Facile Synthesis of Porous Zn–Sn–O Nanocubes and Their Electrochemical Performances
Corresponding Author: Xuefeng Qian
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 174-181
Abstract
Porous Zn–Sn–O nanocubes with a uniform size were synthesized through a facile aqueous solution route combined with subsequent thermal treatment. The chemical composition, morphology, and microstructure of Zn–Sn–O nanocubes, which have significant effects on the lithium storage performances, were easily tuned by adjusting the calcination temperature in preparation processes of ZnSn(OH)6 solid nanocubes. Further studies revealed that porous Zn–Sn–O nanocubes prepared at 600 °C exhibited a good rate capability and a high reversible capacity of 700 mAh g−1 at a current density of 200 mA g−1 after 50 cycles, which may be a great potential as anode materials in Lithium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010). doi:10.1016/j.jpowsour.2009.11.048
- J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). doi:10.1038/35104644
- L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). doi:10.1039/c0ee00699h
- K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). doi:10.1126/science.1122152
- M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004). doi:10.1021/cr020731c
- M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). doi:10.1002/(SICI)1521-4095(199807)10:10<725:AID-ADMA725>3.0.CO;2-Z
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317), 1395–1397 (1997). doi:10.1126/science.276.5317.1395
- R. Wright, J. Christophersen, C. Motloch, J. Belt, C. Ho, V. Battaglia, J. Barnes, T. Duong, R. Sutula, Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries. J. Power Sources 119–121, 865–869 (2003). doi:10.1016/S0378-7753(03)00190-3
- Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008). doi:10.1002/adma.200800627
- X.W.D. Lou, L.A. Archer, Z. Yang, Hollow micro-nanostructures: synthesis and applications. Adv. Mater. 20(21), 3987–4019 (2008). doi:10.1002/adma.200800854
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). doi:10.1002/adma.201202146
- F.-H. Du, K.-X. Wang, W. Fu, P.-F. Gao, J.-F. Wang, J. Yang, J.-S. Chen, A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 1(43), 13648–13654 (2013). doi:10.1039/c3ta13092d
- J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057
- Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
- X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
- J.S. Chen, X.W.D. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). doi:10.1002/smll.201202601
- S. Ding, D. Luan, F.Y.C. Boey, J.S. Chen, X.W.D. Lou, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 47(25), 7155–7157 (2011). doi:10.1039/c1cc11968k
- Z. Wang, Z. Wang, W. Liu, W. Xiao, X.W.D. Lou, Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 6(1), 87–91 (2013). doi:10.1039/C2EE23330D
- Y. Chen, B. Qu, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. J. Mater. Chem. 22(48), 25373–25379 (2012). doi:10.1039/c2jm33123c
- A. Rong, X. Gao, G. Li, T. Yan, H. Zhu, J. Qu, D. Song, Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 110(30), 14754–14760 (2006). doi:10.1021/jp062875r
- G.-L. Xu, S.-R. Chen, J.-T. Li, F.-S. Ke, L. Huang, S.-G. Sun, A composite material of SnO2 ordered mesoporous carbon for the application in Lithium-ion battery. J. Electroanal. Chem. 656(1), 185–191 (2011). doi:10.1016/j.jelechem.2010.11.029
- D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.-C. Jumas, J.-M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17(36), 3759–3772 (2007). doi:10.1039/b705421c
- X. Zhu, L. Geng, F. Zhang, Y. Liu, L. Cheng, Synthesis and performance of Zn2SnO4 as anode materials for lithium ion batteries by hydrothermal method. J. Power Sources 189(1), 828–831 (2009). doi:10.1016/j.jpowsour.2008.07.028
- L. Yuan, Z. Guo, K. Konstantinov, H.K. Liu, S. Dou, Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. J. Power Sources 159(1), 345–348 (2006). doi:10.1016/j.jpowsour.2006.04.048
- L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010). doi:10.1016/j.elecom.2010.07.026
- M. Marcinek, L. Hardwick, T. Richardson, X. Song, R. Kostecki, Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. J. Power Sources 173(2), 965–971 (2007). doi:10.1016/j.jpowsour.2007.08.084
- Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007). doi:10.1002/adfm.200600739
- Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–649 (2006). doi:10.1002/adma.200501883
- X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). doi:10.1021/jp100224x
- H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008). doi:10.1039/b714904b
- M. Xu, F. Wang, M. Zhao, S. Yang, X. Song, Molten hydroxides synthesis of hierarchical cobalt oxide nanostructure and its application as anode material for lithium ion batteries. Electrochim. Acta 56(13), 4876–4881 (2011). doi:10.1016/j.electacta.2011.03.027
- C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. JACS 132(1), 46–47 (2009). doi:10.1021/ja909321d
- H. Wang, Q. Pan, Y. Cheng, J. Zhao, G. Yin, Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54(10), 2851–2855 (2009). doi:10.1016/j.electacta.2008.11.019
- N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu, D. He, Synthesis of monodisperse single crystal Zn2SnO4 cubes with high lithium storage capacity. Mater. Lett. 76, 66–68 (2012). doi:10.1016/j.matlet.2012.02.071
- X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). doi:10.1002/adma.200600733
- S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15(11), 1845–1850 (2005). doi:10.1002/adfm.200500243
- L.-S. Zhang, L.-Y. Jiang, H.-J. Yan, W.D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, L.-J. Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J. Mater. Chem. 20(26), 5462–5467 (2010). doi:10.1039/c0jm00672f
- M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21(21), 7723–7729 (2011). doi:10.1039/c1jm10720h
- H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S.Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012). doi:10.1002/aenm.201200087
References
B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010). doi:10.1016/j.jpowsour.2009.11.048
J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). doi:10.1038/35104644
L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011). doi:10.1039/c0ee00699h
K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). doi:10.1126/science.1122152
M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004). doi:10.1021/cr020731c
M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). doi:10.1002/(SICI)1521-4095(199807)10:10<725:AID-ADMA725>3.0.CO;2-Z
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317), 1395–1397 (1997). doi:10.1126/science.276.5317.1395
R. Wright, J. Christophersen, C. Motloch, J. Belt, C. Ho, V. Battaglia, J. Barnes, T. Duong, R. Sutula, Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries. J. Power Sources 119–121, 865–869 (2003). doi:10.1016/S0378-7753(03)00190-3
Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008). doi:10.1002/adma.200800627
X.W.D. Lou, L.A. Archer, Z. Yang, Hollow micro-nanostructures: synthesis and applications. Adv. Mater. 20(21), 3987–4019 (2008). doi:10.1002/adma.200800854
J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). doi:10.1002/adma.201202146
F.-H. Du, K.-X. Wang, W. Fu, P.-F. Gao, J.-F. Wang, J. Yang, J.-S. Chen, A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 1(43), 13648–13654 (2013). doi:10.1039/c3ta13092d
J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057
Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
J.S. Chen, X.W.D. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). doi:10.1002/smll.201202601
S. Ding, D. Luan, F.Y.C. Boey, J.S. Chen, X.W.D. Lou, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 47(25), 7155–7157 (2011). doi:10.1039/c1cc11968k
Z. Wang, Z. Wang, W. Liu, W. Xiao, X.W.D. Lou, Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 6(1), 87–91 (2013). doi:10.1039/C2EE23330D
Y. Chen, B. Qu, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. J. Mater. Chem. 22(48), 25373–25379 (2012). doi:10.1039/c2jm33123c
A. Rong, X. Gao, G. Li, T. Yan, H. Zhu, J. Qu, D. Song, Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 110(30), 14754–14760 (2006). doi:10.1021/jp062875r
G.-L. Xu, S.-R. Chen, J.-T. Li, F.-S. Ke, L. Huang, S.-G. Sun, A composite material of SnO2 ordered mesoporous carbon for the application in Lithium-ion battery. J. Electroanal. Chem. 656(1), 185–191 (2011). doi:10.1016/j.jelechem.2010.11.029
D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.-C. Jumas, J.-M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17(36), 3759–3772 (2007). doi:10.1039/b705421c
X. Zhu, L. Geng, F. Zhang, Y. Liu, L. Cheng, Synthesis and performance of Zn2SnO4 as anode materials for lithium ion batteries by hydrothermal method. J. Power Sources 189(1), 828–831 (2009). doi:10.1016/j.jpowsour.2008.07.028
L. Yuan, Z. Guo, K. Konstantinov, H.K. Liu, S. Dou, Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. J. Power Sources 159(1), 345–348 (2006). doi:10.1016/j.jpowsour.2006.04.048
L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010). doi:10.1016/j.elecom.2010.07.026
M. Marcinek, L. Hardwick, T. Richardson, X. Song, R. Kostecki, Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. J. Power Sources 173(2), 965–971 (2007). doi:10.1016/j.jpowsour.2007.08.084
Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007). doi:10.1002/adfm.200600739
Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–649 (2006). doi:10.1002/adma.200501883
X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). doi:10.1021/jp100224x
H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008). doi:10.1039/b714904b
M. Xu, F. Wang, M. Zhao, S. Yang, X. Song, Molten hydroxides synthesis of hierarchical cobalt oxide nanostructure and its application as anode material for lithium ion batteries. Electrochim. Acta 56(13), 4876–4881 (2011). doi:10.1016/j.electacta.2011.03.027
C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. JACS 132(1), 46–47 (2009). doi:10.1021/ja909321d
H. Wang, Q. Pan, Y. Cheng, J. Zhao, G. Yin, Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54(10), 2851–2855 (2009). doi:10.1016/j.electacta.2008.11.019
N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu, D. He, Synthesis of monodisperse single crystal Zn2SnO4 cubes with high lithium storage capacity. Mater. Lett. 76, 66–68 (2012). doi:10.1016/j.matlet.2012.02.071
X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). doi:10.1002/adma.200600733
S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15(11), 1845–1850 (2005). doi:10.1002/adfm.200500243
L.-S. Zhang, L.-Y. Jiang, H.-J. Yan, W.D. Wang, W. Wang, W.-G. Song, Y.-G. Guo, L.-J. Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J. Mater. Chem. 20(26), 5462–5467 (2010). doi:10.1039/c0jm00672f
M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21(21), 7723–7729 (2011). doi:10.1039/c1jm10720h
H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S.Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012). doi:10.1002/aenm.201200087