Chemical Coupled PEDOT:PSS/Si Electrode: Suppressed Electrolyte Consumption Enables Long-Term Stability
Corresponding Author: Xuefeng Qian
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 54
Abstract
Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase (SEI) and consume electrolyte. In this article, γ-glycidoxypropyl trimethoxysilane (GOPS) was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial SEI, effectively suppressing the consumption of electrolyte. The optimized electrode can maintain 1000 mAh g−1 for nearly 800 cycles under limited electrolyte compared with 40 cycles of the electrodes without GOPS. Also, the optimized electrode exhibits excellent rate capability. The use of GOPS greatly improves the interface compatibility between Si and PEDOT:PSS. XPS Ar+ etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI. A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh kg−1, offering good stability.
Highlights:
1 γ-Glycidoxypropyl trimethoxysilane (GOPS) was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial solid-electrolyte interphase (SEI).
2 XPS Ar+ etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI.
3 A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh kg-1, offering good stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Sandu, B. Ernould, J. Rolland, N. Cheminet, J. Brassinne et al., Mechanochemical synthesis of PEDOT:PSS hydrogels for aqueous formulation of Li-ion battery electrodes. ACS Appl. Mater. Interfaces 9(40), 34865–34874 (2017). https://doi.org/10.1021/acsami.7b08937
- B. Gendensuren, E.-S. Oh, Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery. J. Power Sources 384, 379–386 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.009
- B. Li, S. Li, Y. Jin, J. Zai, M. Chen et al., Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J. Mater. Chem. A 6(42), 21098–21103 (2018). https://doi.org/10.1039/c8ta07576j
- B. Li, Z. Xiao, M. Chen, Z. Huang, X. Tie et al., Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. J. Mater. Chem. A 5(46), 24502–24507 (2017). https://doi.org/10.1039/c7ta07088h
- B. Li, R. Qi, J. Zai, F. Du, C. Xue et al., Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12(38), 5281–5287 (2016). https://doi.org/10.1002/smll.201601914
- B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51(35), 8762–8767 (2012). https://doi.org/10.1002/anie.201201568
- J.-H. Min, Y.-S. Bae, J.-Y. Kim, S.-S. Kim, S.-W. Song, Self-organized artificial sei for improving the cycling ability of silicon-based battery anode materials. Bull. Korean Chem. Soc. 34(4), 1296–1299 (2013). https://doi.org/10.5012/bkcs.2013.34.4.1296
- S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu et al., Surface-functionalized silicon nanoparticles as anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 10(51), 44924–44931 (2018). https://doi.org/10.1021/acsami.8b17729
- D.S. Moock, S.O. Steinmuller, I.D. Wessely, A. Llevot, B. Bitterer et al., Surface functionalization of silicon, hopg, and graphite electrodes: toward an artificial solid electrolyte interface. ACS Appl. Mater. Interfaces 10(28), 24172–24180 (2018). https://doi.org/10.1021/acsami.8b04877
- J. Li, N.J. Dudney, J. Nanda, C. Liang, Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6(13), 10083–10088 (2014). https://doi.org/10.1021/am5009419
- Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110
- X. Liu, J. Zai, A. Iqbal, M. Chen, N. Ali et al., Glycerol-crosslinked PEDOT:PSS as bifunctional binder for si anodes: improved interfacial compatibility and conductivity. J. Colloid Interface Sci. 565(1), 270–277 (2020). https://doi.org/10.1016/j.jcis.2020.01.028
- H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Comm. 4, 1943 (2013). https://doi.org/10.1038/ncomms2941
- D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu et al., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 36, 206–212 (2017). https://doi.org/10.1016/j.nanoen.2017.04.043
- J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim et al., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.049
- S.J. Park, H. Zhao, G. Ai, C. Wang, X. Song et al., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137(7), 2565–2571 (2015). https://doi.org/10.1021/ja511181p
- M. Döbbelin, R. Tena-Zaera, R. Marcilla, J. Iturri, S. Moya et al., Multiresponsive pedot-ionic liquid materials for the design of surfaces with switchable wettability. Adv. Funct. Mater. 19(20), 3326–3333 (2009). https://doi.org/10.1002/adfm.200900863
- Y.H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon et al., Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem. 21(5), 1368–1372 (2011). https://doi.org/10.1039/c0jm02679d
- M. McGraw, P. Kolla, B. Yao, R. Cook, Q. Quiao, J. Wu, A. Smirnova, One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes. Polymer 99, 488–495 (2016). https://doi.org/10.1016/j.polymer.2016.05.044
- Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5(7), 7927–7930 (2012). https://doi.org/10.1039/c2ee21437g
- L. Yue, S. Wang, X. Zhao, L. Zhang, Nano-silicon composites using poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode. J. Mater. Chem. 22(3), 1094–1099 (2012). https://doi.org/10.1039/c1jm14568a
- T.M. Higgins, S.H. Park, P.J. King, C.J. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218
- Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7(23), 1700715 (2017). https://doi.org/10.1002/aenm.201700715
- J. Zhao, H.-W. Lee, J. Sun, K. Yan, Y. Liu et al., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc. Natl. Acad. Sci. USA. 113(27), 7408–7413 (2016). https://doi.org/10.1073/pnas.1603810113
- X. Liu, A. Iqbal, N. Ali, R. Qi, X. Qian, Ion-cross-linking-promoted high-performance Si/PEDOT:PSS electrodes: the importance of cations’ ionic potential and softness parameters. ACS Appl. Mater. Interfaces 12(17), 19431–19438 (2020). https://doi.org/10.1021/acsami.0c00755
- J. Sheng, K. Fan, D. Wang, C. Han, J. Fang et al., Improvement of the siox passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl. Mater. Interfaces 6(18), 16027–16034 (2014). https://doi.org/10.1021/am503949g
- W. Lu, C. Wang, W. Yue, L. Chen, Si/ PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale 3(9), 3631–3634 (2011). https://doi.org/10.1039/c1nr10629e
- M. Pietsch, S. Jäckle, S. Christiansen, Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %. Appl. Phys. A 115(4), 1109–1113 (2014). https://doi.org/10.1007/s00339-014-8405-4
- G. Zheng, Y. Xiang, L. Xu, H. Luo, B. Wang et al., Controlling surface oxides in Si/C nanocomposite anodes for high-performance li-ion batteries. Adv. Energy Mater. 8(29), 1801718 (2018). https://doi.org/10.1002/aenm.201801718
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nano 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- Y. Xia, K. Sun, J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24(18), 2436–2440 (2012). https://doi.org/10.1002/adma.201104795
- A. Håkansson, S. Han, S. Wang, J. Lu, S. Braun et al., Effect of (3-glycidyloxypropyl)trimethoxysilane (gops) on the electrical properties of PEDOT:PSS films. J. Polym. Sci. B-Polym. Phys. 55(10), 814–820 (2017). https://doi.org/10.1002/polb.24331
- C. Liu, X. Du, S. Gao, A. Classen, A. Osvet et al., A cross-linked interconnecting layer enabling reliable and reproducible solution-processing of organic tandem solar cells. Adv. Energy Mater. 10(12), 1903800 (2020). https://doi.org/10.1002/aenm.201903800
- M. Solazzo, K. Krukiewicz, A. Zhussupbekova, K. Fleischer, M.J. Biggs et al., PEDOT:PSS interfaces stabilised using a pegylated crosslinker yield improved conductivity and biocompatibility. J. Mater. Chem. B 7(31), 4811–4820 (2019). https://doi.org/10.1039/c9tb01028a
- P. Innocenzi, C. Figus, M. Takahashi, M. Piccinini, L. Malfatti, Structural evolution during evaporation of a 3-glycidoxypropyltrimethoxysilane film studied in situ by time resolved infrared spectroscopy. J. Phys. Chem. A 115(38), 10438–10444 (2011). https://doi.org/10.1021/jp204314b
- M.U. Park, S.M. Lee, D.-W. Chung, Model system of cross-linked PEDOT: PSS adaptable to an application for an electrode with enhanced water stability. Synth. Metals 258, 116195 (2019). https://doi.org/10.1016/j.synthmet.2019.116195
- T.P. Nguyen, P. Le Rendu, P.D. Long, S.A. De Vos, Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes. Surf. Coat. Technol. 180–181, 646–649 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.110
- H. Ma, F. Cheng, J.Y. Chen, J.Z. Zhao, C.S. Li et al., Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Matre. 19(22), 4067–4070 (2007). https://doi.org/10.1002/adma.200700621
- J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin et al., Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24(37), 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269
- Z.U. Khan, J. Edberg, M.M. Hamedi, G. Roger, G. Hjalmar et al., Thermoelectric polymers and their elastic aerogels. Adv. Mater. 28(22), 4556–4562 (2016). https://doi.org/10.1002/adma.201505364
- S. Zhang, P. Kumar, A.S. Nouas, L. Fontaine, H. Tang et al., Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors. APL Mater. 3(1), 014911 (2015). https://doi.org/10.1063/1.4905154
- C. Duc, G.G. Malliaras, V. Senez, A. Vlandas, Long-term ageing of PEDOT:PSS: Wettability study. Synth. Met. 238, 14–21 (2018). https://doi.org/10.1016/j.synthmet.2018.02.003
- W. Liu, H. Li, J. Jin, Y. Wang, Z. Zhang et al., Synergy of epoxy chemical tethers and defect-free graphene in enabling stable lithium cycling of silicon nanoparticles. Angew. Chem. Int. Ed. 131, 2–13 (2019). https://doi.org/10.1002/ange.201906612
References
G. Sandu, B. Ernould, J. Rolland, N. Cheminet, J. Brassinne et al., Mechanochemical synthesis of PEDOT:PSS hydrogels for aqueous formulation of Li-ion battery electrodes. ACS Appl. Mater. Interfaces 9(40), 34865–34874 (2017). https://doi.org/10.1021/acsami.7b08937
B. Gendensuren, E.-S. Oh, Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery. J. Power Sources 384, 379–386 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.009
B. Li, S. Li, Y. Jin, J. Zai, M. Chen et al., Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J. Mater. Chem. A 6(42), 21098–21103 (2018). https://doi.org/10.1039/c8ta07576j
B. Li, Z. Xiao, M. Chen, Z. Huang, X. Tie et al., Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. J. Mater. Chem. A 5(46), 24502–24507 (2017). https://doi.org/10.1039/c7ta07088h
B. Li, R. Qi, J. Zai, F. Du, C. Xue et al., Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12(38), 5281–5287 (2016). https://doi.org/10.1002/smll.201601914
B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51(35), 8762–8767 (2012). https://doi.org/10.1002/anie.201201568
J.-H. Min, Y.-S. Bae, J.-Y. Kim, S.-S. Kim, S.-W. Song, Self-organized artificial sei for improving the cycling ability of silicon-based battery anode materials. Bull. Korean Chem. Soc. 34(4), 1296–1299 (2013). https://doi.org/10.5012/bkcs.2013.34.4.1296
S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu et al., Surface-functionalized silicon nanoparticles as anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 10(51), 44924–44931 (2018). https://doi.org/10.1021/acsami.8b17729
D.S. Moock, S.O. Steinmuller, I.D. Wessely, A. Llevot, B. Bitterer et al., Surface functionalization of silicon, hopg, and graphite electrodes: toward an artificial solid electrolyte interface. ACS Appl. Mater. Interfaces 10(28), 24172–24180 (2018). https://doi.org/10.1021/acsami.8b04877
J. Li, N.J. Dudney, J. Nanda, C. Liang, Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6(13), 10083–10088 (2014). https://doi.org/10.1021/am5009419
Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110
X. Liu, J. Zai, A. Iqbal, M. Chen, N. Ali et al., Glycerol-crosslinked PEDOT:PSS as bifunctional binder for si anodes: improved interfacial compatibility and conductivity. J. Colloid Interface Sci. 565(1), 270–277 (2020). https://doi.org/10.1016/j.jcis.2020.01.028
H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Comm. 4, 1943 (2013). https://doi.org/10.1038/ncomms2941
D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu et al., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 36, 206–212 (2017). https://doi.org/10.1016/j.nanoen.2017.04.043
J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim et al., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.049
S.J. Park, H. Zhao, G. Ai, C. Wang, X. Song et al., Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137(7), 2565–2571 (2015). https://doi.org/10.1021/ja511181p
M. Döbbelin, R. Tena-Zaera, R. Marcilla, J. Iturri, S. Moya et al., Multiresponsive pedot-ionic liquid materials for the design of surfaces with switchable wettability. Adv. Funct. Mater. 19(20), 3326–3333 (2009). https://doi.org/10.1002/adfm.200900863
Y.H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon et al., Tuning of electronic properties and rigidity in PEDOT analogs. J. Mater. Chem. 21(5), 1368–1372 (2011). https://doi.org/10.1039/c0jm02679d
M. McGraw, P. Kolla, B. Yao, R. Cook, Q. Quiao, J. Wu, A. Smirnova, One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes. Polymer 99, 488–495 (2016). https://doi.org/10.1016/j.polymer.2016.05.044
Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5(7), 7927–7930 (2012). https://doi.org/10.1039/c2ee21437g
L. Yue, S. Wang, X. Zhao, L. Zhang, Nano-silicon composites using poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode. J. Mater. Chem. 22(3), 1094–1099 (2012). https://doi.org/10.1039/c1jm14568a
T.M. Higgins, S.H. Park, P.J. King, C.J. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218
Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7(23), 1700715 (2017). https://doi.org/10.1002/aenm.201700715
J. Zhao, H.-W. Lee, J. Sun, K. Yan, Y. Liu et al., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc. Natl. Acad. Sci. USA. 113(27), 7408–7413 (2016). https://doi.org/10.1073/pnas.1603810113
X. Liu, A. Iqbal, N. Ali, R. Qi, X. Qian, Ion-cross-linking-promoted high-performance Si/PEDOT:PSS electrodes: the importance of cations’ ionic potential and softness parameters. ACS Appl. Mater. Interfaces 12(17), 19431–19438 (2020). https://doi.org/10.1021/acsami.0c00755
J. Sheng, K. Fan, D. Wang, C. Han, J. Fang et al., Improvement of the siox passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl. Mater. Interfaces 6(18), 16027–16034 (2014). https://doi.org/10.1021/am503949g
W. Lu, C. Wang, W. Yue, L. Chen, Si/ PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale 3(9), 3631–3634 (2011). https://doi.org/10.1039/c1nr10629e
M. Pietsch, S. Jäckle, S. Christiansen, Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %. Appl. Phys. A 115(4), 1109–1113 (2014). https://doi.org/10.1007/s00339-014-8405-4
G. Zheng, Y. Xiang, L. Xu, H. Luo, B. Wang et al., Controlling surface oxides in Si/C nanocomposite anodes for high-performance li-ion batteries. Adv. Energy Mater. 8(29), 1801718 (2018). https://doi.org/10.1002/aenm.201801718
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nano 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
Y. Xia, K. Sun, J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24(18), 2436–2440 (2012). https://doi.org/10.1002/adma.201104795
A. Håkansson, S. Han, S. Wang, J. Lu, S. Braun et al., Effect of (3-glycidyloxypropyl)trimethoxysilane (gops) on the electrical properties of PEDOT:PSS films. J. Polym. Sci. B-Polym. Phys. 55(10), 814–820 (2017). https://doi.org/10.1002/polb.24331
C. Liu, X. Du, S. Gao, A. Classen, A. Osvet et al., A cross-linked interconnecting layer enabling reliable and reproducible solution-processing of organic tandem solar cells. Adv. Energy Mater. 10(12), 1903800 (2020). https://doi.org/10.1002/aenm.201903800
M. Solazzo, K. Krukiewicz, A. Zhussupbekova, K. Fleischer, M.J. Biggs et al., PEDOT:PSS interfaces stabilised using a pegylated crosslinker yield improved conductivity and biocompatibility. J. Mater. Chem. B 7(31), 4811–4820 (2019). https://doi.org/10.1039/c9tb01028a
P. Innocenzi, C. Figus, M. Takahashi, M. Piccinini, L. Malfatti, Structural evolution during evaporation of a 3-glycidoxypropyltrimethoxysilane film studied in situ by time resolved infrared spectroscopy. J. Phys. Chem. A 115(38), 10438–10444 (2011). https://doi.org/10.1021/jp204314b
M.U. Park, S.M. Lee, D.-W. Chung, Model system of cross-linked PEDOT: PSS adaptable to an application for an electrode with enhanced water stability. Synth. Metals 258, 116195 (2019). https://doi.org/10.1016/j.synthmet.2019.116195
T.P. Nguyen, P. Le Rendu, P.D. Long, S.A. De Vos, Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes. Surf. Coat. Technol. 180–181, 646–649 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.110
H. Ma, F. Cheng, J.Y. Chen, J.Z. Zhao, C.S. Li et al., Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Matre. 19(22), 4067–4070 (2007). https://doi.org/10.1002/adma.200700621
J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin et al., Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24(37), 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269
Z.U. Khan, J. Edberg, M.M. Hamedi, G. Roger, G. Hjalmar et al., Thermoelectric polymers and their elastic aerogels. Adv. Mater. 28(22), 4556–4562 (2016). https://doi.org/10.1002/adma.201505364
S. Zhang, P. Kumar, A.S. Nouas, L. Fontaine, H. Tang et al., Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors. APL Mater. 3(1), 014911 (2015). https://doi.org/10.1063/1.4905154
C. Duc, G.G. Malliaras, V. Senez, A. Vlandas, Long-term ageing of PEDOT:PSS: Wettability study. Synth. Met. 238, 14–21 (2018). https://doi.org/10.1016/j.synthmet.2018.02.003
W. Liu, H. Li, J. Jin, Y. Wang, Z. Zhang et al., Synergy of epoxy chemical tethers and defect-free graphene in enabling stable lithium cycling of silicon nanoparticles. Angew. Chem. Int. Ed. 131, 2–13 (2019). https://doi.org/10.1002/ange.201906612