1109/JSTQE.2010.2093508
A. Pan, P.L. Nichols, C.Z. Ning, Semiconductor alloy nanowires and nanobelts with tunable optical properties. IEEE J. Sel. Top. Quantum Electron. 17(4), 808–818 (2011). https://doi.org/10.1109/JSTQE.2010.2064159
A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B. Zou, C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009). https://doi.org/10.1021/nl803456k
H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan et al., Single-crystalline ingaas nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett. 8(1), 29–35 (2016). https://doi.org/10.1007/s40820-015-0058-0
M. Liu, Z. Wu, W.M. Lau, J. Yang, Recent advances in directed assembly of nanowires or nanotubes. Nano-Micro Lett. 4(3), 142–153 (2012). https://doi.org/10.1007/bf03353705
X.-X. Yu, H. Yin, H.-X. Li, W. Zhang, H. Zhao, C. Li, M.-Q. Zhu, Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS:P3Ht microwires. Nano Energy 34, 155–163 (2017). https://doi.org/10.1016/j.nanoen.2017.02.033
H. Yin, Q. Li, M. Cao, W. Zhang, H. Zhao, C. Li, K. Huo, M. Zhu, Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 10(6), 2156–2167 (2017). https://doi.org/10.1007/s12274-016-1408-z
H. Yin, M.-L. Cao, X.-X. Yu, H. Zhao, Y. Shen, C. Li, M.-Q. Zhu, Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 1(8), 1615–1621 (2017). https://doi.org/10.1039/C7QM00128B
C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, Synthesis of cds and zns nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125(38), 11498–11499 (2003). https://doi.org/10.1021/ja036990g
K. Deng, L. Li, Cds nanoscale photodetectors. Adv. Mater. 26(17), 2619–2635 (2014). https://doi.org/10.1002/adma.201304621
X.S. Fang, Y. Bando, M.Y. Liao, U.K. Gautam, C.Y. Zhi et al., Single-crystalline zns nanobelts as ultraviolet-light sensors. Adv. Mater. 21(20), 2034–3039 (2009). https://doi.org/10.1002/adma.200802441
A. Fasoli, A. Colli, F. Martelli, S. Pisana, P.H. Tan, A.C. Ferrari, Photoluminescence of cdse nanowires grown with and without metal catalyst. Nano Res. 4(4), 343–359 (2011). https://doi.org/10.1007/s12274-010-0089-2
H. Frenzel, A. Lajn, H. von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grundmann, Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv. Mater. 22(47), 5332–5349 (2010). https://doi.org/10.1002/adma.201001375
L. Li, Y. Zhang, Z. Chew, A Cu/ZnO nanowire/Cu resistive switching device. Nano-Micro Lett. 5(3), 159–162 (2013). https://doi.org/10.1007/BF03353745
X.-X. Yu, H. Yin, H.-X. Li, H. Zhao, C. Li, M.-Q. Zhu, A novel high-performance self-powered UV-Vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation. J. Mater. Chem. C 6(3), 630–636 (2018). https://doi.org/10.1039/C7TC05224C
X. Wu, Y. Lei, Y. Zheng, F. Qu, Controlled growth and cathodoluminescence property of zns nanobelts with large aspect ratio. Nano-Micro Lett. 2(4), 272–276 (2010). https://doi.org/10.1007/BF03353854
C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017). https://doi.org/10.1038/natrevmats.2017.70
Y.J. Hsu, S.Y. Lu, Y.F. Lin, One-step preparation of coaxial CdS–ZnS and Cd1−xZnxS–ZnS nanowires. Adv. Funct. Mater. 15(8), 1350–1357 (2005). https://doi.org/10.1002/adfm.200400563
Y. Liang, H. Xu, S. Hark, Epitaxial growth and composition-dependent optical properties of vertically aligned ZnS1−xSex alloy nanowire arrays. Cryst. Growth Des. 10(10), 4206–4210 (2010). https://doi.org/10.1021/cg9014493
J. Lu, H. Liu, M. Zheng, H. Zhang, S.X. Lim, E.S. Tok, C.H. Sow, Laser modified zno/cdsse core-shell nanowire arrays for micro-steganography and improved photoconduction. Sci. Rep. 4, 6350 (2014). https://doi.org/10.1038/srep06350
O. Maksimov, N. Samarth, H. Lu, M. Muñoz, M.C. Tamargo, Efficient free exciton emission at room temperature in Zn0.5Cd0.5Se/MgxZnyCd1−x−ySe quantum wells. Solid State Commun. 132(1), 1–5 (2004). https://doi.org/10.1016/j.ssc.2004.07.022
P.L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, C.Z. Ning, CdxPb1−xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett. 15(2), 909–916 (2015). https://doi.org/10.1021/nl503640x
C. Yiyan, W. Zhiming, N. Jianchao, A.B. Waseem, L. Jing, L. Shuping, H. Kai, K. Junyong, Type-ii core/shell nanowire heterostructures and their photovol-taic applications. Nano-Micro Lett. 4(3), 135–141 (2012). https://doi.org/10.3786/nml.v4i3.p135-141
G.Z. Dai, R.B. Liu, Q. Wan, Q.L. Zhang, A.L. Pan, B.S. Zou, Color-tunable periodic spatial emission of alloyed CdS1−xSex/Sn: Cds1−xSex superlattice microwires. Opt. Mater. Express 1(7), 1185–1191 (2011). https://doi.org/10.1364/OME.1.001185
J.-P. Kim, J.A. Christians, H. Choi, S. Krishnamurthy, P.V. Kamat, Cdses nanowires: compositionally controlled band gap and exciton dynamics. J. Phys. Chem. Lett. 5(7), 1103–1109 (2014). https://doi.org/10.1021/jz500280g
L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando, D. Golberg, Bandgap-graded CdsxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 25(8), 1109–1113 (2013). https://doi.org/10.1002/adma.201204434
A. Pan, R. Liu, F. Wang, S. Xie, B. Zou, M. Zacharias, Z.L. Wang, High-quality alloyed CdsxSe1−x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110(45), 22313–22317 (2006). https://doi.org/10.1021/jp064664s
A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. Wang, Color-tunable photoluminescence of alloyed CdsxSe1−x nanobelts. J. Am. Chem. Soc. 127(45), 15692–15693 (2005). https://doi.org/10.1021/ja056116i
J. Pan, M.I.B. Utama, Q. Zhang, X. Liu, B. Peng, L.M. Wong, T.C. Sum, S. Wang, Q. Xiong, Composition-tunable vertically aligned CdSxSe1−x nanowire arrays via van der waals epitaxy: investigation of optical properties and photocatalytic behavior. Adv. Mater. 24(30), 4151–4156 (2012). https://doi.org/10.1002/adma.201104996
P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu et al., Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires. Nano Lett. 13(3), 1251–1256 (2013). https://doi.org/10.1021/nl3047893
J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu et al., Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2, 820 (2012). https://doi.org/10.1038/srep00820
F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, A. Pan, Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133(7), 2037–2039 (2011). https://doi.org/10.1021/ja110092a
J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang et al., Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. Nano Lett. 12(9), 5003–5007 (2012). https://doi.org/10.1021/nl302693c
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10(9), 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011). https://doi.org/10.1126/science.1208455
X. Wang, N. Aroonyadet, Y. Zhang, M. Mecklenburg, X. Fang, H. Chen, E. Goo, C. Zhou, Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett. 14(6), 3014–3022 (2014). https://doi.org/10.1021/nl404289z
G. Reut, E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Guided growth of horizontal p-type ZnTe nanowires. J. Phys. Chem. C 120(30), 17087–17100 (2016). https://doi.org/10.1021/acs.jpcc.6b05191
J. Xu, E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls. J. Am. Chem. Soc. 139(44), 15958–15967 (2017). https://doi.org/10.1021/jacs.7b09423
E. Shalev, E. Oksenberg, K. Rechav, R. Popovitz-Biro, E. Joselevich, Guided cdse nanowires parallelly integrated into fast visible-range photodetectors. ACS Nano 11(1), 213–220 (2017). https://doi.org/10.1021/acsnano.6b04469
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, Guided growth of horizontal zno nanowires with controlled orientations on flat and faceted sapphire surfaces. ACS Nano 6(7), 6433–6445 (2012). https://doi.org/10.1021/nn3020695
E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue–UV photodetectors. Adv. Mater. 27(27), 3999–4005 (2015). https://doi.org/10.1002/adma.201500736
R. Gabai, A. Ismach, E. Joselevich, Nanofacet lithography: A new bottom-up approach to nanopatterning and nanofabrication by soft replication of spontaneously faceted crystal surfaces. Adv. Mater. 19(10), 1325–1330 (2007). https://doi.org/10.1002/adma.200601625
K.A. Bal, A. Savitri, P.S. Yadav, K. Sudhir, Ab initio calculation of electronic properties of Ga1−xAlxN alloys. J. Phys.: Condens. Mater. 9(8), 1763 (1997). https://doi.org/10.1088/0953-8984/9/8/008
A. Zunger, J.E. Jaffe, Structural origin of optical bowing in semiconductor alloys. Phys. Rev. Lett. 51(8), 662–665 (1983). https://doi.org/10.1103/PhysRevLett.51.662
J.A. Van Vechten, T.K. Bergstresser, Electronic structures of semiconductor alloys. Phys. Rev. B 1(8), 3351–3358 (1970). https://doi.org/10.1103/PhysRevB.1.3351
A. Pan, X. Wang, P. He, Q. Zhang, Q. Wan, M. Zacharias, X. Zhu, B. Zou, Color-changeable optical transport through se-doped cds 1D nanostructures. Nano Lett. 7(10), 2970–2975 (2007). https://doi.org/10.1021/nl0710295
J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Photoconductive characteristics of single-crystal Cds nanoribbons. Nano Lett. 6(9), 1887–1892 (2006). https://doi.org/10.1021/nl060867g
P. Ren, W. Hu, Q. Zhang, X. Zhu, X. Zhuang et al., Band-selective infrared photodetectors with complete-composition-range InAs(x)P(1−x) alloy nanowires. Adv. Mater. 26(44), 7444–7449 (2014). https://doi.org/10.1002/adma.201402945
Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, S.T. Lee, Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 17(11), 1795–1800 (2007). https://doi.org/10.1002/adfm.200600351
M. Shoaib, X. Zhang, X. Wang, H. Zhou, T. Xu et al., Directional growth of ultralong CsPbBr 3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139(44), 15592–15595 (2017). https://doi.org/10.1021/jacs.7b08818
M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22(20), 1065–1068 (1969). https://doi.org/10.1103/PhysRevLett.22.1065