Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Efficient Hydrogen Evolution
Corresponding Author: Gui‑Fang Huang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 52
Abstract
Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials. However, the precise bottom-up synthesis of nanostructure arrays without templates or substrates is quite challenging because of the general occurrence of homogeneous nucleation and the difficult manipulation of noncovalent interactions. Herein, we first report the precisely manipulated synthesis of well-defined louver-like P-doped carbon nitride nanowire arrays (L-PCN) via a supramolecular self-assembly method by regulating the noncovalent interactions through hydrogen bond. With this strategy, CN nanowires align in the outer frame with the separation and spatial location achieving ultrastability and outstanding photoelectricity properties. Significantly, this self-assembly L-PCN exhibits a superior visible light-driven hydrogen evolution activity of 1872.9 μmol h−1 g−1, rendering a ~ 25.6-fold enhancement compared to bulk CN, and high photostability. Moreover, an apparent quantum efficiency of 6.93% is achieved for hydrogen evolution at 420 ± 15 nm. The experimental results and first-principles calculations demonstrate that the remarkable enhancement of photocatalytic activity of L-PCN can be attributed to the synergetic effect of structural topology and dopant. These findings suggest that we are able to design particular hierarchical nanostructures with desirable performance using hydrogen-bond engineering.
Highlights:
1 The self-assembled louver-like P-doped carbon nitride (L-PCN) nanowires is firstly constructed.
2 L-PCN nanowires show efficient charge transport, as demonstrated by experimental and theoretical approach.
3 L-PCN nanowires exhibit significantly boosted HER activity of 1,872.9 μmol h−1 g−1 (λ > 420 nm).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Aida, E.W. Meijer, S.I. Stupp, Functional supramolecular polymers. Science 335(6070), 813–817 (2012). https://doi.org/10.1126/science.1205962
- X. Wang, P.Y. Gao, Y.Y. Yang, H.X. Guo, D.C. Wu, Dynamic and programmable morphology and size evolution via a living hierarchical self-assembly strategy. Nat. Commun. 9, 2772 (2018). https://doi.org/10.1038/s41467-018-05142-3
- L. Adler-Abramovich, E. Gazit, The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43(20), 6881–6893 (2014). https://doi.org/10.1039/c4cs00164h
- M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms7797
- L. Lv, Z.X. Yang, K. Chen, C.D. Wang, Y.J. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
- Y. Zhang, Q. Liao, X.G. Wang, J.N.A. Yao, H.B. Fu, Lattice-matched epitaxial growth of organic heterostructures for integrated optoelectronic application. Angew. Chem. Int. Ed. 56(13), 3616–3620 (2017). https://doi.org/10.1002/anie.201700447
- J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013). https://doi.org/10.1038/nnano.2013.55
- M.P. Zhuo, J.J. Wu, X.D. Wang, Y.C. Tao, Y. Yuan, L.S. Liao, Hierarchical self-assembly of organic heterostructure nanowires. Nat. Commun. 10, 9 (2019). https://doi.org/10.1038/s41467-019-11731-7
- S. Kawasaki, R. Takahashi, T. Yamamoto, M. Kobayashi, H. Kumigashira et al., Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode. Nat. Commun. 7, 6 (2016). https://doi.org/10.1038/ncomms11818
- S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/ange.201508505
- H.L. Sun, Y. Chen, J. Zhao, Y. Liu, Photocontrolled reversible conversion of nanotube and nanoparticle mediated by -cyclodextrin dimers. Angew. Chem. Int. Ed. 54(32), 9376–9380 (2015). https://doi.org/10.1002/anie.201503614
- Y. Kim, W. Li, S. Shin, M. Lee, Development of toroidal nanostructures by self-assembly: rational designs and applications. Acc. Chem. Res. 46(12), 2888–2897 (2013). https://doi.org/10.1021/ar400027c
- H.C. Sun, J.G. Li, L. Lv, Z.S. Li, X. Ao et al., Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 425, 138–146 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.014
- B. Zhang, F.Z. Wang, C.Q. Zhu, Q. Li, J.N. Song, M.J. Zheng, L. Ma, W.Z. Shen, A facile self-assembly synthesis of hexagonal Zno nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). https://doi.org/10.1007/s40820-015-0068-y
- S.P. Wang, W. Lin, X.L. Wang, T.Y. Cen, H.J. Xie et al., Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles. Nat. Commun. 10, 12 (2019). https://doi.org/10.1038/s41467-019-09363-y
- S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li, J. Lee, Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9(2), 17 (2017). https://doi.org/10.1007/s40820-016-0120-6
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/NMAT2317
- W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang et al., In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11, 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
- Y.R. Li, T.T. Kong, S.H. Shen, Artificial photosynthesis with polymeric carbon nitride: when meeting metal nanoparticles, single atoms, and molecular complexes. Small 15(32), 1900772 (2019). https://doi.org/10.1002/smll.201900772
- K. Xiao, L. Chen, R.T. Chen, T. Heil, S.D.C. Lemus et al., Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10, 74 (2019). https://doi.org/10.1038/s41467-018-08029-5
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- Y.J. Fu, C.A. Liu, M.L. Zhang, C. Zhu, H. Li et al., Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 8(34), 1802525 (2018). https://doi.org/10.1002/aenm.201802525
- B. Li, Y. Si, B.X. Zhou, Q. Fang, Y.Y. Li et al., Doping-induced hydrogen-bond engineering in polymeric carbon nitride to significantly boost the photocatalytic H2 evolution performance. ACS Appl. Mater. Interfaces 11(19), 17341–17349 (2019). https://doi.org/10.1021/acsami.8b22366
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25(17), 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- Y. Kang, Y. Yang, L.C. Yin, X. Kang, L. Wang, G. Liu, H.M. Cheng, Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 28(30), 6471–6477 (2016). https://doi.org/10.1002/adma.201601567
- Z. Lin, X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 25(6), 1779–1782 (2013). https://doi.org/10.1002/anie.201209017
- Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang et al., Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3(7), 3862–3867 (2015). https://doi.org/10.1039/c4ta05292g
- Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y
- R.J. Ran, T.Y. Ma, G. Gao, X. Du, S. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8(12), 3708–3717 (2015). https://doi.org/10.1039/c5ee02650d
- Q.X. Liu, C.M. Zeng, Z.H. Xie, L.H. Ai, Y.Y. Liu et al., Cobalt@ nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Appl. Catal. B Environ. 254, 443–451 (2019). https://doi.org/10.1016/j.apcatb.2019.04.098
- K. Liu, Y.T. Kang, Z.Q. Wang, X. Zhang, 25th anniversary article: reversible and adaptive functional supramolecular materials: “Noncovalent interaction” matters. Adv. Mater. 25(39), 5530–5548 (2013). https://doi.org/10.1002/adma201302015
- M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 135(19), 7118–7121 (2013). https://doi.org/10.1021/ja402521s
- G. Ge, X.W. Guo, C.S. Song, Z.K. Zhao, Reconstructing supramolecular aggregates to nitrogen-deficient g-C3N4 bunchy tubes with enhanced photocatalysis for H2 production. ACS Appl. Mater. Interfaces 10(22), 18746–18753 (2018). https://doi.org/10.1021/acsami.8b04227
- Z.W. Tong, D. Yang, Y.Y. Sun, Y.H. Nan, Z.Y. Jiang, Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 12(30), 4093–4101 (2016). https://doi.org/10.1002/smll.201601660
- N.A. Wasio, R.C. Quardokus, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, S.A. Kandel, Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507(7490), 86–89 (2014). https://doi.org/10.1038/nature12993
- M. Shalom, M. Guttentag, C. Fettkenhauer, S. Inal, D. Neher, A. Llobet, M. Antonietti, In situ formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble metal free photocatalysis. Chem. Mater. 26(19), 5812–5818 (2014). https://doi.org/10.1021/cm503258z
- Y.Y. Li, Y. Si, B.X. Zhou, W.Q. Huang, W.Y. Hu, A.L. Pan, X.X. Fan, G.F. Huang, Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology. Nanoscale 11(35), 16393–16405 (2019). https://doi.org/10.1039/c9nr05413h
- B.X. Zhou, S.S. Ding, B.J. Zhang, L. Xu, R.S. Chen et al., Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 254, 321–328 (2019). https://doi.org/10.1016/j.apcatb.2019.05.015
- Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 30(2), 447–451 (2014). https://doi.org/10.1021/la404101h
- L.S. Zhang, N. Ding, M. Hashimoto, K. Iwasaki, N. Chikamori et al., Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res. 11(4), 2295–2309 (2018). https://doi.org/10.1007/s12274-017-1853-3
- Y.T. Gao, F. Hou, S. Hu, B.G. Wu, Y. Wang, H.Q. Zhang, B.J. Jiang, H.G. Fu, Graphene quantum-dot-modified hexagonal tubular carbon nitride for visible-light photocatalytic hydrogen evolution. Chemcatchem 10(6), 1330–1335 (2018). https://doi.org/10.1002/cctc.201701823
- B. Liu, L.Q. Ye, R. Wang, J.F. Yang, Y.X. Zhang, R. Guan, L.H. Tian, X.B. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl. Mater. Interfaces 10(4), 4001–4009 (2018). https://doi.org/10.1021/acsami.7b17503
- G. Kresse, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060
- J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006). https://doi.org/10.1063/1.2187006
- Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2016). https://doi.org/10.1002/adfm.201503221
- Y.F. Li, R.X. Jin, Y. Xing, J.Q. Li, S.Y. Song, X.C. Liu, M. Li, R.C. Jin, Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 6(24), 5 (2016). https://doi.org/10.1002/aenm.201601273
- X. Ao, W. Zhang, Z.S. Li, J.G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13(10), 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
- Y.C. Bao, K.Z. Chen, AgCl/Ag/g-C3N4 hybrid composites: preparation, visible light-driven photocatalytic activity and mechanism. Nano-Micro Lett. 8(2), 182–192 (2016). https://doi.org/10.1007/s40820-015-0076-y
- F. Raziq, Y. Qu, M. Humayun, A. Zada, H.T. Yu, L.Q. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B Environ. 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
- S. Zhang, S. Song, P.C. Gu, R. Ma, D.L. Wei et al., Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C3N4 for boosting bisphenol a degradation. J. Mater. Chem. A 7(10), 5552–5560 (2019). https://doi.org/10.1039/c9ta00339h
- J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2(2), 940–948 (2012). https://doi.org/10.1021/cs300167b
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
- C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
- K. Li, W.D. Zhang, Creating graphitic carbon nitride based donor-π-acceptor-π-donor structured catalysts for highly photocatalytic hydrogen evolution. Small 14(12), 1703599 (2018). https://doi.org/10.1002/smll.201703599
- Y.P. Zhu, T.Z. Ren, Z.Y. Yuana, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7(30), 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
- S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 218, 664–671 (2017). https://doi.org/10.1016/j.apcatb.2017.07.022
- M. Wu, J. Zhang, B.B. He, H.W. Wang, R. Wang, Y.S. Gong, In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 241, 159–166 (2019). https://doi.org/10.1016/j.apcatb.2018.09.037
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 46(23), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
- Z.Y. Zhang, J.D. Huang, M.Y. Zhang, L. Yuan, B. Dong, Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 163, 298–305 (2015). https://doi.org/10.1016/j.apcatb.2014.08.013
- W. Xing, C. Li, G. Chen, Z. Han, Y. Zhou, Y. Hu, Q. Meng, Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity. Appl. Catal. B Environ. 203, 65–71 (2017). https://doi.org/10.1016/j.apcatb.2016.09.075
- S. Chu, Y. Wang, Y. Guo, J.Y. Feng, C.C. Wang, W.J. Luo, X.X. Fan, Z.G. Zou, Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 3(5), 912–919 (2013). https://doi.org/10.1021/cs4000624
- J.G. Li, Y. Gu, H.C. Sun, L. Lv, Z.S. Li et al., Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale 11(42), 19959–19968 (2019). https://doi.org/10.1039/c9nr07967j
References
T. Aida, E.W. Meijer, S.I. Stupp, Functional supramolecular polymers. Science 335(6070), 813–817 (2012). https://doi.org/10.1126/science.1205962
X. Wang, P.Y. Gao, Y.Y. Yang, H.X. Guo, D.C. Wu, Dynamic and programmable morphology and size evolution via a living hierarchical self-assembly strategy. Nat. Commun. 9, 2772 (2018). https://doi.org/10.1038/s41467-018-05142-3
L. Adler-Abramovich, E. Gazit, The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43(20), 6881–6893 (2014). https://doi.org/10.1039/c4cs00164h
M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms7797
L. Lv, Z.X. Yang, K. Chen, C.D. Wang, Y.J. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
Y. Zhang, Q. Liao, X.G. Wang, J.N.A. Yao, H.B. Fu, Lattice-matched epitaxial growth of organic heterostructures for integrated optoelectronic application. Angew. Chem. Int. Ed. 56(13), 3616–3620 (2017). https://doi.org/10.1002/anie.201700447
J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013). https://doi.org/10.1038/nnano.2013.55
M.P. Zhuo, J.J. Wu, X.D. Wang, Y.C. Tao, Y. Yuan, L.S. Liao, Hierarchical self-assembly of organic heterostructure nanowires. Nat. Commun. 10, 9 (2019). https://doi.org/10.1038/s41467-019-11731-7
S. Kawasaki, R. Takahashi, T. Yamamoto, M. Kobayashi, H. Kumigashira et al., Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode. Nat. Commun. 7, 6 (2016). https://doi.org/10.1038/ncomms11818
S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55(5), 1830–1834 (2016). https://doi.org/10.1002/ange.201508505
H.L. Sun, Y. Chen, J. Zhao, Y. Liu, Photocontrolled reversible conversion of nanotube and nanoparticle mediated by -cyclodextrin dimers. Angew. Chem. Int. Ed. 54(32), 9376–9380 (2015). https://doi.org/10.1002/anie.201503614
Y. Kim, W. Li, S. Shin, M. Lee, Development of toroidal nanostructures by self-assembly: rational designs and applications. Acc. Chem. Res. 46(12), 2888–2897 (2013). https://doi.org/10.1021/ar400027c
H.C. Sun, J.G. Li, L. Lv, Z.S. Li, X. Ao et al., Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources 425, 138–146 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.014
B. Zhang, F.Z. Wang, C.Q. Zhu, Q. Li, J.N. Song, M.J. Zheng, L. Ma, W.Z. Shen, A facile self-assembly synthesis of hexagonal Zno nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). https://doi.org/10.1007/s40820-015-0068-y
S.P. Wang, W. Lin, X.L. Wang, T.Y. Cen, H.J. Xie et al., Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles. Nat. Commun. 10, 12 (2019). https://doi.org/10.1038/s41467-019-09363-y
S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li, J. Lee, Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films. Nano-Micro Lett. 9(2), 17 (2017). https://doi.org/10.1007/s40820-016-0120-6
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/NMAT2317
W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang et al., In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11, 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
Y.R. Li, T.T. Kong, S.H. Shen, Artificial photosynthesis with polymeric carbon nitride: when meeting metal nanoparticles, single atoms, and molecular complexes. Small 15(32), 1900772 (2019). https://doi.org/10.1002/smll.201900772
K. Xiao, L. Chen, R.T. Chen, T. Heil, S.D.C. Lemus et al., Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10, 74 (2019). https://doi.org/10.1038/s41467-018-08029-5
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
Y.J. Fu, C.A. Liu, M.L. Zhang, C. Zhu, H. Li et al., Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 8(34), 1802525 (2018). https://doi.org/10.1002/aenm.201802525
B. Li, Y. Si, B.X. Zhou, Q. Fang, Y.Y. Li et al., Doping-induced hydrogen-bond engineering in polymeric carbon nitride to significantly boost the photocatalytic H2 evolution performance. ACS Appl. Mater. Interfaces 11(19), 17341–17349 (2019). https://doi.org/10.1021/acsami.8b22366
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25(17), 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
Y. Kang, Y. Yang, L.C. Yin, X. Kang, L. Wang, G. Liu, H.M. Cheng, Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 28(30), 6471–6477 (2016). https://doi.org/10.1002/adma.201601567
Z. Lin, X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 25(6), 1779–1782 (2013). https://doi.org/10.1002/anie.201209017
Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang et al., Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 3(7), 3862–3867 (2015). https://doi.org/10.1039/c4ta05292g
Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y
R.J. Ran, T.Y. Ma, G. Gao, X. Du, S. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8(12), 3708–3717 (2015). https://doi.org/10.1039/c5ee02650d
Q.X. Liu, C.M. Zeng, Z.H. Xie, L.H. Ai, Y.Y. Liu et al., Cobalt@ nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Appl. Catal. B Environ. 254, 443–451 (2019). https://doi.org/10.1016/j.apcatb.2019.04.098
K. Liu, Y.T. Kang, Z.Q. Wang, X. Zhang, 25th anniversary article: reversible and adaptive functional supramolecular materials: “Noncovalent interaction” matters. Adv. Mater. 25(39), 5530–5548 (2013). https://doi.org/10.1002/adma201302015
M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 135(19), 7118–7121 (2013). https://doi.org/10.1021/ja402521s
G. Ge, X.W. Guo, C.S. Song, Z.K. Zhao, Reconstructing supramolecular aggregates to nitrogen-deficient g-C3N4 bunchy tubes with enhanced photocatalysis for H2 production. ACS Appl. Mater. Interfaces 10(22), 18746–18753 (2018). https://doi.org/10.1021/acsami.8b04227
Z.W. Tong, D. Yang, Y.Y. Sun, Y.H. Nan, Z.Y. Jiang, Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 12(30), 4093–4101 (2016). https://doi.org/10.1002/smll.201601660
N.A. Wasio, R.C. Quardokus, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, S.A. Kandel, Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507(7490), 86–89 (2014). https://doi.org/10.1038/nature12993
M. Shalom, M. Guttentag, C. Fettkenhauer, S. Inal, D. Neher, A. Llobet, M. Antonietti, In situ formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble metal free photocatalysis. Chem. Mater. 26(19), 5812–5818 (2014). https://doi.org/10.1021/cm503258z
Y.Y. Li, Y. Si, B.X. Zhou, W.Q. Huang, W.Y. Hu, A.L. Pan, X.X. Fan, G.F. Huang, Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology. Nanoscale 11(35), 16393–16405 (2019). https://doi.org/10.1039/c9nr05413h
B.X. Zhou, S.S. Ding, B.J. Zhang, L. Xu, R.S. Chen et al., Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 254, 321–328 (2019). https://doi.org/10.1016/j.apcatb.2019.05.015
Y. Ishida, L. Chabanne, M. Antonietti, M. Shalom, Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 30(2), 447–451 (2014). https://doi.org/10.1021/la404101h
L.S. Zhang, N. Ding, M. Hashimoto, K. Iwasaki, N. Chikamori et al., Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res. 11(4), 2295–2309 (2018). https://doi.org/10.1007/s12274-017-1853-3
Y.T. Gao, F. Hou, S. Hu, B.G. Wu, Y. Wang, H.Q. Zhang, B.J. Jiang, H.G. Fu, Graphene quantum-dot-modified hexagonal tubular carbon nitride for visible-light photocatalytic hydrogen evolution. Chemcatchem 10(6), 1330–1335 (2018). https://doi.org/10.1002/cctc.201701823
B. Liu, L.Q. Ye, R. Wang, J.F. Yang, Y.X. Zhang, R. Guan, L.H. Tian, X.B. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl. Mater. Interfaces 10(4), 4001–4009 (2018). https://doi.org/10.1021/acsami.7b17503
G. Kresse, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060
J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006). https://doi.org/10.1063/1.2187006
Q. Liang, Z. Li, Z.H. Huang, F. Kang, Q.H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2016). https://doi.org/10.1002/adfm.201503221
Y.F. Li, R.X. Jin, Y. Xing, J.Q. Li, S.Y. Song, X.C. Liu, M. Li, R.C. Jin, Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 6(24), 5 (2016). https://doi.org/10.1002/aenm.201601273
X. Ao, W. Zhang, Z.S. Li, J.G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13(10), 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
Y.C. Bao, K.Z. Chen, AgCl/Ag/g-C3N4 hybrid composites: preparation, visible light-driven photocatalytic activity and mechanism. Nano-Micro Lett. 8(2), 182–192 (2016). https://doi.org/10.1007/s40820-015-0076-y
F. Raziq, Y. Qu, M. Humayun, A. Zada, H.T. Yu, L.Q. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B Environ. 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
S. Zhang, S. Song, P.C. Gu, R. Ma, D.L. Wei et al., Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C3N4 for boosting bisphenol a degradation. J. Mater. Chem. A 7(10), 5552–5560 (2019). https://doi.org/10.1039/c9ta00339h
J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2(2), 940–948 (2012). https://doi.org/10.1021/cs300167b
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29(16), 1605148 (2017). https://doi.org/10.1002/adma.201605148
C.H. Liu, F. Wang, J. Zhang, K. Wang, Y.Y. Qiu, Q. Liang, Z.D. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
K. Li, W.D. Zhang, Creating graphitic carbon nitride based donor-π-acceptor-π-donor structured catalysts for highly photocatalytic hydrogen evolution. Small 14(12), 1703599 (2018). https://doi.org/10.1002/smll.201703599
Y.P. Zhu, T.Z. Ren, Z.Y. Yuana, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7(30), 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 218, 664–671 (2017). https://doi.org/10.1016/j.apcatb.2017.07.022
M. Wu, J. Zhang, B.B. He, H.W. Wang, R. Wang, Y.S. Gong, In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 241, 159–166 (2019). https://doi.org/10.1016/j.apcatb.2018.09.037
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 46(23), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
Z.Y. Zhang, J.D. Huang, M.Y. Zhang, L. Yuan, B. Dong, Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 163, 298–305 (2015). https://doi.org/10.1016/j.apcatb.2014.08.013
W. Xing, C. Li, G. Chen, Z. Han, Y. Zhou, Y. Hu, Q. Meng, Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity. Appl. Catal. B Environ. 203, 65–71 (2017). https://doi.org/10.1016/j.apcatb.2016.09.075
S. Chu, Y. Wang, Y. Guo, J.Y. Feng, C.C. Wang, W.J. Luo, X.X. Fan, Z.G. Zou, Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 3(5), 912–919 (2013). https://doi.org/10.1021/cs4000624
J.G. Li, Y. Gu, H.C. Sun, L. Lv, Z.S. Li et al., Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale 11(42), 19959–19968 (2019). https://doi.org/10.1039/c9nr07967j