Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human–Machine Interactive Keyboards
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 103
Abstract
Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things. This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator (F-TENG) with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication. The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves. A self-powered wearable keyboard (SPWK) is also fabricated by integrating large-area F-TENG sensor arrays, which not only can trace and record electrophysiological signals, but also can identify individuals' typing characteristics by means of the Haar wavelet. Based on these merits, the SPWK has promising applications in the realm of wearable electronics, self-powered sensors, cyber security, and artificial intelligences.
Highlights:
1 A fully fabric-based mechanical energy harvester with a sandwich structure is developed, which can respond to the pressure change by the fall of leaves.
2 A self-powered keyboard with the ability of biometric recognition is demonstrated, which is able to resist illegal intrusion by judging the keystroke behaviors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
- J.J. Shao, T. Jiang, Z.L. Wang, Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 63(7), 1087–1109 (2020). https://doi.org/10.1007/s11431-020-1604-9
- Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12(1), 5 (2019). https://doi.org/10.1007/s40820-019-0338-1
- K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11(1), 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- Z.L. Wang, On the first principle theory of nanogenerators from maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- Z.L. Wang, On maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- K. Dong, Z.Y. Wu, J.A. Deng, A.C. Wang, H.Y. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
- G. Lee, G.Y. Bae, J.H. Son, S. Lee, S.W. Kim et al., User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. 7(17), 2001184 (2020). https://doi.org/10.1002/advs.202001184
- Y.F. Hu, Z.J. Zheng, Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 56, 16–24 (2019). https://doi.org/10.1016/j.nanoen.2018.11.025
- L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3d honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32(38), 2003897 (2020). https://doi.org/10.1002/adma.202003897
- J. Kim, H. Ryu, J.H. Lee, U. Khan, S.S. Kwak et al., High permittivity cacu3ti4o12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903524 (2020). https://doi.org/10.1002/aenm.201903524
- K. Dong, X. Peng, J. An, A.C. Wang, J.J. Luo et al., Shape adaptable and highly resilient 3d braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11(1), 2868 (2020). https://doi.org/10.1038/s41467-020-16642-6
- S.S. Kwak, S.M. Kim, H. Ryu, J. Kim, U. Khan et al., Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energ. Environ. Sci. 12(10), 3156–3163 (2019). https://doi.org/10.1039/c9ee01267b
- J. Du, X.Y. Yang, J.L. Duan, Y.D. Wang, Q.W. Tang, Tailoring all-inorganic cesium lead halide perovskites for robust triboelectric nanogenerators. Nano Energy 70, 104514 (2020). https://doi.org/10.1016/j.nanoen.2020.104514
- R. Hinchet, H.J. Yoon, H. Ryu, M.K. Kim, E.K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491 (2019). https://doi.org/10.1126/science.aan3997
- Z. Li, J. Li, H.-H. Wu, J. Li, S. Wang et al., Effect of electric field orientation on ferroelectric phase transition and electrocaloric effect. Acta Mater. 191, 13–23 (2020). https://doi.org/10.1016/j.actamat.2020.03.020
- S.S. Kwak, H.J. Yoon, S.W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29(2), 1804533 (2019). https://doi.org/10.1002/adfm.201804533
- S.H. Wang, J. Xu, W.C. Wang, G.J.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83 (2018). https://doi.org/10.1038/nature25494
- X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- Z. Gong, Y.R. Ding, Design and implementation of wearable dynamic electrocardiograph real-time monitoring terminal. IEEE Access 8, 6575–6582 (2020). https://doi.org/10.1109/ACCESS.2019.2958992
- Q.F. Shi, Z.X. Zhang, T. Chen, C.K. Lee, Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 62, 355–366 (2019). https://doi.org/10.1016/j.nanoen.2019.05.033
- Z.M. Lin, J. Chen, X.S. Li, Z.H. Zhou, K.Y. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
- W.B. Ding, A.C. Wang, C.S. Wu, H.Y. Guo, Z.L. Wang, Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 4(1), 1800487 (2019). https://doi.org/10.1002/admt.201800487
- J.X. Wang, M.F. Lin, S. Park, P.S. Lee, Deformable conductors for human-machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
- X. Pu, L.X. Li, M.M. Liu, C.Y. Jiang, C.H. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98 (2016). https://doi.org/10.1002/adma.201504403
- C.Z. Hang, X.F. Zhao, S.Y. Xi, Y.H. Shang, K.P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
- H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11(1), 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
- W.X. Zhou, S.S. Yao, H.Y. Wang, Q.C. Du, Y.W. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
- L.Q. Liu, X.Y. Yang, L.L. Zhao, W.K. Xu, J.W. Wang et al., Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 73, 104797 (2020). https://doi.org/10.1016/j.nanoen.2020.104797
- B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11(1), 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
- Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12(1), 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
- G. Xia, Y. Huang, F. Li, L. Wang, J. Pang et al., A thermally flexible and multi-site tactile sensor for remote 3d dynamic sensing imaging. Front. Chem. Sci. Eng. 14(6), 1039–1051 (2020). https://doi.org/10.1007/s11705-019-1901-5
- K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
- C. Zhu, R.H. Li, X. Chen, E. Chalmers, X.T. Liu et al., Ultraelastic yarns from curcumin-assisted eld toward wearable human-machine interface textiles. Adv. Sci. 7(23), 2002009 (2020). https://doi.org/10.1002/advs.202002009
- X. Pu, M.M. Liu, X.Y. Chen, J.M. Sun, C.H. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
- K. Dong, J.N. Deng, Y.L. Zi, Y.C. Wang, C. Xu et al., 3d orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
- T.Y.Y. He, H. Wang, J.H. Wang, X. Tian, F. Wen et al., Self-sustainable wearable textile nano-energy nano-system (nens) for next-generation healthcare applications. Adv. Sci. 6(24), 1901437 (2019). https://doi.org/10.1002/advs.201901437
- M.L. Zhu, Q.F. Shi, T.Y.Y. He, Z.R. Yi, Y.M. Ma et al., Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 13(2), 1940–1952 (2019). https://doi.org/10.1021/acsnano.8b08329
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- L.Y. Ma, M.J. Zhou, R.H. Wu, A. Patil, H. Gong et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14(4), 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
- H. Li, X. Zhang, L. Zhao, D. Jiang, L. Xu et al., A hybrid biofuel and triboelectric nanogenerator for bioenergy harvesting. Nano-Micro Lett. 12(1), 50 (2020). https://doi.org/10.1007/s40820-020-0376-8
- V. Slabov, S. Kopyl, M.P. Soares dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12(1), 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- C. Bu, F. Li, K. Yin, J. Pang, L. Wang et al., Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2(4), 863–878 (2020). https://doi.org/10.1021/acsaelm.0c00022
- X. Feng, Y. Zhang, L. Kang, L. Wang, C. Duan et al., Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-020-1956-3
References
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
J.J. Shao, T. Jiang, Z.L. Wang, Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 63(7), 1087–1109 (2020). https://doi.org/10.1007/s11431-020-1604-9
Z. Hui, M. Xiao, D. Shen, J. Feng, P. Peng et al., A self-powered nanogenerator for the electrical protection of integrated circuits from trace amounts of liquid. Nano-Micro Lett. 12(1), 5 (2019). https://doi.org/10.1007/s40820-019-0338-1
K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11(1), 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
Z.L. Wang, On the first principle theory of nanogenerators from maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
Z.L. Wang, On maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
K. Dong, Z.Y. Wu, J.A. Deng, A.C. Wang, H.Y. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
G. Lee, G.Y. Bae, J.H. Son, S. Lee, S.W. Kim et al., User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. Adv. Sci. 7(17), 2001184 (2020). https://doi.org/10.1002/advs.202001184
Y.F. Hu, Z.J. Zheng, Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 56, 16–24 (2019). https://doi.org/10.1016/j.nanoen.2018.11.025
L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3d honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32(38), 2003897 (2020). https://doi.org/10.1002/adma.202003897
J. Kim, H. Ryu, J.H. Lee, U. Khan, S.S. Kwak et al., High permittivity cacu3ti4o12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903524 (2020). https://doi.org/10.1002/aenm.201903524
K. Dong, X. Peng, J. An, A.C. Wang, J.J. Luo et al., Shape adaptable and highly resilient 3d braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11(1), 2868 (2020). https://doi.org/10.1038/s41467-020-16642-6
S.S. Kwak, S.M. Kim, H. Ryu, J. Kim, U. Khan et al., Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energ. Environ. Sci. 12(10), 3156–3163 (2019). https://doi.org/10.1039/c9ee01267b
J. Du, X.Y. Yang, J.L. Duan, Y.D. Wang, Q.W. Tang, Tailoring all-inorganic cesium lead halide perovskites for robust triboelectric nanogenerators. Nano Energy 70, 104514 (2020). https://doi.org/10.1016/j.nanoen.2020.104514
R. Hinchet, H.J. Yoon, H. Ryu, M.K. Kim, E.K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491 (2019). https://doi.org/10.1126/science.aan3997
Z. Li, J. Li, H.-H. Wu, J. Li, S. Wang et al., Effect of electric field orientation on ferroelectric phase transition and electrocaloric effect. Acta Mater. 191, 13–23 (2020). https://doi.org/10.1016/j.actamat.2020.03.020
S.S. Kwak, H.J. Yoon, S.W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29(2), 1804533 (2019). https://doi.org/10.1002/adfm.201804533
S.H. Wang, J. Xu, W.C. Wang, G.J.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83 (2018). https://doi.org/10.1038/nature25494
X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
Z. Gong, Y.R. Ding, Design and implementation of wearable dynamic electrocardiograph real-time monitoring terminal. IEEE Access 8, 6575–6582 (2020). https://doi.org/10.1109/ACCESS.2019.2958992
Q.F. Shi, Z.X. Zhang, T. Chen, C.K. Lee, Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 62, 355–366 (2019). https://doi.org/10.1016/j.nanoen.2019.05.033
Z.M. Lin, J. Chen, X.S. Li, Z.H. Zhou, K.Y. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
W.B. Ding, A.C. Wang, C.S. Wu, H.Y. Guo, Z.L. Wang, Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 4(1), 1800487 (2019). https://doi.org/10.1002/admt.201800487
J.X. Wang, M.F. Lin, S. Park, P.S. Lee, Deformable conductors for human-machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
X. Pu, L.X. Li, M.M. Liu, C.Y. Jiang, C.H. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98 (2016). https://doi.org/10.1002/adma.201504403
C.Z. Hang, X.F. Zhao, S.Y. Xi, Y.H. Shang, K.P. Yuan et al., Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 76, 105064 (2020). https://doi.org/10.1016/j.nanoen.2020.105064
H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11(1), 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
W.X. Zhou, S.S. Yao, H.Y. Wang, Q.C. Du, Y.W. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
L.Q. Liu, X.Y. Yang, L.L. Zhao, W.K. Xu, J.W. Wang et al., Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 73, 104797 (2020). https://doi.org/10.1016/j.nanoen.2020.104797
B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11(1), 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12(1), 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
G. Xia, Y. Huang, F. Li, L. Wang, J. Pang et al., A thermally flexible and multi-site tactile sensor for remote 3d dynamic sensing imaging. Front. Chem. Sci. Eng. 14(6), 1039–1051 (2020). https://doi.org/10.1007/s11705-019-1901-5
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
C. Zhu, R.H. Li, X. Chen, E. Chalmers, X.T. Liu et al., Ultraelastic yarns from curcumin-assisted eld toward wearable human-machine interface textiles. Adv. Sci. 7(23), 2002009 (2020). https://doi.org/10.1002/advs.202002009
X. Pu, M.M. Liu, X.Y. Chen, J.M. Sun, C.H. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017). https://doi.org/10.1126/sciadv.1700015
K. Dong, J.N. Deng, Y.L. Zi, Y.C. Wang, C. Xu et al., 3d orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
T.Y.Y. He, H. Wang, J.H. Wang, X. Tian, F. Wen et al., Self-sustainable wearable textile nano-energy nano-system (nens) for next-generation healthcare applications. Adv. Sci. 6(24), 1901437 (2019). https://doi.org/10.1002/advs.201901437
M.L. Zhu, Q.F. Shi, T.Y.Y. He, Z.R. Yi, Y.M. Ma et al., Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 13(2), 1940–1952 (2019). https://doi.org/10.1021/acsnano.8b08329
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
L.Y. Ma, M.J. Zhou, R.H. Wu, A. Patil, H. Gong et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14(4), 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
H. Li, X. Zhang, L. Zhao, D. Jiang, L. Xu et al., A hybrid biofuel and triboelectric nanogenerator for bioenergy harvesting. Nano-Micro Lett. 12(1), 50 (2020). https://doi.org/10.1007/s40820-020-0376-8
V. Slabov, S. Kopyl, M.P. Soares dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12(1), 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
C. Bu, F. Li, K. Yin, J. Pang, L. Wang et al., Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2(4), 863–878 (2020). https://doi.org/10.1021/acsaelm.0c00022
X. Feng, Y. Zhang, L. Kang, L. Wang, C. Duan et al., Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-020-1956-3