Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivity- and Selectivity-Enhanced Sensing of Chloroform Vapor
Corresponding Author: Peng Sun
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 96
Abstract
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing. The colloidal PC packed with hollow mesoporous silica spheres provides an interconnected ordered macro-meso-hierarchical porous structure, ideal for rapid gas sensing utilizing the photonic bandgap shift as the readout signal. The as-synthesized CDs with pyridinic-N-oxide functional groups adsorbed in the hollow mesoporous silica spheres are found to not only serve as the chloroform adsorption sites, but also a molecular glue that prevents crack formation in the colloidal PC. The sensitivity of HMSS@CDs-PCs sensor is 0.79 nm ppm−1 and an impressively low limit of detection is 3.22 ppm, which are the best reported values in fast-response chloroform vapor sensor without multi-signal assistance. The positive response time is 7.5 s and the negative response time 9 s. Furthermore, relatively stable sensing can be maintained within a relative humidity of 20%–85%RH and temperature of 25–55 °C. This study demonstrates that HMSS@CDs-PCs sensors have practical application potential in indoor and outdoor chloroform vapor detection.
Highlights:
1 Uniform-sized hollow mesoporous silica spheres form colloidal photonic crystals for gas sensing.
2‘Nanoreceptors’ have been introduced for increasing the sensing sensitivity and specificity.
3 A chloroform gas sensor is created with a sensitivity of 0.79 nm ppm−1 with a limit of detection of 3.22 ppm, which are the best reported values in fast-response chloroform vapor sensors without multi-signal assistance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Kim, K.-S. Hwang, W.-G. Koh, C. Lee, J.-Y. Lee, Volatile organic compound sensing array and optoelectronic filter system using ion-pairing dyes with a wide visible spectrum. Adv. Mater. 34, e2203671 (2022). https://doi.org/10.1002/adma.202203671
- H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49, 6364–6401 (2020). https://doi.org/10.1039/c9cs00778d
- Y.Y. Broza, R. Vishinkin, O. Barash, M.K. Nakhleh, H. Haick, Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 47, 4781–4859 (2018). https://doi.org/10.1039/C8CS00317C
- Y. Ravi Kumar, K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, A systematic review on 2D materials for volatile organic compound sensing. Coord. Chem. Rev. 461, 214502 (2022). https://doi.org/10.1016/j.ccr.2022.214502
- J. Zhao, H. Wang, Y. Cai, J. Zhao, Z. Gao et al., The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 9, 1644–1655 (2024). https://doi.org/10.1021/acssensors.4c00137
- N. Hao, Y. Liu, C. Cai, Y. Shao, X. Meng et al., Advanced triboelectric materials for self-powered gas sensing systems. Nano Energy 122, 109335 (2024). https://doi.org/10.1016/j.nanoen.2024.109335
- A.H.M. Almawgani, A. Uniyal, P. Sarkar, G. Srivastava, A.R.H. Alhawari et al., Magnesium oxide and silicon-assisted surface plasmon resonance sensor for gas detection: a performance analysis. Plasmonics 19, 2673–2685 (2024). https://doi.org/10.1007/s11468-023-02174-4
- X. Han, C. Li, M. Guo, X. Zhao, Z. Wang et al., Fiber-optic trace gas sensing based on graphite excited photoacoustic wave. Sens. Actuat. B Chem. 408, 135546 (2024). https://doi.org/10.1016/j.snb.2024.135546
- Y. Zhai, J. Ye, Y. Zhang, K. Zhang, E. Zhan et al., Excellent sensing platforms for identification of gaseous pollutants based on metal–organic frameworks: a review. Chem. Eng. J. 484, 149286 (2024). https://doi.org/10.1016/j.cej.2024.149286
- T. Li, G. Liu, H. Kong, G. Yang, G. Wei et al., Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 475, 214909 (2023). https://doi.org/10.1016/j.ccr.2022.214909
- Y. Hu, Z. Tian, D. Ma, C. Qi, D. Yang et al., Smart colloidal photonic crystal sensors. Adv. Colloid Interface Sci. 324, 103089 (2024). https://doi.org/10.1016/j.cis.2024.103089
- R.J. Martín-Palma, M. Kolle, [INVITED]Biomimetic photonic structures for optical sensing. Opt. Laser Technol. 109, 270–277 (2019). https://doi.org/10.1016/j.optlastec.2018.07.079
- M. Malekovic, M. Urann, U. Steiner, B.D. Wilts, M. Kolle, Soft photonic fibers for colorimetric solvent vapor sensing. Adv. Optical Mater. 8, 2000165 (2020). https://doi.org/10.1002/adom.202000165
- S. Guldin, U. Steiner, Soft matter design principles for inorganic photonic nanoarchitectures in photovoltaics, colorimetric sensing, and self-cleaning antireflective coatings. Micro and Nanotechnology Sensors, Systems, and Applications VI. Baltimore, Maryland, USA. SPIE, (2014). https://doi.org/10.1117/12.2050011
- Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li et al., Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor. Langmuir 27, 5157–5164 (2011). https://doi.org/10.1021/la200111j
- J. Wang, Q. Li, W. Knoll, U. Jonas, Preparation of multilayered trimodal colloid crystals and binary inverse opals. J. Am. Chem. Soc. 128, 15606–15607 (2006). https://doi.org/10.1021/ja067221a
- N. Jabiyeva, B. Çakıroğlu, A. Özdemir, The peroxidase-like activity of Au NPs deposited inverse opal CeO2 nanozyme for rapid and sensitive H2O2 sensing. J. Photochem. Photobiol. A Chem. 452, 115576 (2024). https://doi.org/10.1016/j.jphotochem.2024.115576
- D. Wang, Z. Liu, H. Wang, M. Li, L.J. Guo et al., Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023). https://doi.org/10.1515/nanoph-2022-0063
- R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll et al., An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
- H.A. Nguyen, I. Srivastava, D. Pan, M. Gruebele, Ultrafast nanometric imaging of energy flow within and between single carbon dots. Proc. Natl. Acad. Sci. U.S.A. 118, e2023083118 (2021). https://doi.org/10.1073/pnas.2023083118
- J. Liu, R. Li, B. Yang, Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179–2195 (2020). https://doi.org/10.1021/acscentsci.0c01306
- Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d
- Y. Xiong, S. Shepherd, J. Tibbs, A. Bacon, W. Liu et al., Photonic crystal enhanced fluorescence: a review on design strategies and applications. Micromachines 14, 668 (2023). https://doi.org/10.3390/mi14030668
- H. Lin, Y. Duan, S. Yan, Z. Wang, M. Zareef, Quantitative analysis of volatile organic compound using novel chemoselective response dye based on Vis-NIRS coupled Si-PLS. Microchem. J. 145, 1119–1128 (2019). https://doi.org/10.1016/j.microc.2018.12.030
- W. Wang, Y. Zhou, L. Yang, X. Yang, Y. Yao et al., Stimulus-responsive photonic crystals for advanced security. Adv. Funct. Mater. 32, 2204744 (2022). https://doi.org/10.1002/adfm.202204744
- Q. Li, E. Eftekhari, Hierarchically ordered colloidal crystals: fabrication, structures, and functions. Nanostruct. Propert. Prod. Methods Appl. 23, 169–183 (2013)
- A. Singh, E. Eftekhari, J. Scott, J. Kaur, S. Yambem et al., Carbon dots derived from human hair for ppb level chloroform sensing in water. Sustain. Mater. Technol. 25, e00159 (2020). https://doi.org/10.1016/j.susmat.2020.e00159
- Q. Li, L. Ding, Y. Zhang, T. Wu, A cholesterol optical fiber sensor based on CQDs-COD/CA composite. IEEE Sens. J. 22, 6247–6255 (2022). https://doi.org/10.1109/JSEN.2022.3146150
- W. Gao, Q. Li, M. Dou, Z. Zhang, F. Wang, Self-supported Ni nanops embedded on nitrogen-doped carbon derived from nickel polyphthalocyanine for high-performance non-enzymatic glucose detection. J. Mater. Chem. B 6, 6781–6787 (2018). https://doi.org/10.1039/C8TB02058B
- E. Eftekhari, W. Wang, X. Li, A. Nikhil, Z. Wu et al., Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals. Sens. Actuat. B Chem. 240, 204–211 (2017). https://doi.org/10.1016/j.snb.2016.08.154
- S. Wang, I.S. Cole, D. Zhao, Q. Li, The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 8, 7449–7458 (2016). https://doi.org/10.1039/c5nr07042b
- B.B. Chen, M.L. Liu, C.M. Li, C.Z. Huang, Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci. 270, 165–190 (2019). https://doi.org/10.1016/j.cis.2019.06.008
- X. Ren, W. Liang, P. Wang, C.E. Bunker, M. Coleman et al., A new approach in functionalization of carbon nanops for optoelectronically relevant carbon dots and beyond. Carbon 141, 553–560 (2019). https://doi.org/10.1016/j.carbon.2018.09.085
- J.-J. Hu, X.-L. Bai, Y.-M. Liu, X. Liao, Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal. Chim. Acta 995, 99–105 (2017). https://doi.org/10.1016/j.aca.2017.09.038
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- Z. Teng, W. Li, Y. Tang, A. Elzatahry, G. Lu et al., Mesoporous organosilica hollow nanops: synthesis and applications. Adv. Mater. 31, 1707612 (2019). https://doi.org/10.1002/adma.201707612
- Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007). https://doi.org/10.1021/cr068020s
- J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang et al., Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3, e1603171 (2017). https://doi.org/10.1126/sciadv.1603171
- Y. Fujii, S. Zhou, M. Shimada, M. Kubo, Synthesis of monodispersed hollow mesoporous organosilica and silica nanops with controllable shell thickness using soft and hard templates. Langmuir 39, 4571–4582 (2023). https://doi.org/10.1021/acs.langmuir.2c03121
- T. Watanabe, E. Yamamoto, S. Uchida, L. Cheng, H. Wada et al., Preparation of sub-50 nm colloidal monodispersed hollow siloxane-based nanops with controlled shell structures. Langmuir 36, 13833–13842 (2020). https://doi.org/10.1021/acs.langmuir.0c02190
- M. Wu, Y. Chen, L. Zhang, X. Li, X. Cai et al., A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. J. Mater. Chem. B 3, 766–775 (2015). https://doi.org/10.1039/c4tb01581a
- Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng et al., A family of highly ordered mesoporous polymer resin and carbon structures from organic−organic self-assembly. Chem. Mater. 18, 4447–4464 (2006). https://doi.org/10.1021/cm060921u
- L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022). https://doi.org/10.1038/s41565-021-01051-7
- Z. Liu, H. Zou, N. Wang, T. Yang, Z. Peng et al., Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Sci. China Chem. 61, 490–496 (2018). https://doi.org/10.1007/s11426-017-9172-0
- T.W. Reidl, J.S. Bandar, Lewis basic salt-promoted organosilane coupling reactions with aromatic electrophiles. J. Am. Chem. Soc. 143, 11939–11945 (2021). https://doi.org/10.1021/jacs.1c05764
- K.J. Mintz, C. Poleunis, B.C.L.B. Ferreira, R. Sampson, A. Delcorte et al., Localized states in carbon dots: structural and optical investigation of three systems with varying degrees of carbonization. Carbon 222, 118906 (2024). https://doi.org/10.1016/j.carbon.2024.118906
- P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011). https://doi.org/10.1038/nature10344
- X.-Q. Yu, X. Zhang, T. Qiu, H. Liu, J. Guo et al., Engineering ps for sensing applications via in situ synthesizing carbon dots@SiO2 photonic crystals. Chem. Eng. J. 465, 142851 (2023). https://doi.org/10.1016/j.cej.2023.142851
- J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.-F. Wang et al., Large-scale colloidal films with robust structural colors. Mater. Horiz. 6, 90–96 (2019). https://doi.org/10.1039/c8mh00248g
- B. Li, X. Cai, Y. Zhang, Photonic crystal cavity-based micro/nanodisplay for visible lights. Appl. Phys. Lett. 89, 031103 (2006). https://doi.org/10.1063/1.2222248
- P. Massé, G. Pouclet, S. Ravaine, Periodic distribution of planar defects in colloidal photonic crystals. Adv. Mater. 20, 584–587 (2008). https://doi.org/10.1002/adma.200700628
- A.Y. Petrov, M. Eich, Dispersion compensation with photonic crystal line-defect waveguides. IEEE J. Sel. Areas Commun. 23, 1396–1401 (2005). https://doi.org/10.1109/JSAC.2005.851167
- K. Ishizaki, S. Noda, Manipulation of photons at the surface of three-dimensional photonic crystals. Nature 460, 367–370 (2009). https://doi.org/10.1038/nature08190
- V. Nagarajan, R. Chandiramouli, Novel orthorhombic silicane nanosheet as a sensing material for acrolein and propanol—a first-principles investigation. Semicond. Sci. Technol. 38, 025003 (2023). https://doi.org/10.1088/1361-6641/acaa50
- N. Hafaiedh, A. Toumi, M. Bouanz, Density and refractive index in binary mixtures of triethylamine–water in the temperature interval (283.15–291.35) K. Phys. Chem. Liq. 47, 399–411 (2009). https://doi.org/10.1080/00319100802078042
- X. Qin, Y. Chen, S. Yang, X. Qin, J. Zhao et al., Density, viscosity, and refractive index for binary mixtures of three adamantane derivatives with n-nonane or n-undecane at T = 293.15–343.15 K and atmospheric pressure. J. Chem. Eng. Data 65, 2512–2526 (2020). https://doi.org/10.1021/acs.jced.9b01167
- S. Chatterjee, M. Castro, J.F. Feller, An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. Mater. Chem. B 1, 4563 (2013). https://doi.org/10.1039/c3tb20819b
- L.D. Bonifacio, B.V. Lotsch, D.P. Puzzo, F. Scotognella, G.A. Ozin, Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals. Adv. Mater. 21, 1641–1646 (2009). https://doi.org/10.1002/adma.200802348
- M.-X. Nie, X.-Z. Li, S.-R. Liu, Y. Guo, ZnO/CuO/Al2O3 composites for chloroform detection. Sens. Actuat. B Chem. 210, 211–217 (2015). https://doi.org/10.1016/j.snb.2014.12.099
- K. Drozdowska, A. Rehman, P. Sai, B. Stonio, A. Krajewska et al., Organic vapor sensing mechanisms by large-area graphene back-gated field-effect transistors under UV irradiation. ACS Sens. 7, 3094–3101 (2022). https://doi.org/10.1021/acssensors.2c01511
- S. Sharma, C. Nirkhe, S. Pethkar, A.A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuat. B Chem. 85, 131–136 (2002). https://doi.org/10.1016/S0925-4005(02)00064-3
- W. Ma, J. Luo, W. Ling, W. Wang, Chloroform-sensing properties of plasmonic nanostructures using poly(methyl methacrylate) transduction layer. Micro Nano Lett. 8, 111–114 (2013). https://doi.org/10.1049/mnl.2012.0824
- X. Liu, Z.Y. Qin, X.L. Zhang, L. Chen, M.F. Zhu, Conductive polypyrrole/polyurethane composite fibers for chloroform gas detection. Adv. Mater. Res. 750–752, 55–58 (2013). https://doi.org/10.4028/www.scientific.net/amr.750-752.55
- Y. Acikbas, M. Erdogan, R. Capan, F. Yukruk, Fabrication of Langmuir–blodgett thin film for organic vapor detection using a novel N, N’-dicyclohexyl-3, 4: 9, 10-perylenebis (dicarboximide). Sens. Actuat. B Chem. 200, 61–68 (2014). https://doi.org/10.1016/j.snb.2014.04.051
- I. Capan, M. Bayrakci, M. Erdogan, M. Ozmen, Fabrication of thin films of phosphonated Calix[4]Arene bearing crown ether and their gas sensing properties. IEEE Sens. J. 19, 838–845 (2019). https://doi.org/10.1109/JSEN.2018.2878840
- G. Calzaferri, S.H. Gallagher, D. Brühwiler, Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents. Microporous Mesoporous Mater. 330, 111563 (2022). https://doi.org/10.1016/j.micromeso.2021.111563
- C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025
References
D. Kim, K.-S. Hwang, W.-G. Koh, C. Lee, J.-Y. Lee, Volatile organic compound sensing array and optoelectronic filter system using ion-pairing dyes with a wide visible spectrum. Adv. Mater. 34, e2203671 (2022). https://doi.org/10.1002/adma.202203671
H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49, 6364–6401 (2020). https://doi.org/10.1039/c9cs00778d
Y.Y. Broza, R. Vishinkin, O. Barash, M.K. Nakhleh, H. Haick, Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 47, 4781–4859 (2018). https://doi.org/10.1039/C8CS00317C
Y. Ravi Kumar, K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, A systematic review on 2D materials for volatile organic compound sensing. Coord. Chem. Rev. 461, 214502 (2022). https://doi.org/10.1016/j.ccr.2022.214502
J. Zhao, H. Wang, Y. Cai, J. Zhao, Z. Gao et al., The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 9, 1644–1655 (2024). https://doi.org/10.1021/acssensors.4c00137
N. Hao, Y. Liu, C. Cai, Y. Shao, X. Meng et al., Advanced triboelectric materials for self-powered gas sensing systems. Nano Energy 122, 109335 (2024). https://doi.org/10.1016/j.nanoen.2024.109335
A.H.M. Almawgani, A. Uniyal, P. Sarkar, G. Srivastava, A.R.H. Alhawari et al., Magnesium oxide and silicon-assisted surface plasmon resonance sensor for gas detection: a performance analysis. Plasmonics 19, 2673–2685 (2024). https://doi.org/10.1007/s11468-023-02174-4
X. Han, C. Li, M. Guo, X. Zhao, Z. Wang et al., Fiber-optic trace gas sensing based on graphite excited photoacoustic wave. Sens. Actuat. B Chem. 408, 135546 (2024). https://doi.org/10.1016/j.snb.2024.135546
Y. Zhai, J. Ye, Y. Zhang, K. Zhang, E. Zhan et al., Excellent sensing platforms for identification of gaseous pollutants based on metal–organic frameworks: a review. Chem. Eng. J. 484, 149286 (2024). https://doi.org/10.1016/j.cej.2024.149286
T. Li, G. Liu, H. Kong, G. Yang, G. Wei et al., Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 475, 214909 (2023). https://doi.org/10.1016/j.ccr.2022.214909
Y. Hu, Z. Tian, D. Ma, C. Qi, D. Yang et al., Smart colloidal photonic crystal sensors. Adv. Colloid Interface Sci. 324, 103089 (2024). https://doi.org/10.1016/j.cis.2024.103089
R.J. Martín-Palma, M. Kolle, [INVITED]Biomimetic photonic structures for optical sensing. Opt. Laser Technol. 109, 270–277 (2019). https://doi.org/10.1016/j.optlastec.2018.07.079
M. Malekovic, M. Urann, U. Steiner, B.D. Wilts, M. Kolle, Soft photonic fibers for colorimetric solvent vapor sensing. Adv. Optical Mater. 8, 2000165 (2020). https://doi.org/10.1002/adom.202000165
S. Guldin, U. Steiner, Soft matter design principles for inorganic photonic nanoarchitectures in photovoltaics, colorimetric sensing, and self-cleaning antireflective coatings. Micro and Nanotechnology Sensors, Systems, and Applications VI. Baltimore, Maryland, USA. SPIE, (2014). https://doi.org/10.1117/12.2050011
Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li et al., Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor. Langmuir 27, 5157–5164 (2011). https://doi.org/10.1021/la200111j
J. Wang, Q. Li, W. Knoll, U. Jonas, Preparation of multilayered trimodal colloid crystals and binary inverse opals. J. Am. Chem. Soc. 128, 15606–15607 (2006). https://doi.org/10.1021/ja067221a
N. Jabiyeva, B. Çakıroğlu, A. Özdemir, The peroxidase-like activity of Au NPs deposited inverse opal CeO2 nanozyme for rapid and sensitive H2O2 sensing. J. Photochem. Photobiol. A Chem. 452, 115576 (2024). https://doi.org/10.1016/j.jphotochem.2024.115576
D. Wang, Z. Liu, H. Wang, M. Li, L.J. Guo et al., Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023). https://doi.org/10.1515/nanoph-2022-0063
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll et al., An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
H.A. Nguyen, I. Srivastava, D. Pan, M. Gruebele, Ultrafast nanometric imaging of energy flow within and between single carbon dots. Proc. Natl. Acad. Sci. U.S.A. 118, e2023083118 (2021). https://doi.org/10.1073/pnas.2023083118
J. Liu, R. Li, B. Yang, Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179–2195 (2020). https://doi.org/10.1021/acscentsci.0c01306
Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d
Y. Xiong, S. Shepherd, J. Tibbs, A. Bacon, W. Liu et al., Photonic crystal enhanced fluorescence: a review on design strategies and applications. Micromachines 14, 668 (2023). https://doi.org/10.3390/mi14030668
H. Lin, Y. Duan, S. Yan, Z. Wang, M. Zareef, Quantitative analysis of volatile organic compound using novel chemoselective response dye based on Vis-NIRS coupled Si-PLS. Microchem. J. 145, 1119–1128 (2019). https://doi.org/10.1016/j.microc.2018.12.030
W. Wang, Y. Zhou, L. Yang, X. Yang, Y. Yao et al., Stimulus-responsive photonic crystals for advanced security. Adv. Funct. Mater. 32, 2204744 (2022). https://doi.org/10.1002/adfm.202204744
Q. Li, E. Eftekhari, Hierarchically ordered colloidal crystals: fabrication, structures, and functions. Nanostruct. Propert. Prod. Methods Appl. 23, 169–183 (2013)
A. Singh, E. Eftekhari, J. Scott, J. Kaur, S. Yambem et al., Carbon dots derived from human hair for ppb level chloroform sensing in water. Sustain. Mater. Technol. 25, e00159 (2020). https://doi.org/10.1016/j.susmat.2020.e00159
Q. Li, L. Ding, Y. Zhang, T. Wu, A cholesterol optical fiber sensor based on CQDs-COD/CA composite. IEEE Sens. J. 22, 6247–6255 (2022). https://doi.org/10.1109/JSEN.2022.3146150
W. Gao, Q. Li, M. Dou, Z. Zhang, F. Wang, Self-supported Ni nanops embedded on nitrogen-doped carbon derived from nickel polyphthalocyanine for high-performance non-enzymatic glucose detection. J. Mater. Chem. B 6, 6781–6787 (2018). https://doi.org/10.1039/C8TB02058B
E. Eftekhari, W. Wang, X. Li, A. Nikhil, Z. Wu et al., Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals. Sens. Actuat. B Chem. 240, 204–211 (2017). https://doi.org/10.1016/j.snb.2016.08.154
S. Wang, I.S. Cole, D. Zhao, Q. Li, The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 8, 7449–7458 (2016). https://doi.org/10.1039/c5nr07042b
B.B. Chen, M.L. Liu, C.M. Li, C.Z. Huang, Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci. 270, 165–190 (2019). https://doi.org/10.1016/j.cis.2019.06.008
X. Ren, W. Liang, P. Wang, C.E. Bunker, M. Coleman et al., A new approach in functionalization of carbon nanops for optoelectronically relevant carbon dots and beyond. Carbon 141, 553–560 (2019). https://doi.org/10.1016/j.carbon.2018.09.085
J.-J. Hu, X.-L. Bai, Y.-M. Liu, X. Liao, Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal. Chim. Acta 995, 99–105 (2017). https://doi.org/10.1016/j.aca.2017.09.038
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
Z. Teng, W. Li, Y. Tang, A. Elzatahry, G. Lu et al., Mesoporous organosilica hollow nanops: synthesis and applications. Adv. Mater. 31, 1707612 (2019). https://doi.org/10.1002/adma.201707612
Y. Wan, D.Y. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007). https://doi.org/10.1021/cr068020s
J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang et al., Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3, e1603171 (2017). https://doi.org/10.1126/sciadv.1603171
Y. Fujii, S. Zhou, M. Shimada, M. Kubo, Synthesis of monodispersed hollow mesoporous organosilica and silica nanops with controllable shell thickness using soft and hard templates. Langmuir 39, 4571–4582 (2023). https://doi.org/10.1021/acs.langmuir.2c03121
T. Watanabe, E. Yamamoto, S. Uchida, L. Cheng, H. Wada et al., Preparation of sub-50 nm colloidal monodispersed hollow siloxane-based nanops with controlled shell structures. Langmuir 36, 13833–13842 (2020). https://doi.org/10.1021/acs.langmuir.0c02190
M. Wu, Y. Chen, L. Zhang, X. Li, X. Cai et al., A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. J. Mater. Chem. B 3, 766–775 (2015). https://doi.org/10.1039/c4tb01581a
Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng et al., A family of highly ordered mesoporous polymer resin and carbon structures from organic−organic self-assembly. Chem. Mater. 18, 4447–4464 (2006). https://doi.org/10.1021/cm060921u
L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022). https://doi.org/10.1038/s41565-021-01051-7
Z. Liu, H. Zou, N. Wang, T. Yang, Z. Peng et al., Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Sci. China Chem. 61, 490–496 (2018). https://doi.org/10.1007/s11426-017-9172-0
T.W. Reidl, J.S. Bandar, Lewis basic salt-promoted organosilane coupling reactions with aromatic electrophiles. J. Am. Chem. Soc. 143, 11939–11945 (2021). https://doi.org/10.1021/jacs.1c05764
K.J. Mintz, C. Poleunis, B.C.L.B. Ferreira, R. Sampson, A. Delcorte et al., Localized states in carbon dots: structural and optical investigation of three systems with varying degrees of carbonization. Carbon 222, 118906 (2024). https://doi.org/10.1016/j.carbon.2024.118906
P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011). https://doi.org/10.1038/nature10344
X.-Q. Yu, X. Zhang, T. Qiu, H. Liu, J. Guo et al., Engineering ps for sensing applications via in situ synthesizing carbon dots@SiO2 photonic crystals. Chem. Eng. J. 465, 142851 (2023). https://doi.org/10.1016/j.cej.2023.142851
J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.-F. Wang et al., Large-scale colloidal films with robust structural colors. Mater. Horiz. 6, 90–96 (2019). https://doi.org/10.1039/c8mh00248g
B. Li, X. Cai, Y. Zhang, Photonic crystal cavity-based micro/nanodisplay for visible lights. Appl. Phys. Lett. 89, 031103 (2006). https://doi.org/10.1063/1.2222248
P. Massé, G. Pouclet, S. Ravaine, Periodic distribution of planar defects in colloidal photonic crystals. Adv. Mater. 20, 584–587 (2008). https://doi.org/10.1002/adma.200700628
A.Y. Petrov, M. Eich, Dispersion compensation with photonic crystal line-defect waveguides. IEEE J. Sel. Areas Commun. 23, 1396–1401 (2005). https://doi.org/10.1109/JSAC.2005.851167
K. Ishizaki, S. Noda, Manipulation of photons at the surface of three-dimensional photonic crystals. Nature 460, 367–370 (2009). https://doi.org/10.1038/nature08190
V. Nagarajan, R. Chandiramouli, Novel orthorhombic silicane nanosheet as a sensing material for acrolein and propanol—a first-principles investigation. Semicond. Sci. Technol. 38, 025003 (2023). https://doi.org/10.1088/1361-6641/acaa50
N. Hafaiedh, A. Toumi, M. Bouanz, Density and refractive index in binary mixtures of triethylamine–water in the temperature interval (283.15–291.35) K. Phys. Chem. Liq. 47, 399–411 (2009). https://doi.org/10.1080/00319100802078042
X. Qin, Y. Chen, S. Yang, X. Qin, J. Zhao et al., Density, viscosity, and refractive index for binary mixtures of three adamantane derivatives with n-nonane or n-undecane at T = 293.15–343.15 K and atmospheric pressure. J. Chem. Eng. Data 65, 2512–2526 (2020). https://doi.org/10.1021/acs.jced.9b01167
S. Chatterjee, M. Castro, J.F. Feller, An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. Mater. Chem. B 1, 4563 (2013). https://doi.org/10.1039/c3tb20819b
L.D. Bonifacio, B.V. Lotsch, D.P. Puzzo, F. Scotognella, G.A. Ozin, Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals. Adv. Mater. 21, 1641–1646 (2009). https://doi.org/10.1002/adma.200802348
M.-X. Nie, X.-Z. Li, S.-R. Liu, Y. Guo, ZnO/CuO/Al2O3 composites for chloroform detection. Sens. Actuat. B Chem. 210, 211–217 (2015). https://doi.org/10.1016/j.snb.2014.12.099
K. Drozdowska, A. Rehman, P. Sai, B. Stonio, A. Krajewska et al., Organic vapor sensing mechanisms by large-area graphene back-gated field-effect transistors under UV irradiation. ACS Sens. 7, 3094–3101 (2022). https://doi.org/10.1021/acssensors.2c01511
S. Sharma, C. Nirkhe, S. Pethkar, A.A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuat. B Chem. 85, 131–136 (2002). https://doi.org/10.1016/S0925-4005(02)00064-3
W. Ma, J. Luo, W. Ling, W. Wang, Chloroform-sensing properties of plasmonic nanostructures using poly(methyl methacrylate) transduction layer. Micro Nano Lett. 8, 111–114 (2013). https://doi.org/10.1049/mnl.2012.0824
X. Liu, Z.Y. Qin, X.L. Zhang, L. Chen, M.F. Zhu, Conductive polypyrrole/polyurethane composite fibers for chloroform gas detection. Adv. Mater. Res. 750–752, 55–58 (2013). https://doi.org/10.4028/www.scientific.net/amr.750-752.55
Y. Acikbas, M. Erdogan, R. Capan, F. Yukruk, Fabrication of Langmuir–blodgett thin film for organic vapor detection using a novel N, N’-dicyclohexyl-3, 4: 9, 10-perylenebis (dicarboximide). Sens. Actuat. B Chem. 200, 61–68 (2014). https://doi.org/10.1016/j.snb.2014.04.051
I. Capan, M. Bayrakci, M. Erdogan, M. Ozmen, Fabrication of thin films of phosphonated Calix[4]Arene bearing crown ether and their gas sensing properties. IEEE Sens. J. 19, 838–845 (2019). https://doi.org/10.1109/JSEN.2018.2878840
G. Calzaferri, S.H. Gallagher, D. Brühwiler, Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents. Microporous Mesoporous Mater. 330, 111563 (2022). https://doi.org/10.1016/j.micromeso.2021.111563
C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025