Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties
Corresponding Author: Xuefeng Qian
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 34
Abstract
A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g−1 at a current of 1 A g−1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.
Highlights:
1 A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was synthesized via a simple grinding and mixing process followed by annealing at a high temperature. The obtained NiFe2O4/EG nanocomposite showed superior lithium storage properties, with a capacity of 601 mAh g−1 at a current density of 1 A g−1 after 800 cycles.
2 The hybridNiFe2O4/EG nanostructure could efficiently improve the electrical conductivity and maintain structure stability, and its disintegration was delayed during discharge–charge processes, which led to a good cycling performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu, L. Zhang, Y.G. Wang, Q. Li, Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 26(20), 3258–3262 (2014). doi:10.1002/adma.201305492
- G. Xu, B. Ding, J. Pan, P. Nie, L. Shen, X. Zhang, High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A 2(32), 12662–12676 (2014). doi:10.1039/C4TA02097A
- H. Liao, H. Ding, B. Li, X. Ai, C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J. Mater. Chem. A 2(23), 8854–8858 (2014). doi:10.1039/c4ta00523f
- Y. Sun, J. Zhang, T. Huang, Z. Liu, A. Yu, Fe2O3 CNTs composites as anode materials for lithium-ion batteries. Int. J. Elecrochem. Sci. 8(2), 2919–2931 (2013)
- Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 56(18), 6448–6452 (2011). doi:10.1016/j.electacta.2011.04.133
- S. Peng, L. Li, M. Srinivasan, Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries. J. Energy Chem. 23(3), 301–307 (2014). doi:10.1016/S2095-4956(14)60151-0
- L. Luo, R. Cui, H. Qiao, K. Chen, Y. Fei, D. Li, Z. Pang, K. Liu, Q. Wei, High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries. Electrochim. Acta 144, 85–91 (2014). doi:10.1016/j.electacta.2014.08.048
- J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang, G. Du, One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater. Res. Bull. 65, 204–209 (2015). doi:10.1016/j.materresbull.2015.01.057
- Y. Dong, Y. Xia, Y.S. Chui, C. Cao, J.A. Zapien, Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J. Power Sources 275, 769–776 (2015). doi:10.1016/j.jpowsour.2014.11.005
- X. Liu, N. Wu, C. Cui, P. Zhou, Y. Sun, Enhanced rate capability and cycling stability of core/shell structured CoFe2O4/onion-like C nanocapsules for lithium-ion battery anodes. J. Alloys Compd. 644, 59–65 (2015). doi:10.1016/j.jallcom.2015.04.097
- X. Zhang, Y. Xie, Y. Sun, Q. Zhang, Q. Zhu, D. Hou, J. Guo, Self-template synthesis of CoFe2O4 nanotubes for high-performance lithium storage. RSC Adv. 5(38), 29837–29841 (2015). doi:10.1039/c5ra00428d
- J. Guo, X. Zhang, Y. Sun, X. Zhang, Mesoporous CoFe2O4 octahedra with high-capacity and long-life lithium storage properties. RSC Adv. 6(1), 18–22 (2016). doi:10.1039/c5ra21311h
- S. Hu, Y. Song, S. Yuan, H. Liu, Q. Xu, Y. Wang, C.-X. Wang, Y.-Y. Xia, A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. J. Power Sour. 303, 333–339 (2016). doi:10.1016/j.jpowsour.2015.11.015
- J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Flexible foams of graphene entrapped SnO2-Co3O4 nanocubes with remarkably large and fast lithium storage. J. Mater. Chem. A 4, 16101–16107 (2016). doi:10.1039/C6TA06626G
- T. Jiang, X. Tian, H. Gu, H. Zhu, Y. Zhou, Zn2SnO4@C core–shell nanorods with enhanced anodic performance for lithium-ion batteries. J. Alloys Compd. 639, 239–243 (2015). doi:10.1016/j.jallcom.2015.03.172
- C. Yuan, L. Zhang, L. Hou, L. Zhou, G. Pang, L. Lian, Scalable room-temperature synthesis of mesoporous nanocrystalline ZnMn2O4 with enhanced lithium storage properties for lithium-ion batteries. Chem. Eur. J. 21(3), 1262–1268 (2015). doi:10.1002/chem.201404624
- D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, Rational synthesis of ZnMn2O4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries. J. Mater. Chem. A 3(21), 11430–11436 (2015). doi:10.1039/C5TA00539F
- Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23(19), 2436–2444 (2013). doi:10.1002/adfm.201202623
- H. Xia, D. Zhu, Y. Fu, X. Wang, CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochimi. Acta 3, 166–174 (2012). doi:10.1016/j.electacta.2012.08.027
- Y.S. Yang, C.Y. Wang, M.M. Chen, Z.Q. Shi, J.M. Zheng, Facile synthesis of mesophase pitch/exfoliated graphite nanoplatelets nanocomposite and its application as anode materials for lithium-ion batteries. J. Solid State Chem. 183(9), 2116–2120 (2010). doi:10.1016/j.jssc.2010.07.011
- C. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, Q. Guo, L. Liu, Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72, 38–46 (2014). doi:10.1016/j.carbon.2014.01.027
- Y.X. Wang, L. Huang, L.C. Sun, S.Y. Xie, G.L. Xu et al., Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J. Mater. Chem. 22(11), 4744–4750 (2012). doi:10.1039/c2jm15041g
- Y. Zhao, C. Ma, Y. Li, H. Chen, Z. Shao, Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95, 494–496 (2015). doi:10.1016/j.carbon.2015.08.053
- D. Zhao, L. Wang, P. Yu, L. Zhao, C. Tian, W. Zhou, L. Zhang, H. Fu, From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 8(9), 2998–3010 (2015). doi:10.1007/s12274-015-0805-z
- Y. Zhao, C. Ma, C. Ma, J. Shi, J. Shi, Facile solution-free preparation of a carbon coated Fe3O4 nanoparticles/expanded graphite composite with outstanding Li-storage performances. Mater. Lett. 177, 148–151 (2016). doi:10.1016/j.matlet.2016.04.049
- Y. Xiao, J. Zai, X. Li, Y. Gong, B. Li, Q. Han, X. Qian, Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 6, 51–58 (2014). doi:10.1016/j.nanoen.2014.03.006
- J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3(3), 1084–1089 (2011). doi:10.1039/C0NR00744G
- G. Zhou, J. Ma, L. Chen, Selective carbon coating techniques for improving electrochemical properties of NiO nanosheets. Electrochim. Acta 133, 93–99 (2014). doi:10.1016/j.electacta.2014.03.161
- Y. Zhao, Z. Feng, Z.J. Xu, Yolk-shell Fe2O3 odot C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 7(21), 9520–9525 (2015). doi:10.1039/C5NR01281C
- Z. Li, H. Wang, Z. Sun, J. Su, Z. Wang, L. Wang, Self-activated continuous pulverization film: an insight into the mechanism of the extraordinary long-life cyclability of hexagonal H4.5Mo5.25O18·(H2O)1.36 microrods. J. Mater. Chem. A 4(1), 303–313 (2016). doi:10.1039/C5TA07314F
- Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
- S. Yang, H. Song, X. Chen, Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem. Commun. 8(1), 137–142 (2006). doi:10.1016/j.elecom.2005.10.035
- Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012). doi:10.1016/j.jpowsour.2012.04.039
- B. Tian, J. Swiatowska, V. Maurice, S. Zanna, A. Seyeux, L.H. Klein, P. Marcus, Aging-induced chemical and morphological modifications of thin film iron oxide electrodes for lithium-ion batteries. Langmuir 30(12), 3538–3547 (2014). doi:10.1021/la404525v
- G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009). doi:10.1016/j.carbon.2009.03.053
- Y. Wu, Y. Wei, J. Wang, K. Jiang, S. Fan, Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett. 13(2), 818–823 (2013). doi:10.1021/nl3046409
- G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
- P. Zhu, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, Facile synthesis of NiFe2O4/reduced graphene oxide hybrid with enhanced electrochemical lithium storage performance. J. Mater. Sci. Technol. 30(11), 1078–1083 (2014). doi:10.1016/j.jmst.2014.08.009
- L. Wu, Q. Xiao, Z. Li, G. Lei, P. Zhang, L. Wang, CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance. Solid State Ionics 215, 24–28 (2012). doi:10.1016/j.ssi.2012.03.044
- L. Tao, J. Zai, K. Wang, Y. Wan, H. Zhang, C. Yu, Y. Xiao, X. Qian, 3D-hierarchical NiO-graphene nanosheet composites as anodes for lithium ion batteries with improved reversible capacity and cycle stability. RSC Adv. 2(8), 3410–3415 (2012). doi:10.1039/c2ra00963c
- S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. Tarascon, on the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). doi:10.1149/1.1467947
- P. Preetham, S. Mohapatra, S. Nair, D. Santhanagopalan, A.K. Rai, Ultrafast pyro-synthesis of NiFe2O4 nanoparticles within a full carbon network as a high-rate and cycle-stable anode material for lithium ion. RCS Adv. 6(44), 38064–38070 (2016). doi:10.1039/c6ra03670h
- J. Wang, G. Yang, L. Wang, W. Yan, Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. J. Mater. Chem. A 4(22), 8620–8629 (2016). doi:10.1039/C6TA02655A
- T. Wei, F. Wang, J. Yan, J. Cheng, Z. Fan, H. Song, Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. J. Electroanaly. Chem. 653(1–2), 45–49 (2011). doi:10.1016/j.jelechem.2011.01.010
- C.M. Chen, J.Q. Huang, Q. Zhang, W.Z. Gong, Q.H. Yang, M. Wang, Y. Yang, Annealing a graphene oxide film to produce a free standing high conductive graphene film. Cabon 50(2), 659–667 (2012). doi:10.1016/j.carbon.2011.09.022
- L. Bai, D. Zhao, T. Zhang, W. Xie, J. Zhang, A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries. Electrochim. Acta 107, 555–561 (2013). doi:10.1016/j.electacta.2013.06.032
References
D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu, L. Zhang, Y.G. Wang, Q. Li, Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 26(20), 3258–3262 (2014). doi:10.1002/adma.201305492
G. Xu, B. Ding, J. Pan, P. Nie, L. Shen, X. Zhang, High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A 2(32), 12662–12676 (2014). doi:10.1039/C4TA02097A
H. Liao, H. Ding, B. Li, X. Ai, C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J. Mater. Chem. A 2(23), 8854–8858 (2014). doi:10.1039/c4ta00523f
Y. Sun, J. Zhang, T. Huang, Z. Liu, A. Yu, Fe2O3 CNTs composites as anode materials for lithium-ion batteries. Int. J. Elecrochem. Sci. 8(2), 2919–2931 (2013)
Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 56(18), 6448–6452 (2011). doi:10.1016/j.electacta.2011.04.133
S. Peng, L. Li, M. Srinivasan, Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries. J. Energy Chem. 23(3), 301–307 (2014). doi:10.1016/S2095-4956(14)60151-0
L. Luo, R. Cui, H. Qiao, K. Chen, Y. Fei, D. Li, Z. Pang, K. Liu, Q. Wei, High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries. Electrochim. Acta 144, 85–91 (2014). doi:10.1016/j.electacta.2014.08.048
J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang, G. Du, One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater. Res. Bull. 65, 204–209 (2015). doi:10.1016/j.materresbull.2015.01.057
Y. Dong, Y. Xia, Y.S. Chui, C. Cao, J.A. Zapien, Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J. Power Sources 275, 769–776 (2015). doi:10.1016/j.jpowsour.2014.11.005
X. Liu, N. Wu, C. Cui, P. Zhou, Y. Sun, Enhanced rate capability and cycling stability of core/shell structured CoFe2O4/onion-like C nanocapsules for lithium-ion battery anodes. J. Alloys Compd. 644, 59–65 (2015). doi:10.1016/j.jallcom.2015.04.097
X. Zhang, Y. Xie, Y. Sun, Q. Zhang, Q. Zhu, D. Hou, J. Guo, Self-template synthesis of CoFe2O4 nanotubes for high-performance lithium storage. RSC Adv. 5(38), 29837–29841 (2015). doi:10.1039/c5ra00428d
J. Guo, X. Zhang, Y. Sun, X. Zhang, Mesoporous CoFe2O4 octahedra with high-capacity and long-life lithium storage properties. RSC Adv. 6(1), 18–22 (2016). doi:10.1039/c5ra21311h
S. Hu, Y. Song, S. Yuan, H. Liu, Q. Xu, Y. Wang, C.-X. Wang, Y.-Y. Xia, A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. J. Power Sour. 303, 333–339 (2016). doi:10.1016/j.jpowsour.2015.11.015
J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Flexible foams of graphene entrapped SnO2-Co3O4 nanocubes with remarkably large and fast lithium storage. J. Mater. Chem. A 4, 16101–16107 (2016). doi:10.1039/C6TA06626G
T. Jiang, X. Tian, H. Gu, H. Zhu, Y. Zhou, Zn2SnO4@C core–shell nanorods with enhanced anodic performance for lithium-ion batteries. J. Alloys Compd. 639, 239–243 (2015). doi:10.1016/j.jallcom.2015.03.172
C. Yuan, L. Zhang, L. Hou, L. Zhou, G. Pang, L. Lian, Scalable room-temperature synthesis of mesoporous nanocrystalline ZnMn2O4 with enhanced lithium storage properties for lithium-ion batteries. Chem. Eur. J. 21(3), 1262–1268 (2015). doi:10.1002/chem.201404624
D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, Rational synthesis of ZnMn2O4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries. J. Mater. Chem. A 3(21), 11430–11436 (2015). doi:10.1039/C5TA00539F
Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23(19), 2436–2444 (2013). doi:10.1002/adfm.201202623
H. Xia, D. Zhu, Y. Fu, X. Wang, CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochimi. Acta 3, 166–174 (2012). doi:10.1016/j.electacta.2012.08.027
Y.S. Yang, C.Y. Wang, M.M. Chen, Z.Q. Shi, J.M. Zheng, Facile synthesis of mesophase pitch/exfoliated graphite nanoplatelets nanocomposite and its application as anode materials for lithium-ion batteries. J. Solid State Chem. 183(9), 2116–2120 (2010). doi:10.1016/j.jssc.2010.07.011
C. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, Q. Guo, L. Liu, Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72, 38–46 (2014). doi:10.1016/j.carbon.2014.01.027
Y.X. Wang, L. Huang, L.C. Sun, S.Y. Xie, G.L. Xu et al., Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J. Mater. Chem. 22(11), 4744–4750 (2012). doi:10.1039/c2jm15041g
Y. Zhao, C. Ma, Y. Li, H. Chen, Z. Shao, Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95, 494–496 (2015). doi:10.1016/j.carbon.2015.08.053
D. Zhao, L. Wang, P. Yu, L. Zhao, C. Tian, W. Zhou, L. Zhang, H. Fu, From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 8(9), 2998–3010 (2015). doi:10.1007/s12274-015-0805-z
Y. Zhao, C. Ma, C. Ma, J. Shi, J. Shi, Facile solution-free preparation of a carbon coated Fe3O4 nanoparticles/expanded graphite composite with outstanding Li-storage performances. Mater. Lett. 177, 148–151 (2016). doi:10.1016/j.matlet.2016.04.049
Y. Xiao, J. Zai, X. Li, Y. Gong, B. Li, Q. Han, X. Qian, Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 6, 51–58 (2014). doi:10.1016/j.nanoen.2014.03.006
J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X.W. Lou, X. Chen, H. Zhang, H.H. Hng, Q. Yan, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3(3), 1084–1089 (2011). doi:10.1039/C0NR00744G
G. Zhou, J. Ma, L. Chen, Selective carbon coating techniques for improving electrochemical properties of NiO nanosheets. Electrochim. Acta 133, 93–99 (2014). doi:10.1016/j.electacta.2014.03.161
Y. Zhao, Z. Feng, Z.J. Xu, Yolk-shell Fe2O3 odot C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 7(21), 9520–9525 (2015). doi:10.1039/C5NR01281C
Z. Li, H. Wang, Z. Sun, J. Su, Z. Wang, L. Wang, Self-activated continuous pulverization film: an insight into the mechanism of the extraordinary long-life cyclability of hexagonal H4.5Mo5.25O18·(H2O)1.36 microrods. J. Mater. Chem. A 4(1), 303–313 (2016). doi:10.1039/C5TA07314F
Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, X. Qian, CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett. 6(4), 307–315 (2014). doi:10.1007/s40820-014-0003-7
S. Yang, H. Song, X. Chen, Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem. Commun. 8(1), 137–142 (2006). doi:10.1016/j.elecom.2005.10.035
Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012). doi:10.1016/j.jpowsour.2012.04.039
B. Tian, J. Swiatowska, V. Maurice, S. Zanna, A. Seyeux, L.H. Klein, P. Marcus, Aging-induced chemical and morphological modifications of thin film iron oxide electrodes for lithium-ion batteries. Langmuir 30(12), 3538–3547 (2014). doi:10.1021/la404525v
G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009). doi:10.1016/j.carbon.2009.03.053
Y. Wu, Y. Wei, J. Wang, K. Jiang, S. Fan, Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett. 13(2), 818–823 (2013). doi:10.1021/nl3046409
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). doi:10.1021/cm101532x
P. Zhu, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, Facile synthesis of NiFe2O4/reduced graphene oxide hybrid with enhanced electrochemical lithium storage performance. J. Mater. Sci. Technol. 30(11), 1078–1083 (2014). doi:10.1016/j.jmst.2014.08.009
L. Wu, Q. Xiao, Z. Li, G. Lei, P. Zhang, L. Wang, CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance. Solid State Ionics 215, 24–28 (2012). doi:10.1016/j.ssi.2012.03.044
L. Tao, J. Zai, K. Wang, Y. Wan, H. Zhang, C. Yu, Y. Xiao, X. Qian, 3D-hierarchical NiO-graphene nanosheet composites as anodes for lithium ion batteries with improved reversible capacity and cycle stability. RSC Adv. 2(8), 3410–3415 (2012). doi:10.1039/c2ra00963c
S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. Tarascon, on the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149(5), A627–A634 (2002). doi:10.1149/1.1467947
P. Preetham, S. Mohapatra, S. Nair, D. Santhanagopalan, A.K. Rai, Ultrafast pyro-synthesis of NiFe2O4 nanoparticles within a full carbon network as a high-rate and cycle-stable anode material for lithium ion. RCS Adv. 6(44), 38064–38070 (2016). doi:10.1039/c6ra03670h
J. Wang, G. Yang, L. Wang, W. Yan, Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. J. Mater. Chem. A 4(22), 8620–8629 (2016). doi:10.1039/C6TA02655A
T. Wei, F. Wang, J. Yan, J. Cheng, Z. Fan, H. Song, Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. J. Electroanaly. Chem. 653(1–2), 45–49 (2011). doi:10.1016/j.jelechem.2011.01.010
C.M. Chen, J.Q. Huang, Q. Zhang, W.Z. Gong, Q.H. Yang, M. Wang, Y. Yang, Annealing a graphene oxide film to produce a free standing high conductive graphene film. Cabon 50(2), 659–667 (2012). doi:10.1016/j.carbon.2011.09.022
L. Bai, D. Zhao, T. Zhang, W. Xie, J. Zhang, A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries. Electrochim. Acta 107, 555–561 (2013). doi:10.1016/j.electacta.2013.06.032