Fabricating Na/In/C Composite Anode with Natrophilic Na–In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte
Corresponding Author: Chun‑Sing Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 23
Abstract
In conventional ethylene carbonate (EC)/propylene carbonate (PC) electrolyte, sodium metal reacts spontaneously and deleteriously with solvent molecules. This significantly limits the practical feasibility of high-voltage sodium metal batteries based on Na metal chemistry. Herein, we present a sodium metal alloy strategy via introducing NaIn and Na2In phases in a Na/In/C composite, aiming at boosting Na ion deposition stability in the common EC/PC electrolyte. Symmetric cells with Na/In/C electrodes achieve an impressive long-term cycling capability at 1 mA cm−2 (> 870 h) and 5 mA cm−2 (> 560 h), respectively, with a capacity of 1 mAh cm−2. In situ optical microscopy clearly unravels a stable Na ion dynamic deposition process on the Na/In/C composite electrode surface, attributing to a dendrite-free and smooth morphology. Furthermore, theoretical simulations reveal intrinsic mechanism for the reversible Na ion deposition behavior with the composite Na/In/C electrode. Upon pairing with a high-voltage NaVPOF cathode, Na/In/C anode illustrates a better suitability in SMBs. This work promises an alternative alloying strategy for enhancing Na metal interfacial stability in the common EC/PC electrolyte for their future applications.
Highlights:
1 Na/In/C composite anode tailored with natrophilic NaIn and Na2In phases was constructed via a facile molten metal immersion method.
2 Long-term Na ion plating/stripping stability in the common ethylene carbonate/propylene carbonate electrolyte was achieved with Na/In/C anode.
3 Na ion deposition reversibility of Na/In/C anode was analyzed by in situ microscope, ab initial molecular dynamics and finite element simulations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13(4), 1076–1095 (2020). https://doi.org/10.1039/C9EE03848E
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li–S batteries. Nano Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT Microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 12, 4 (2019). https://doi.org/10.1007/s40820-019-0341-6
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- Q. Xiong, G. Huang, X.B. Zhang, High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem. Int. Ed. 132(43), 19473–19481 (2020). https://doi.org/10.1002/ange.202009064
- Q. Lv, Z. Zhu, S. Zhao, L. Wang, Q. Zhao et al., Semiconducting metal–organic polymer nanosheets for a photoinvolved Li–O2 battery under visible light. J. Am. Chem. Soc. 143(4), 1941–1947 (2021). https://doi.org/10.1021/jacs.0c11400
- S.H. Wang, J. Yue, W. Dong, T.T. Zuo, J.Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- T. Li, J. Sun, S. Gao, B. Xiao, J. Cheng et al., Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 11(7), 2003699 (2021). https://doi.org/10.1002/aenm.202003699
- M. Zhu, G. Wang, X. Liu, B. Guo, G. Xu et al., Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-Rich protection layer. Angew. Chem. Int. Ed. 132(16), 6596–6600 (2020). https://doi.org/10.1002/ange.201916716
- X. Zheng, C. Bommier, W. Luo, L. Jiang, Y. Hao et al., Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater. 16, 6–23 (2019). https://doi.org/10.1016/j.ensm.2018.04.014
- M. Guo, H. Dou, W. Zhao, X. Zhao, B. Wan et al., Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy 70, 104479 (2020). https://doi.org/10.1016/j.nanoen.2020.104479
- T. Yang, B. Guo, W. Du, M.K. Aslam, M. Tao et al., Design and construction of sodium polysulfides defense system for room-temperature Na–S battery. Adv. Sci. 6(23), 1901557 (2019). https://doi.org/10.1002/advs.201901557
- H. Wang, Y. Jiang, A. Manthiram, Long cycle life, low self-discharge sodium–selenium batteries with high selenium loading and suppressed polyselenide shuttling. Adv. Energy Mater. 8(7), 1701953 (2018). https://doi.org/10.1002/aenm.201701953
- T. Wu, M. Jing, L. Yang, G. Zou, H. Hou et al., Controllable chain-length for covalent sulfur–carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 9(9), 1803478 (2019). https://doi.org/10.1002/aenm.201803478
- L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li et al., A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries. Adv. Energy Mater. 5(4), 1401377 (2015). https://doi.org/10.1002/aenm.201401377
- L. Wang, X. Chen, S. Li, J. Yang, Y. Sun et al., Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. J. Mater. Chem. A 7(20), 12732–12739 (2019). https://doi.org/10.1039/C9TA02831E
- L. Fan, R. Ma, Y. Yang, S. Chen, B. Lu, Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 28, 304–310 (2016). https://doi.org/10.1016/j.nanoen.2016.08.056
- X. Zhao, L. Yin, T. Zhang, M. Zhang, Z. Fang et al., Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries. Nano Energy 49, 137–146 (2018). https://doi.org/10.1016/j.nanoen.2018.04.045
- Z. Li, J. Zhang, Y. Lu, X.W. Lou, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Sci. Adv. 4(6), eaat1687 (2018). Doi: https://doi.org/10.1126/sciadv.aat1687
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- S.M.B. Khajehbashi, L. Xu, G. Zhang, S. Tan, Y. Zhao et al., High-performance Na–O2 batteries enabled by oriented NaO2 nanowires as discharge products. Nano Lett. 18(6), 3934–3942 (2018). https://doi.org/10.1021/acs.nanolett.8b01315
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- Y. Hu, B. Li, X. Jiao, C. Zhang, X. Dai et al., Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Funct. Mater. 28(23), 1801010 (2018). https://doi.org/10.1002/adfm.201801010
- L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D
- B. Han, Y. Zou, Z. Zhang, X. Yang, X. Shi et al., Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 12(1), 3066 (2021). https://doi.org/10.1038/s41467-021-23368-6
- Y. Xiang, G. Zheng, Z. Liang, Y. Jin, X. Liu et al., Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15(10), 883–890 (2020). https://doi.org/10.1038/s41565-020-0749-7
- Z. Li, K. Zhu, P. Liu, L. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2100359 (2021). Doi: https://doi.org/10.1002/aenm.202100359
- X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li et al., The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10(10), 1903645 (2020). https://doi.org/10.1002/aenm.201903645
- H. Wang, Z. Tong, R. Yang, Z. Huang, D. Shen et al., Electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 9(48), 1903046 (2019). https://doi.org/10.1002/aenm.201903046
- L. Zhang, X. Xia, Y. Zhong, D. Xie, S. Liu et al., Exploring self-healing liquid Na–K alloy for dendrite-free electrochemical energy storage. Adv. Mater. 30(46), 1804011 (2018). https://doi.org/10.1002/adma.201804011
- A. Wang, X. Hu, H. Tang, C. Zhang, S. Liu et al., Processable and moldable sodium-metal anodes. Angew. Chem. Int. Ed. 56(39), 11921–11926 (2017). https://doi.org/10.1002/ange.201703937
- H. Wang, C. Wang, E. Matios, W. Li, Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. Int. Ed. 130(26), 1–5 (2018). https://doi.org/10.1002/ange.201801818
- L. Ye, M. Liao, T. Zhao, H. Sun, Y. Zhao et al., A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew. Chem. Int. Ed. 131(47), 17210–17216 (2019). https://doi.org/10.1002/ange.201910202
- J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard et al., Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
- Y. Zhao, L.V. Goncharova, A. Lushington, Q. Sun, H. Yadegari et al., Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 29(18), 1606663 (2017). https://doi.org/10.1002/adma.201606663
- S. Tang, Z. Qiu, X.Y. Wang, Y. Gu, X.G. Zhang et al., A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018). https://doi.org/10.1016/j.nanoen.2018.03.039
- S. Choudhury, S. Wei, Y. Ozhabes, D. Gunceler, M.J. Zachman et al., Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8(1), 898 (2017). https://doi.org/10.1038/s41467-017-00742-x
- H. Shi, M. Yue, C.J. Zhang, Y. Dong, P. Lu et al., 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14(7), 8678–8688 (2020). https://doi.org/10.1021/acsnano.0c03042
- S.S. Chi, X.G. Qi, Y.S. Hu, L.Z. Fan, 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018). https://doi.org/10.1002/aenm.201702764
- S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2020). https://doi.org/10.1002/adma.202000721
- Y. Lu, J.A. Alonso, Q. Yi, L. Lu, Z.L. Wang et al., A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv. Mater. 9(28), 1901205 (2019). https://doi.org/10.1002/aenm.201901205
- D. Lei, Y.B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10(1), 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
- J. Zhang, D.W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
- X. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang et al., Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes. Adv. Funct. Mater. 31(30), 2103522 (2021). https://doi.org/10.1002/adfm.202103522
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4(1), 15–25 (2014). https://doi.org/10.1002/wcms.1159
- G. Yoon, S. Moon, G. Ceder, K. Kang, Deposition and stripping behavior of lithium metal in electrochemical system: continuum mechanics study. Chem. Mater. 30(19), 6769–6776 (2018). https://doi.org/10.1021/acs.chemmater.8b02623
- B. Horstmann, J. Shi, R. Amine, M. Werres, X. He et al., Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ. Sci. (2021). https://doi.org/10.1039/D1EE00767J
- B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119(9), 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
- J. Liu, T. Wu, S. Zhang, D. Li, Y. Wang et al., InBr3 as a self-defensed redox mediator for Li–O2 batteries: in situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power Sources 439, 227095 (2019). https://doi.org/10.1039/D1EE00767J
References
X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao et al., Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy Environ. Sci. 13(4), 1076–1095 (2020). https://doi.org/10.1039/C9EE03848E
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li–S batteries. Nano Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT Microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 12, 4 (2019). https://doi.org/10.1007/s40820-019-0341-6
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano Micro Lett. 13, 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
Q. Xiong, G. Huang, X.B. Zhang, High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem. Int. Ed. 132(43), 19473–19481 (2020). https://doi.org/10.1002/ange.202009064
Q. Lv, Z. Zhu, S. Zhao, L. Wang, Q. Zhao et al., Semiconducting metal–organic polymer nanosheets for a photoinvolved Li–O2 battery under visible light. J. Am. Chem. Soc. 143(4), 1941–1947 (2021). https://doi.org/10.1021/jacs.0c11400
S.H. Wang, J. Yue, W. Dong, T.T. Zuo, J.Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
T. Li, J. Sun, S. Gao, B. Xiao, J. Cheng et al., Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 11(7), 2003699 (2021). https://doi.org/10.1002/aenm.202003699
M. Zhu, G. Wang, X. Liu, B. Guo, G. Xu et al., Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-Rich protection layer. Angew. Chem. Int. Ed. 132(16), 6596–6600 (2020). https://doi.org/10.1002/ange.201916716
X. Zheng, C. Bommier, W. Luo, L. Jiang, Y. Hao et al., Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater. 16, 6–23 (2019). https://doi.org/10.1016/j.ensm.2018.04.014
M. Guo, H. Dou, W. Zhao, X. Zhao, B. Wan et al., Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy 70, 104479 (2020). https://doi.org/10.1016/j.nanoen.2020.104479
T. Yang, B. Guo, W. Du, M.K. Aslam, M. Tao et al., Design and construction of sodium polysulfides defense system for room-temperature Na–S battery. Adv. Sci. 6(23), 1901557 (2019). https://doi.org/10.1002/advs.201901557
H. Wang, Y. Jiang, A. Manthiram, Long cycle life, low self-discharge sodium–selenium batteries with high selenium loading and suppressed polyselenide shuttling. Adv. Energy Mater. 8(7), 1701953 (2018). https://doi.org/10.1002/aenm.201701953
T. Wu, M. Jing, L. Yang, G. Zou, H. Hou et al., Controllable chain-length for covalent sulfur–carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 9(9), 1803478 (2019). https://doi.org/10.1002/aenm.201803478
L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li et al., A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries. Adv. Energy Mater. 5(4), 1401377 (2015). https://doi.org/10.1002/aenm.201401377
L. Wang, X. Chen, S. Li, J. Yang, Y. Sun et al., Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. J. Mater. Chem. A 7(20), 12732–12739 (2019). https://doi.org/10.1039/C9TA02831E
L. Fan, R. Ma, Y. Yang, S. Chen, B. Lu, Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 28, 304–310 (2016). https://doi.org/10.1016/j.nanoen.2016.08.056
X. Zhao, L. Yin, T. Zhang, M. Zhang, Z. Fang et al., Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries. Nano Energy 49, 137–146 (2018). https://doi.org/10.1016/j.nanoen.2018.04.045
Z. Li, J. Zhang, Y. Lu, X.W. Lou, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Sci. Adv. 4(6), eaat1687 (2018). Doi: https://doi.org/10.1126/sciadv.aat1687
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
S.M.B. Khajehbashi, L. Xu, G. Zhang, S. Tan, Y. Zhao et al., High-performance Na–O2 batteries enabled by oriented NaO2 nanowires as discharge products. Nano Lett. 18(6), 3934–3942 (2018). https://doi.org/10.1021/acs.nanolett.8b01315
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
Y. Hu, B. Li, X. Jiao, C. Zhang, X. Dai et al., Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Funct. Mater. 28(23), 1801010 (2018). https://doi.org/10.1002/adfm.201801010
L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D
B. Han, Y. Zou, Z. Zhang, X. Yang, X. Shi et al., Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nat. Commun. 12(1), 3066 (2021). https://doi.org/10.1038/s41467-021-23368-6
Y. Xiang, G. Zheng, Z. Liang, Y. Jin, X. Liu et al., Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15(10), 883–890 (2020). https://doi.org/10.1038/s41565-020-0749-7
Z. Li, K. Zhu, P. Liu, L. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2100359 (2021). Doi: https://doi.org/10.1002/aenm.202100359
X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li et al., The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10(10), 1903645 (2020). https://doi.org/10.1002/aenm.201903645
H. Wang, Z. Tong, R. Yang, Z. Huang, D. Shen et al., Electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv. Energy Mater. 9(48), 1903046 (2019). https://doi.org/10.1002/aenm.201903046
L. Zhang, X. Xia, Y. Zhong, D. Xie, S. Liu et al., Exploring self-healing liquid Na–K alloy for dendrite-free electrochemical energy storage. Adv. Mater. 30(46), 1804011 (2018). https://doi.org/10.1002/adma.201804011
A. Wang, X. Hu, H. Tang, C. Zhang, S. Liu et al., Processable and moldable sodium-metal anodes. Angew. Chem. Int. Ed. 56(39), 11921–11926 (2017). https://doi.org/10.1002/ange.201703937
H. Wang, C. Wang, E. Matios, W. Li, Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew. Chem. Int. Ed. 130(26), 1–5 (2018). https://doi.org/10.1002/ange.201801818
L. Ye, M. Liao, T. Zhao, H. Sun, Y. Zhao et al., A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew. Chem. Int. Ed. 131(47), 17210–17216 (2019). https://doi.org/10.1002/ange.201910202
J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard et al., Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
Y. Zhao, L.V. Goncharova, A. Lushington, Q. Sun, H. Yadegari et al., Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 29(18), 1606663 (2017). https://doi.org/10.1002/adma.201606663
S. Tang, Z. Qiu, X.Y. Wang, Y. Gu, X.G. Zhang et al., A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018). https://doi.org/10.1016/j.nanoen.2018.03.039
S. Choudhury, S. Wei, Y. Ozhabes, D. Gunceler, M.J. Zachman et al., Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8(1), 898 (2017). https://doi.org/10.1038/s41467-017-00742-x
H. Shi, M. Yue, C.J. Zhang, Y. Dong, P. Lu et al., 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14(7), 8678–8688 (2020). https://doi.org/10.1021/acsnano.0c03042
S.S. Chi, X.G. Qi, Y.S. Hu, L.Z. Fan, 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018). https://doi.org/10.1002/aenm.201702764
S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2020). https://doi.org/10.1002/adma.202000721
Y. Lu, J.A. Alonso, Q. Yi, L. Lu, Z.L. Wang et al., A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv. Mater. 9(28), 1901205 (2019). https://doi.org/10.1002/aenm.201901205
D. Lei, Y.B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10(1), 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
J. Zhang, D.W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
X. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang et al., Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes. Adv. Funct. Mater. 31(30), 2103522 (2021). https://doi.org/10.1002/adfm.202103522
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4(1), 15–25 (2014). https://doi.org/10.1002/wcms.1159
G. Yoon, S. Moon, G. Ceder, K. Kang, Deposition and stripping behavior of lithium metal in electrochemical system: continuum mechanics study. Chem. Mater. 30(19), 6769–6776 (2018). https://doi.org/10.1021/acs.chemmater.8b02623
B. Horstmann, J. Shi, R. Amine, M. Werres, X. He et al., Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ. Sci. (2021). https://doi.org/10.1039/D1EE00767J
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119(9), 5416–5460 (2019). https://doi.org/10.1021/acs.chemrev.8b00642
J. Liu, T. Wu, S. Zhang, D. Li, Y. Wang et al., InBr3 as a self-defensed redox mediator for Li–O2 batteries: in situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power Sources 439, 227095 (2019). https://doi.org/10.1039/D1EE00767J