Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes
Corresponding Author: Hui Ying Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 60
Abstract
MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.
Highlights:
1 Divalent magnesium ions as electrolyte additives are first used to improve the performance of vanadium-based cathodes for aqueous ZIBs.
2 Pre-adding magnesium ions into electrolytes provide an appropriate equilibrium balance between the dissolution and recombination of magnesium vanadates, thus suppress the continuous dissolution of active materials, and lead to a higher stability of the electrode.
3 The hybrid aqueous electrolytes with cost-effective ZnSO4 and MgSO4 salts show a better competitive prospective for the stationary grid-scale applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xia, J. Guo, P. Li, X.X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- D. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energ. Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz, J.W. Long, D.R. Rolison, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 414–417 (2017). https://doi.org/10.1126/science.aak9991
- I.A. Rodriguez-Perez, Y.F. Yuan, C. Bommier, X.F. Wang, L. Ma et al., Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139(37), 13031–13037 (2017). https://doi.org/10.1021/jacs.7b06313
- Y.M. Zhang, Y.V. Lim, S.Z. Huang, M.E. Pam, Y. Wang, L.K. Ang, Y.M. Shi, H.Y. Yang, Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14(28), 1800898 (2018). https://doi.org/10.1002/smll.201800898
- C.J. Xu, B.H. Li, H.D. Du, F.Y. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- Y.L. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu, A. Facchetti, Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
- J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3(1), 1800272 (2019). https://doi.org/10.1002/smtd.201800272
- H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X.Q. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
- N. Zhang, F.Y. Cheng, Y.C. Liu, Q. Zhao, K.X. Lei, C.C. Chen, X.S. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 Cathode in Zn(CF3SO3)(2) electrolyte for rechargeable aqueous zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- D. Kundu, B.D. Adams, V.D. Ort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- P. Hu, T. Zhu, X.P. Wang, X.J. Wei, M.Y. Yan et al., Highly durable Na2V6O16 center dot 1.63H(2)O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
- L.T. Shan, Y.Q. Yang, W.Y. Zhang, H.J. Chen, G.Z. Fang, J. Zhou, S.Q. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
- B.Y. Tang, G.Z. Fang, J. Zhou, L.B. Wang, Y.P. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun, S.T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- F. Wan, L.L. Zhang, X. Dai, X.Y. Wang, Z.Q. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- J. Zhou, L.T. Shan, Z.X. Wu, X. Guo, G.Z. Fang, S.Q. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/C8CC02250J
- G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)(3). Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- B.K. Wu, G.B. Zhang, M.Y. Yan, T.F. Xiong, P. He, L. He, X. Xu, L.Q. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
- G.Z. Fang, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- S.H. Kim, S.M. Oh, Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72(2), 150–158 (1998). https://doi.org/10.1016/S0378-7753(97)02703-1
- MathSciNet
- H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- N. Zhang, F.Y. Cheng, J.X. Liu, L.B. Wang, X.H. Long, X.S. Liu, F.J. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- J. Livage, Vanadium pentoxide gels. Chem. Mater. 3(4), 578–593 (1991). https://doi.org/10.1021/cm00016a006
- W. Hu, X.B. Zhang, Y.L. Cheng, C.Y. Wu, F. Cao, L.M. Wang, Mild and cost-effective one-pot synthesis of pure single-crystalline beta-Ag0.33V2O5 nanowires for rechargeable li-ion batteries. Chemsuschem 4(8), 1091–1094 (2011). https://doi.org/10.1002/cssc.201100124
- M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, J.M. Tarascon, A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2(11), 755–761 (2003). https://doi.org/10.1038/nmat1002
- Y.M. Zhang, W.X. Zhang, Z.H. Yang, H.Y. Gu, Q. Zhu, S.H. Yang, M. Li, Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes. Angew. Chem. Int. Ed. 54(13), 3932–3936 (2015). https://doi.org/10.1002/anie.201410807
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y.Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- B.Z. Jiang, C.J. Xu, C.L. Wu, L.B. Dong, J. Li, F.Y. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
- M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29(4), 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
- S.Z. Huang, L.X. Liu, Y. Wang, Y. Shang, L. Zhang et al., Elucidating the reaction kinetics of lithium-sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. J. Mater. Chem. A 7(12), 6651–6658 (2019). https://doi.org/10.1039/C9TA00199A
- Y.V. Lim, S.Z. Huang, J.P. Hu, D.Z. Kong, Y. Wang, T.T. Xu, L.K. Ang, H.Y. Yang, Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and Ab initio evaluation. Small Methods 3(7), 1900112 (2019). https://doi.org/10.1002/smtd.201900112
- V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16 center dot 3H(2)O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
References
C. Xia, J. Guo, P. Li, X.X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
D. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energ. Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz, J.W. Long, D.R. Rolison, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 414–417 (2017). https://doi.org/10.1126/science.aak9991
I.A. Rodriguez-Perez, Y.F. Yuan, C. Bommier, X.F. Wang, L. Ma et al., Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139(37), 13031–13037 (2017). https://doi.org/10.1021/jacs.7b06313
Y.M. Zhang, Y.V. Lim, S.Z. Huang, M.E. Pam, Y. Wang, L.K. Ang, Y.M. Shi, H.Y. Yang, Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14(28), 1800898 (2018). https://doi.org/10.1002/smll.201800898
C.J. Xu, B.H. Li, H.D. Du, F.Y. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
Y.L. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu, A. Facchetti, Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3(1), 1800272 (2019). https://doi.org/10.1002/smtd.201800272
H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X.Q. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
N. Zhang, F.Y. Cheng, Y.C. Liu, Q. Zhao, K.X. Lei, C.C. Chen, X.S. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 Cathode in Zn(CF3SO3)(2) electrolyte for rechargeable aqueous zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
D. Kundu, B.D. Adams, V.D. Ort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
P. Hu, T. Zhu, X.P. Wang, X.J. Wei, M.Y. Yan et al., Highly durable Na2V6O16 center dot 1.63H(2)O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
L.T. Shan, Y.Q. Yang, W.Y. Zhang, H.J. Chen, G.Z. Fang, J. Zhou, S.Q. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
B.Y. Tang, G.Z. Fang, J. Zhou, L.B. Wang, Y.P. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun, S.T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
F. Wan, L.L. Zhang, X. Dai, X.Y. Wang, Z.Q. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
J. Zhou, L.T. Shan, Z.X. Wu, X. Guo, G.Z. Fang, S.Q. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/C8CC02250J
G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)(3). Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
B.K. Wu, G.B. Zhang, M.Y. Yan, T.F. Xiong, P. He, L. He, X. Xu, L.Q. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
G.Z. Fang, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
S.H. Kim, S.M. Oh, Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72(2), 150–158 (1998). https://doi.org/10.1016/S0378-7753(97)02703-1
MathSciNet
H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
N. Zhang, F.Y. Cheng, J.X. Liu, L.B. Wang, X.H. Long, X.S. Liu, F.J. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
J. Livage, Vanadium pentoxide gels. Chem. Mater. 3(4), 578–593 (1991). https://doi.org/10.1021/cm00016a006
W. Hu, X.B. Zhang, Y.L. Cheng, C.Y. Wu, F. Cao, L.M. Wang, Mild and cost-effective one-pot synthesis of pure single-crystalline beta-Ag0.33V2O5 nanowires for rechargeable li-ion batteries. Chemsuschem 4(8), 1091–1094 (2011). https://doi.org/10.1002/cssc.201100124
M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, J.M. Tarascon, A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2(11), 755–761 (2003). https://doi.org/10.1038/nmat1002
Y.M. Zhang, W.X. Zhang, Z.H. Yang, H.Y. Gu, Q. Zhu, S.H. Yang, M. Li, Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes. Angew. Chem. Int. Ed. 54(13), 3932–3936 (2015). https://doi.org/10.1002/anie.201410807
N. Zhang, Y. Dong, M. Jia, X. Bian, Y.Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
B.Z. Jiang, C.J. Xu, C.L. Wu, L.B. Dong, J. Li, F.Y. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29(4), 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
S.Z. Huang, L.X. Liu, Y. Wang, Y. Shang, L. Zhang et al., Elucidating the reaction kinetics of lithium-sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. J. Mater. Chem. A 7(12), 6651–6658 (2019). https://doi.org/10.1039/C9TA00199A
Y.V. Lim, S.Z. Huang, J.P. Hu, D.Z. Kong, Y. Wang, T.T. Xu, L.K. Ang, H.Y. Yang, Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and Ab initio evaluation. Small Methods 3(7), 1900112 (2019). https://doi.org/10.1002/smtd.201900112
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16 center dot 3H(2)O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403