CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries
Corresponding Author: Xuefeng Qian
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 307-315
Abstract
CoFe2O4-graphene nanosheets (CoFe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 mAh g−1 even after 200 cycles at 0.1 A g−1. Furthermore, the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 mAh g−1 at 1, 2, 5, and 10 A g−1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of CoFe2O4 and GNSs during discharge–charge processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, T. Zhao, X. Zhan, D. Gao, Q. Xiao, G. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 55(15), 4594–4598 (2010). doi:10.1016/j.electacta.2010.03.015
- Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W. David Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Enviro. Sci. 5(1), 5252–5256 (2012). doi:10.1039/c1ee02831f
- J. Zai, C. Yu, Q. Zou, L. Tao, K. Wang, Q. Han, B. Li, Y. Xiao, X. Qian, R. Qi, Magnetite modified graphene nanosheets with improved rate performance and cyclic stability for Li ion battery anodes. RSC Adv. 2(10), 4397–4403 (2012). doi:10.1039/c2ra20319g
- R. Yi, F. Dai, M.L. Gordin, S. Chen, D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3(3), 295–300 (2013). doi:10.1002/aenm.201200857
- J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, J. Chen, 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm. 14(4), 1364–1375 (2012). doi:10.1039/c1ce05950e
- M.F. Hassan, Z. Guo, Z. Chen, H. Liu, α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Mater. Res. Bull. 46(6), 858–864 (2011). doi:10.1016/j.materresbull.2011.02.011
- Y. Huang, X.-L. Huang, J.-S. Lian, D. Xu, L.-M. Wang, X.-B. Zhang, Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 22(7), 2844–2847 (2012). doi:10.1039/c2jm15865e
- Y. Zhao, J. Li, Y. Ding, L. Guan, Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 47(26), 7416–7418 (2011). doi:10.1039/c1cc12171e
- Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 56(18), 6448–6452 (2011). doi:10.1016/j.electacta.2011.04.133
- J.-G. Kang, Y.-D. Ko, J.-G. Park, D.-W. Kim, Origin of capacity fading in nano-sized Co3O4 electrodes: electrochemical impedance spectroscopy study. Nanoscale Res. Lett. 3(10), 390–394 (2008). doi:10.1007/s11671-008-9176-7
- G. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. Liu, S. Dou, Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 109(1), 142–147 (2002). doi:10.1016/S0378-7753(02)00052-6
- L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun, Z. Zhou, Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J. Phys. Chem. C 114(1), 251–255 (2009). doi:10.1021/jp909014w
- I. Issac, M. Scheuermann, S.M. Becker, E.G. Bardají, C. Adelhelm, D. Wang, C. Kübel, S. Indris, Nanocrystalline Ti2/3Sn1/3O2 as anode material for Li-ion batteries. J. Power Sources 196(22), 9689–9695 (2011). doi:10.1016/j.jpowsour.2011.07.046
- W. Li, G. Zhang, J. Li, Y. Lai, NiFe2O4-based cermet inert anodes for aluminum electrolysis. JOM 61(5), 39–43 (2009). doi:10.1007/s11837-009-0068-9
- L. Tao, J. Zai, K. Wang, H. Zhang, M. Xu, J. Shen, Y. Su, X. Qian, Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Sources 202(15), 230–235 (2012). doi:10.1016/j.jpowsour.2011.10.131
- Y. Ding, Y. Yang, H. Shao, Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics 217(8), 27–33 (2012). doi:10.1016/j.ssi.2012.04.021
- Z. Yuan, F. Huang, J. Sun, Y. Zhou, An amorphous nanosized tin-zinc composite oxide as a high capacity anode material for lithium ion batteries. Chem. Lett. 31(3), 408–409 (2002). doi:10.1246/cl.2002.408
- Y. Zhao, J. Li, Y. Ding, L. Guan, Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+. J. Mater. Chem. 21(47), 19101–19105 (2011). doi:10.1039/c1jm13263f
- D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, G.L. Graff, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3), 1587–1595 (2010). doi:10.1021/nn901819n
- J. Zhu, Y.K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H.H. Hng, Q. Yan, Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 115(16), 8400–8406 (2011). doi:10.1021/jp2002113
- G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
- Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Eng. B 141(1–2), 82–86 (2007). doi:10.1016/j.mseb.2007.06.003
- P. Lavela, J. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007). doi:10.1016/j.jpowsour.2007.07.055
- H. Xia, D. Zhu, Y. Fu, X. Wang, CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim. Acta 83, 166–174 (2012). doi:10.1016/j.electacta.2012.08.027
- S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. J. Mater. Chem. 22(37), 19738–19743 (2012). doi:10.1039/c2jm34019d
- W.T.L. Lim, Z. Zhong, A. Borgna, An effective sonication-assisted reduction approach to synthesize highly dispersed Co nanoparticles on SiO2. Chem. Phys. Lett. 471(1–3), 122–127 (2009). doi:10.1016/j.cplett.2009.02.041
- R. Yi, F. Dai, M.L. Gordin, H. Sohn, D. Wang, Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes. Adv. Energy Mater. 3(11), 1507–1515 (2013). doi:10.1002/aenm.201300496
- L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.1002/adfm.200900377
- H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21(14), 5430–5434 (2011). doi:10.1039/c1jm00049g
- J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089 (2011). doi:10.1039/c0nr00744g
- J. Liu, Z. Lin, T. Liu, Z. Yin, X. Zhou, S. Chen, L. Xie, F. Boey, H. Zhang, W. Huang, Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small 6(14), 1536–1542 (2010). doi:10.1002/smll.201000328
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- C.-M. Chen, J.-Q. Huang, Q. Zhang, W.-Z. Gong, Q.-H. Yang, M.-Z. Wang, Y.-G. Yang, Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2), 659–667 (2012). doi:10.1016/j.carbon.2011.09.022
- S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2(7), 2643–2662 (2012). doi:10.1039/c2ra00663d
- W. Chiu, S. Radiman, R. Abd-Shukor, M. Abdullah, P. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloy. Compd. 459(1–2), 291–297 (2008). doi:10.1016/j.jallcom.2007.04.215
- J.M. Kim, W.G. Hong, S.M. Lee, S.J. Chang, Y. Jun, B.H. Kim, H.J. Kim, Energy storage of thermally reduced graphene oxide. Int. J. Hydrog. Energy 39(8), 3799–3804 (2014). doi:10.1016/j.ijhydene.2013.12.144
- J.B. Silva, W.D. Brito, N.D. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders. Mater. Sci. Eng. B 112(2–3), 182–187 (2004). doi:10.1016/j.mseb.2004.05.029
- L. Ji, Z. Tan, T.R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 13(15), 7170–7177 (2011). doi:10.1039/c1cp20455f
- Y. Mai, D. Zhang, Y. Qiao, C. Gu, X. Wang, J. Tu, MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources 216, 201–207 (2012). doi:10.1016/j.jpowsour.2012.05.084
- K. Shu, C. Wang, M. Wang, C. Zhao, G.G. Wallace, Graphene cryogel papers with enhanced mechanical strength for high performance lithium battery anodes. J. Mater. Chem. A 2(5), 1325–1331 (2014). doi:10.1039/c3ta13660d
- S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, X. Chen, Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5(5), 3831–3838 (2011). doi:10.1021/nn2001728
- F.-W. Yuan, H.-J. Yang, H.-Y. Tuan, Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. ACS Nano 6(11), 9932–9942 (2012). doi:10.1021/nn303519g
- H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, D. Li, Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun. 9(10), 2606–2610 (2007). doi:10.1016/j.elecom.2007.08.007
- Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x
- J.S. Chen, X.W. Lou, Anatase TiO2 nanosheet: an ideal host structure for fast and efficient lithium insertion/extraction. Electrochem. Commun. 11(12), 2332–2335 (2009). doi:10.1016/j.elecom.2009.10.024
- S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). doi:10.1149/1.1467947
- T. Wei, F. Wang, J. Yan, J. Cheng, Z. Fan, H. Song, Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. J. Electroanal. Chem. 653(1–2), 45–49 (2011). doi:10.1016/j.jelechem.2011.01.010
- H. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21(9), 3046–3052 (2011). doi:10.1039/c0jm03132a
- S. Yang, H. Song, X. Chen, Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem. Commun. 8(1), 137–142 (2006). doi:10.1016/j.elecom.2005.10.035
- Y. Xiao, J. Zai, L. Tao, B. Li, Q. Han, C. Yu, X. Qian, MnFe2O4-graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 15(11), 3939–3945 (2013). doi:10.1039/c3cp50220a
- J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057
References
Z. Li, T. Zhao, X. Zhan, D. Gao, Q. Xiao, G. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 55(15), 4594–4598 (2010). doi:10.1016/j.electacta.2010.03.015
Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W. David Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Enviro. Sci. 5(1), 5252–5256 (2012). doi:10.1039/c1ee02831f
J. Zai, C. Yu, Q. Zou, L. Tao, K. Wang, Q. Han, B. Li, Y. Xiao, X. Qian, R. Qi, Magnetite modified graphene nanosheets with improved rate performance and cyclic stability for Li ion battery anodes. RSC Adv. 2(10), 4397–4403 (2012). doi:10.1039/c2ra20319g
R. Yi, F. Dai, M.L. Gordin, S. Chen, D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3(3), 295–300 (2013). doi:10.1002/aenm.201200857
J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, J. Chen, 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm. 14(4), 1364–1375 (2012). doi:10.1039/c1ce05950e
M.F. Hassan, Z. Guo, Z. Chen, H. Liu, α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Mater. Res. Bull. 46(6), 858–864 (2011). doi:10.1016/j.materresbull.2011.02.011
Y. Huang, X.-L. Huang, J.-S. Lian, D. Xu, L.-M. Wang, X.-B. Zhang, Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 22(7), 2844–2847 (2012). doi:10.1039/c2jm15865e
Y. Zhao, J. Li, Y. Ding, L. Guan, Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 47(26), 7416–7418 (2011). doi:10.1039/c1cc12171e
Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 56(18), 6448–6452 (2011). doi:10.1016/j.electacta.2011.04.133
J.-G. Kang, Y.-D. Ko, J.-G. Park, D.-W. Kim, Origin of capacity fading in nano-sized Co3O4 electrodes: electrochemical impedance spectroscopy study. Nanoscale Res. Lett. 3(10), 390–394 (2008). doi:10.1007/s11671-008-9176-7
G. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. Liu, S. Dou, Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 109(1), 142–147 (2002). doi:10.1016/S0378-7753(02)00052-6
L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun, Z. Zhou, Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J. Phys. Chem. C 114(1), 251–255 (2009). doi:10.1021/jp909014w
I. Issac, M. Scheuermann, S.M. Becker, E.G. Bardají, C. Adelhelm, D. Wang, C. Kübel, S. Indris, Nanocrystalline Ti2/3Sn1/3O2 as anode material for Li-ion batteries. J. Power Sources 196(22), 9689–9695 (2011). doi:10.1016/j.jpowsour.2011.07.046
W. Li, G. Zhang, J. Li, Y. Lai, NiFe2O4-based cermet inert anodes for aluminum electrolysis. JOM 61(5), 39–43 (2009). doi:10.1007/s11837-009-0068-9
L. Tao, J. Zai, K. Wang, H. Zhang, M. Xu, J. Shen, Y. Su, X. Qian, Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Sources 202(15), 230–235 (2012). doi:10.1016/j.jpowsour.2011.10.131
Y. Ding, Y. Yang, H. Shao, Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics 217(8), 27–33 (2012). doi:10.1016/j.ssi.2012.04.021
Z. Yuan, F. Huang, J. Sun, Y. Zhou, An amorphous nanosized tin-zinc composite oxide as a high capacity anode material for lithium ion batteries. Chem. Lett. 31(3), 408–409 (2002). doi:10.1246/cl.2002.408
Y. Zhao, J. Li, Y. Ding, L. Guan, Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+. J. Mater. Chem. 21(47), 19101–19105 (2011). doi:10.1039/c1jm13263f
D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, G.L. Graff, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3), 1587–1595 (2010). doi:10.1021/nn901819n
J. Zhu, Y.K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H.H. Hng, Q. Yan, Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 115(16), 8400–8406 (2011). doi:10.1021/jp2002113
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Eng. B 141(1–2), 82–86 (2007). doi:10.1016/j.mseb.2007.06.003
P. Lavela, J. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007). doi:10.1016/j.jpowsour.2007.07.055
H. Xia, D. Zhu, Y. Fu, X. Wang, CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim. Acta 83, 166–174 (2012). doi:10.1016/j.electacta.2012.08.027
S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. J. Mater. Chem. 22(37), 19738–19743 (2012). doi:10.1039/c2jm34019d
W.T.L. Lim, Z. Zhong, A. Borgna, An effective sonication-assisted reduction approach to synthesize highly dispersed Co nanoparticles on SiO2. Chem. Phys. Lett. 471(1–3), 122–127 (2009). doi:10.1016/j.cplett.2009.02.041
R. Yi, F. Dai, M.L. Gordin, H. Sohn, D. Wang, Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes. Adv. Energy Mater. 3(11), 1507–1515 (2013). doi:10.1002/aenm.201300496
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.1002/adfm.200900377
H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21(14), 5430–5434 (2011). doi:10.1039/c1jm00049g
J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089 (2011). doi:10.1039/c0nr00744g
J. Liu, Z. Lin, T. Liu, Z. Yin, X. Zhou, S. Chen, L. Xie, F. Boey, H. Zhang, W. Huang, Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small 6(14), 1536–1542 (2010). doi:10.1002/smll.201000328
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
C.-M. Chen, J.-Q. Huang, Q. Zhang, W.-Z. Gong, Q.-H. Yang, M.-Z. Wang, Y.-G. Yang, Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2), 659–667 (2012). doi:10.1016/j.carbon.2011.09.022
S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2(7), 2643–2662 (2012). doi:10.1039/c2ra00663d
W. Chiu, S. Radiman, R. Abd-Shukor, M. Abdullah, P. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloy. Compd. 459(1–2), 291–297 (2008). doi:10.1016/j.jallcom.2007.04.215
J.M. Kim, W.G. Hong, S.M. Lee, S.J. Chang, Y. Jun, B.H. Kim, H.J. Kim, Energy storage of thermally reduced graphene oxide. Int. J. Hydrog. Energy 39(8), 3799–3804 (2014). doi:10.1016/j.ijhydene.2013.12.144
J.B. Silva, W.D. Brito, N.D. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders. Mater. Sci. Eng. B 112(2–3), 182–187 (2004). doi:10.1016/j.mseb.2004.05.029
L. Ji, Z. Tan, T.R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 13(15), 7170–7177 (2011). doi:10.1039/c1cp20455f
Y. Mai, D. Zhang, Y. Qiao, C. Gu, X. Wang, J. Tu, MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources 216, 201–207 (2012). doi:10.1016/j.jpowsour.2012.05.084
K. Shu, C. Wang, M. Wang, C. Zhao, G.G. Wallace, Graphene cryogel papers with enhanced mechanical strength for high performance lithium battery anodes. J. Mater. Chem. A 2(5), 1325–1331 (2014). doi:10.1039/c3ta13660d
S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, X. Chen, Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5(5), 3831–3838 (2011). doi:10.1021/nn2001728
F.-W. Yuan, H.-J. Yang, H.-Y. Tuan, Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. ACS Nano 6(11), 9932–9942 (2012). doi:10.1021/nn303519g
H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, D. Li, Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun. 9(10), 2606–2610 (2007). doi:10.1016/j.elecom.2007.08.007
Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x
J.S. Chen, X.W. Lou, Anatase TiO2 nanosheet: an ideal host structure for fast and efficient lithium insertion/extraction. Electrochem. Commun. 11(12), 2332–2335 (2009). doi:10.1016/j.elecom.2009.10.024
S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). doi:10.1149/1.1467947
T. Wei, F. Wang, J. Yan, J. Cheng, Z. Fan, H. Song, Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. J. Electroanal. Chem. 653(1–2), 45–49 (2011). doi:10.1016/j.jelechem.2011.01.010
H. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21(9), 3046–3052 (2011). doi:10.1039/c0jm03132a
S. Yang, H. Song, X. Chen, Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem. Commun. 8(1), 137–142 (2006). doi:10.1016/j.elecom.2005.10.035
Y. Xiao, J. Zai, L. Tao, B. Li, Q. Han, C. Yu, X. Qian, MnFe2O4-graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 15(11), 3939–3945 (2013). doi:10.1039/c3cp50220a
J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). doi:10.1016/j.jpowsour.2010.12.057