3D Hierarchical Co–Al Layered Double Hydroxides with Long-Term Stabilities and High Rate Performances in Supercapacitors
Corresponding Author: Xuefeng Qian
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 21
Abstract
Three-dimensional (3D) flower-like Co–Al layered double hydroxide (Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved. When used in supercapacitors, the obtained Co–Al-LDHs deliver a high specific capacitance of 838 F g−1 at a current density of 1 A g−1 and excellent rate performance (753 F g−1 at 30 A g−1 and 677 F g−1 at 100 A g−1), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 A g−1. This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.
Highlights:
1 3D Flower-like Co–Al layered double hydroxides (Co–Al-LDHs) built up of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol.
2 Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved, therefore leading to high specific capacitance, excellent rate performance and good cycling stability in supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Tsujimura, E. Suraniti, F. Durand, N. Mano, Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes. Electrochim. Acta 117, 263–267 (2014). doi:10.1016/j.electacta.2013.11.131
- C.H. Tang, X.S. Yin, H. Gong, A study on dramatically enhanced capacitance of graphene-decorated hierarchically porous nickelian heterogenite for energy storage application. Electrochim. Acta 114, 543–550 (2013). doi:10.1016/j.electacta.2013.10.065
- H.Y. Sun, Y.G. Liu, Y.L. Yu, M. Ahmad, D. Nan, J. Zhu, Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta 118, 1–9 (2014). doi:10.1016/j.electacta.2013.11.181
- Q. Wang, J. Yan, Y. Xiao, T. Wei, Z.J. Fan, M.L. Zhang, X.Y. Jing, Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim. Acta 114, 165–172 (2013). doi:10.1016/j.electacta.2013.10.044
- X.J. Bo, M. Li, C. Han, L.P. Guo, The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts. Electrochim. Acta 114, 582–589 (2013). doi:10.1016/j.electacta.2013.10.088
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
- Y. Zhao, J. Liu, Y. Hu, H.H. Cheng, C.G. Hu, C.C. Jiang, L. Jiang, A.Y. Cao, L.T. Qu, Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 25(4), 591–595 (2013). doi:10.1002/adma.201203578
- Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011). doi:10.1002/adfm.201100058
- X.L. Li, Q. Song, L. Hao, L.J. Zhi, Graphenal polymers for energy storage. Small 10(11), 2122–2135 (2014). doi:10.1002/smll.201303717
- X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). doi:10.1007/s40820-015-0069-x
- H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). doi:10.1021/ja102267j
- R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, R.S. Tiwari, Hydrothermal synthesis of a uniformly dispersed hybrid graphene-TiO2 nanostructure for optical and enhanced electrochemical applications. RSC Adv. 5(10), 7112–7120 (2015). doi:10.1039/C4RA06852A
- R. Kumar, R.K. Singh, R. Savu, P.K. Dubey, P. Kumar, S.A. Moshkalev, Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Adv. 6(32), 26612–26620 (2016). doi:10.1039/C6RA00426A
- R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 7(27), 15042–15051 (2015). doi:10.1021/acsami.5b04336
- K. Nagaoka, K. Takanabe, K. Aika, Modification of Co/TiO2 for dry reforming of methane at 2 MPa by Pt, Ru or Ni. Appl. Catal. A 268(1–2), 151–158 (2004). doi:10.1016/j.apcata.2004.03.029
- Z.Y. Sun, C.G. Lin, J.Y. Zheng, L. Wang, J.W. Zhang, F.L. Xu, J. Hou, Fabrication and characterization of hierarchical Mg/Ni/Al layered double hydroxide framework on aluminum foam. Mater. Lett. 113, 83–86 (2013). doi:10.1016/j.matlet.2013.09.063
- Y.P. Wan, W.R. Zhao, Y. Tang, L. Li, H.J. Wang, Y.L. Cui, J.L. Gu, Y.S. Li, J.L. Shi, Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl. Catal. B 148, 114–122 (2014). doi:10.1016/j.apcatb.2013.10.049
- X.M. Li, J.T. Zai, Y.Y. Liu, X.B. He, S.J. Xiang, Z.F. Ma, X.F. Qian, Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. J. Power Sources 325, 675–681 (2016). doi:10.1016/j.jpowsour.2016.06.090
- V. Gupta, S. Gupta, N. Miura, Al-substituted alpha-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. J. Power Sources 177(2), 685–689 (2008). doi:10.1016/j.jpowsour.2007.10.091
- Y. Wang, W.S. Yang, C. Chen, D.G. Evans, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J. Power Sources 184(2), 682–690 (2008). doi:10.1016/j.jpowsour.2008.02.017
- P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933–7947 (2012). doi:10.1039/c2ra20839c
- L. Yu, N.N. Shi, Q. Liu, J. Wang, B. Yang, B. Wang, H.J. Yan, Y.B. Sun, X.Y. Jing, Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes. Phys. Chem. Chem. Phys. 16(33), 17936–17942 (2014). doi:10.1039/C4CP02020K
- L.J. Zhang, X.G. Zhang, L.F. Shen, B. Gao, L. Hao, X.J. Lu, F. Zhang, B. Ding, C.Z. Yuan, Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors. J. Power Sources 199, 395–401 (2012). doi:10.1016/j.jpowsour.2011.10.056
- X.L. Wu, L.L. Jiang, C.L. Long, T. Wei, Z.J. Fan, Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv. Funct. Mater. 25(11), 1648–1655 (2015). doi:10.1002/adfm.201404142
- X.X. Liu, A. Zhou, T. Pan, Y.B. Dou, M.F. Shao, J.B. Han, M. Wei, Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. J. Mater. Chem. A 4(21), 8421–8427 (2016). doi:10.1039/C6TA02164F
- J.W. Zhao, Z.Z. Lu, M.F. Shao, D.P. Yan, M. Wei, D.G. Evans, X. Duan, Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Adv. 3(4), 1045–1049 (2013). doi:10.1039/C2RA22566B
- H. Chen, L.F. Hu, M. Chen, Y. Yan, L.M. Wu, Nickel- cobalt layered double hydroxide nanosheets for high- performance supercapacitor electrode materials. Adv. Funct. Mater. 24(7), 934–942 (2014). doi:10.1002/adfm.201301747
- J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057
- J. Hu, M. Chen, X.S. Fang, L.M. Wu, Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 40(11), 5472–5491 (2011). doi:10.1039/c1cs15103g
- Y. Zhao, L.F. Hu, S.Y. Zhao, L.M. Wu, Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 26(23), 4085–4093 (2016). doi:10.1002/adfm.201600494
- S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao, X. Qian, 3D hierarchical FeSe2 microspheres: controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 15, 205–215 (2015). doi:10.1016/j.nanoen.2015.04.027
- W. Chen, M. Wang, T. Qian, H. Cao, S. Huang, Q. He, N. Liang, C. Wang, J. Zai, Rational design and fabrication of skeletal Cu7S4 nanocages for efficient counter electrode in quantum dot-sensitized solar cells. Nano Energy 12, 186–196 (2015). doi:10.1016/j.nanoen.2014.12.026
- L. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). doi:10.1016/j.nantod.2010.08.006
- N.P. Herring, K. AbouZeid, M.B. Mohamed, J. Pinsk, M.S. El-Shall, Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir 27(24), 15146–15154 (2011). doi:10.1021/la201698k
- Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26(1), 72–83 (2014). doi:10.1021/cm4022479
- B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893–3946 (2004). doi:10.1021/cr030027b
- B. Nagendra, K. Mohan, E.B. Gowd, Polypropylene/layered double hydroxide (LDH) nanocomposites: influence of LDH particle size on the crystallization behavior of polypropylene. ACS Appl. Mater. Interfaces 7(23), 12399–12410 (2015). doi:10.1021/am5075826
- J. Xiao, X.J. Wang, X.Q. Yang, S.D. Xun, G. Liu, P.K. Koech, J. Liu, J.P. Lemmon, Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 21(15), 2840–2846 (2011). doi:10.1002/adfm.201002752
- Z.Y. Lu, W. Zhu, X.D. Lei, G.R. Williams, D. O’Hare, Z. Chang, X.M. Sun, X. Duan, High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4(12), 3640–3643 (2012). doi:10.1039/c2nr30617d
- C.C. Wang, H.C. Chen, S.Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chem-Eur. J. 20(2), 517–523 (2014). doi:10.1002/chem.201303483
- A.L. Zhang, C. Wang, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, A hybrid aerogel of Co-Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Adv. 5(33), 26017–26026 (2015). doi:10.1039/C5RA00103J
- J.W. Zhao, J. Chen, S.M. Xu, M.F. Shao, Q. Zhang et al., Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 24(20), 2938–2946 (2014). doi:10.1002/adfm.201303638
- Z.P. Liu, R.Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128(14), 4872–4880 (2006). doi:10.1021/ja0584471
- H.D. Peng, Y. Han, T.X. Liu, W.C. Tjiu, C.B. He, Morphology and thermal degradation behavior of highly exfoliated Co-Al-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim. Acta 502(1–2), 1–7 (2010). doi:10.1016/j.tca.2010.01.009
- S. Thimmaiah, M. Rajamathi, N. Singh, P. Bera, F. Meldrum, N. Chandrasekhar, R. Seshadri, A solvothermal route to capped nanoparticles of gamma-Fe2O3 and CoFe2O4. J. Mater. Chem. 11(12), 3215–3221 (2001). doi:10.1039/b104070g
- Y.F. Gao, A. Nagai, Y. Masuda, F. Sato, W.S. Seo, K. Koumoto, Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution. Langmuir 22(8), 3521–3527 (2006). doi:10.1021/la052424i
- J.H. Fang, M. Li, Q.Q. Li, W.F. Zhang, Q.L. Shou, F. Liu, X.B. Zhang, J.P. Cheng, Microwave-assisted synthesis of Co-Al-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta 85, 248–255 (2012). doi:10.1016/j.electacta.2012.08.078
- L. Wang, D. Wang, X.Y. Dong, Z.J. Zhang, X.F. Pei, X.J. Chen, B.A. Chen, J.A. Jin, Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun. 47(12), 3556–3558 (2011). doi:10.1039/c0cc05420h
- J.H. Hao, W.S. Yang, Z. Zhang, B.P. Lu, X. Ke, B.L. Zhang, J.L. Tang, Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. J. Colloid Interface Sci. 426, 131–136 (2014). doi:10.1016/j.jcis.2014.04.003
References
S. Tsujimura, E. Suraniti, F. Durand, N. Mano, Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes. Electrochim. Acta 117, 263–267 (2014). doi:10.1016/j.electacta.2013.11.131
C.H. Tang, X.S. Yin, H. Gong, A study on dramatically enhanced capacitance of graphene-decorated hierarchically porous nickelian heterogenite for energy storage application. Electrochim. Acta 114, 543–550 (2013). doi:10.1016/j.electacta.2013.10.065
H.Y. Sun, Y.G. Liu, Y.L. Yu, M. Ahmad, D. Nan, J. Zhu, Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta 118, 1–9 (2014). doi:10.1016/j.electacta.2013.11.181
Q. Wang, J. Yan, Y. Xiao, T. Wei, Z.J. Fan, M.L. Zhang, X.Y. Jing, Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim. Acta 114, 165–172 (2013). doi:10.1016/j.electacta.2013.10.044
X.J. Bo, M. Li, C. Han, L.P. Guo, The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts. Electrochim. Acta 114, 582–589 (2013). doi:10.1016/j.electacta.2013.10.088
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
Y. Zhao, J. Liu, Y. Hu, H.H. Cheng, C.G. Hu, C.C. Jiang, L. Jiang, A.Y. Cao, L.T. Qu, Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 25(4), 591–595 (2013). doi:10.1002/adma.201203578
Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011). doi:10.1002/adfm.201100058
X.L. Li, Q. Song, L. Hao, L.J. Zhi, Graphenal polymers for energy storage. Small 10(11), 2122–2135 (2014). doi:10.1002/smll.201303717
X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). doi:10.1007/s40820-015-0069-x
H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). doi:10.1021/ja102267j
R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, R.S. Tiwari, Hydrothermal synthesis of a uniformly dispersed hybrid graphene-TiO2 nanostructure for optical and enhanced electrochemical applications. RSC Adv. 5(10), 7112–7120 (2015). doi:10.1039/C4RA06852A
R. Kumar, R.K. Singh, R. Savu, P.K. Dubey, P. Kumar, S.A. Moshkalev, Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Adv. 6(32), 26612–26620 (2016). doi:10.1039/C6RA00426A
R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 7(27), 15042–15051 (2015). doi:10.1021/acsami.5b04336
K. Nagaoka, K. Takanabe, K. Aika, Modification of Co/TiO2 for dry reforming of methane at 2 MPa by Pt, Ru or Ni. Appl. Catal. A 268(1–2), 151–158 (2004). doi:10.1016/j.apcata.2004.03.029
Z.Y. Sun, C.G. Lin, J.Y. Zheng, L. Wang, J.W. Zhang, F.L. Xu, J. Hou, Fabrication and characterization of hierarchical Mg/Ni/Al layered double hydroxide framework on aluminum foam. Mater. Lett. 113, 83–86 (2013). doi:10.1016/j.matlet.2013.09.063
Y.P. Wan, W.R. Zhao, Y. Tang, L. Li, H.J. Wang, Y.L. Cui, J.L. Gu, Y.S. Li, J.L. Shi, Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl. Catal. B 148, 114–122 (2014). doi:10.1016/j.apcatb.2013.10.049
X.M. Li, J.T. Zai, Y.Y. Liu, X.B. He, S.J. Xiang, Z.F. Ma, X.F. Qian, Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. J. Power Sources 325, 675–681 (2016). doi:10.1016/j.jpowsour.2016.06.090
V. Gupta, S. Gupta, N. Miura, Al-substituted alpha-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. J. Power Sources 177(2), 685–689 (2008). doi:10.1016/j.jpowsour.2007.10.091
Y. Wang, W.S. Yang, C. Chen, D.G. Evans, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J. Power Sources 184(2), 682–690 (2008). doi:10.1016/j.jpowsour.2008.02.017
P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933–7947 (2012). doi:10.1039/c2ra20839c
L. Yu, N.N. Shi, Q. Liu, J. Wang, B. Yang, B. Wang, H.J. Yan, Y.B. Sun, X.Y. Jing, Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes. Phys. Chem. Chem. Phys. 16(33), 17936–17942 (2014). doi:10.1039/C4CP02020K
L.J. Zhang, X.G. Zhang, L.F. Shen, B. Gao, L. Hao, X.J. Lu, F. Zhang, B. Ding, C.Z. Yuan, Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors. J. Power Sources 199, 395–401 (2012). doi:10.1016/j.jpowsour.2011.10.056
X.L. Wu, L.L. Jiang, C.L. Long, T. Wei, Z.J. Fan, Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv. Funct. Mater. 25(11), 1648–1655 (2015). doi:10.1002/adfm.201404142
X.X. Liu, A. Zhou, T. Pan, Y.B. Dou, M.F. Shao, J.B. Han, M. Wei, Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. J. Mater. Chem. A 4(21), 8421–8427 (2016). doi:10.1039/C6TA02164F
J.W. Zhao, Z.Z. Lu, M.F. Shao, D.P. Yan, M. Wei, D.G. Evans, X. Duan, Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Adv. 3(4), 1045–1049 (2013). doi:10.1039/C2RA22566B
H. Chen, L.F. Hu, M. Chen, Y. Yan, L.M. Wu, Nickel- cobalt layered double hydroxide nanosheets for high- performance supercapacitor electrode materials. Adv. Funct. Mater. 24(7), 934–942 (2014). doi:10.1002/adfm.201301747
J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057
J. Hu, M. Chen, X.S. Fang, L.M. Wu, Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 40(11), 5472–5491 (2011). doi:10.1039/c1cs15103g
Y. Zhao, L.F. Hu, S.Y. Zhao, L.M. Wu, Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 26(23), 4085–4093 (2016). doi:10.1002/adfm.201600494
S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao, X. Qian, 3D hierarchical FeSe2 microspheres: controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 15, 205–215 (2015). doi:10.1016/j.nanoen.2015.04.027
W. Chen, M. Wang, T. Qian, H. Cao, S. Huang, Q. He, N. Liang, C. Wang, J. Zai, Rational design and fabrication of skeletal Cu7S4 nanocages for efficient counter electrode in quantum dot-sensitized solar cells. Nano Energy 12, 186–196 (2015). doi:10.1016/j.nanoen.2014.12.026
L. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). doi:10.1016/j.nantod.2010.08.006
N.P. Herring, K. AbouZeid, M.B. Mohamed, J. Pinsk, M.S. El-Shall, Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir 27(24), 15146–15154 (2011). doi:10.1021/la201698k
Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26(1), 72–83 (2014). doi:10.1021/cm4022479
B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104(9), 3893–3946 (2004). doi:10.1021/cr030027b
B. Nagendra, K. Mohan, E.B. Gowd, Polypropylene/layered double hydroxide (LDH) nanocomposites: influence of LDH particle size on the crystallization behavior of polypropylene. ACS Appl. Mater. Interfaces 7(23), 12399–12410 (2015). doi:10.1021/am5075826
J. Xiao, X.J. Wang, X.Q. Yang, S.D. Xun, G. Liu, P.K. Koech, J. Liu, J.P. Lemmon, Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 21(15), 2840–2846 (2011). doi:10.1002/adfm.201002752
Z.Y. Lu, W. Zhu, X.D. Lei, G.R. Williams, D. O’Hare, Z. Chang, X.M. Sun, X. Duan, High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4(12), 3640–3643 (2012). doi:10.1039/c2nr30617d
C.C. Wang, H.C. Chen, S.Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chem-Eur. J. 20(2), 517–523 (2014). doi:10.1002/chem.201303483
A.L. Zhang, C. Wang, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, A hybrid aerogel of Co-Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Adv. 5(33), 26017–26026 (2015). doi:10.1039/C5RA00103J
J.W. Zhao, J. Chen, S.M. Xu, M.F. Shao, Q. Zhang et al., Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 24(20), 2938–2946 (2014). doi:10.1002/adfm.201303638
Z.P. Liu, R.Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128(14), 4872–4880 (2006). doi:10.1021/ja0584471
H.D. Peng, Y. Han, T.X. Liu, W.C. Tjiu, C.B. He, Morphology and thermal degradation behavior of highly exfoliated Co-Al-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim. Acta 502(1–2), 1–7 (2010). doi:10.1016/j.tca.2010.01.009
S. Thimmaiah, M. Rajamathi, N. Singh, P. Bera, F. Meldrum, N. Chandrasekhar, R. Seshadri, A solvothermal route to capped nanoparticles of gamma-Fe2O3 and CoFe2O4. J. Mater. Chem. 11(12), 3215–3221 (2001). doi:10.1039/b104070g
Y.F. Gao, A. Nagai, Y. Masuda, F. Sato, W.S. Seo, K. Koumoto, Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution. Langmuir 22(8), 3521–3527 (2006). doi:10.1021/la052424i
J.H. Fang, M. Li, Q.Q. Li, W.F. Zhang, Q.L. Shou, F. Liu, X.B. Zhang, J.P. Cheng, Microwave-assisted synthesis of Co-Al-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta 85, 248–255 (2012). doi:10.1016/j.electacta.2012.08.078
L. Wang, D. Wang, X.Y. Dong, Z.J. Zhang, X.F. Pei, X.J. Chen, B.A. Chen, J.A. Jin, Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun. 47(12), 3556–3558 (2011). doi:10.1039/c0cc05420h
J.H. Hao, W.S. Yang, Z. Zhang, B.P. Lu, X. Ke, B.L. Zhang, J.L. Tang, Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. J. Colloid Interface Sci. 426, 131–136 (2014). doi:10.1016/j.jcis.2014.04.003