MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime
Corresponding Author: Jie Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 218
Abstract
Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m−2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P-type Si, and Cu and N-GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future.
Highlights:
1 Successfully solves the key issue of tribovoltaic nanogenerators (TVNGs) lifetime (90,000 cycles) and improves its output current density (754 mA m−2) simultaneously.
2 Conductive polar liquid with MXene as additive is proposed as the dominant factor in enhancing the electrical output performance and durability of TVNG simultaneously.
3 The mechanism of lubricated TVNG with enhanced output performance is explained from the perspective of solution polarity at the first time.
4 Mxene solution exhibits universality in different types of semiconductor systems (Cu and P-type Si, and Cu and N-GaAs as material pairs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012). https://doi.org/10.1002/anie.201201656
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- X. Yin, D. Liu, L. Zhou, X. Li, G. Xu et al., A motion vector sensor via direct-current triboelectric nanogenerator. Adv. Funct. Mater. 30, 2002547 (2020). https://doi.org/10.1002/adfm.202002547
- S. Li, Z. Zhao, D. Liu, J. An, Y. Gao et al., A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Adv. Mater. 10, 1002 (2022). https://doi.org/10.1002/adma.202110363
- S. Li, L. Liu, Z. Zhao, L. Zhou, X. Yin et al., A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14, 2475–2482 (2020). https://doi.org/10.1021/acsnano.9b10142
- M. Xu, P. Wang, Y. Wang, S. Zhang, A. Wang et al., A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 8, 1702432 (2018). https://doi.org/10.1002/aenm.201702432
- X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen et al., Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 9, 1902460 (2019). https://doi.org/10.1002/aenm.201902460
- R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14, 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14, 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3d honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32, 2003897 (2020). https://doi.org/10.1002/adma.202003897
- R. Wu, S. Liu, Z. Lin, S. Zhu, L. Ma et al., Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 12, 2201288 (2022). https://doi.org/10.1002/aenm.202201288
- L. Ma, M. Zhou, J. Wang, W. Guo, Z.L. Wang et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14, 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
- X. Hang, X. Xiang, J. Nie, D. Peng, F. Yang et al., Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nat. Commun. 12, 2268 (2021). https://doi.org/10.1038/s41467-021-22371-1
- Z.L. Wang, A. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy 83, 105810 (2021). https://doi.org/10.1016/j.nanoen.2021.105810
- G. Liu, J. Liu, W. Dou, Non-adiabatic quantum dynamics of tribovoltaic effects at sliding metal–semiconductor interfaces. Nano Energy 96, 107034 (2022). https://doi.org/10.1016/j.nanoen.2022.107034
- H. Yuan, Z. Xiao, J. Wan, Y. Xiang, G. Dai et al., A rolling-mode Al/CsPbBr3 schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy. Adv. Energy Mater. 12, 2200550 (2022). https://doi.org/10.1002/aenm.202200550
- L. Ren, A. Yu, W. Wang, D. Guo, M. Jia et al., p–n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21, 10099–10106 (2021). https://doi.org/10.1021/acs.nanolett.1c03922
- S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
- Y. Lu, Y. Yan, X. Yu, X. Zhou, S. Feng et al., Polarized water driven dynamic p–n junction-based direct-current generator. Research 221, 7505638 (2021). https://doi.org/10.34133/2021/7505638
- Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34, 2200146 (2022). https://doi.org/10.1002/adma.202200146
- M. Zheng, S. Lin, L. Zhu, Z. Tang, Z.L. Wang, Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv. Mater. Interfaces 9, 2101757 (2021). https://doi.org/10.1002/admi.202101757
- M. Zheng, S. Lin, L. Xu, L. Zhu, Z.L. Wang, Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv. Mater. 32, 2000928 (2020). https://doi.org/10.1002/adma.202000928
- Y. Chen, Z. Zhang, Z. Wang, T. Bu, S. Dong et al., Friction-dominated carrier excitation and transport mechanism for gan-based direct-current triboelectric nanogenerators. ACS Appl. Mater. Interfaces 14, 24020–24027 (2022). https://doi.org/10.1021/acsami.2c03853
- M. Benner, R. Yang, L. Lin, M. Liu, H. Li et al., Mechanism of in-plane and out-of-plane tribovoltaic direct-current transport with a metal/oxide/metal dynamic heterojunction. ACS Appl. Mater. Interfaces 14, 2968–2978 (2022). https://doi.org/10.1021/acsami.1c22438
- R. Yang, Z. He, S. Lin, W. Dou, Z.L. Wang et al., Tunable tribovoltaic effect via metal−insulator transition. Nano Lett. 22, 9084–9091 (2022). https://doi.org/10.1021/acs.nanolett.2c03481
- A. Šutka, M. Zubkins, A. Linarts, L. Lapcinskis, K. Ma ̌lalnieks et al., Tribovoltaic device based on the W/WO3 schottky junction operating through hot carrier extraction. J. Phys. Chem. C 125, 14212–14220 (2021). https://doi.org/10.1021/acs.jpcc.1c04312
- J. Meng, Z. Guo, C. Pan, L. Wang, C. Chang et al., Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 6, 2442–2450 (2021). https://doi.org/10.1021/acsenergylett.1c00288
- L. Zhang, H. Cai, L. Xu, L. Ji, D. Wang et al., Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter 5, 1532–1546 (2022). https://doi.org/10.1016/j.matt.2022.02.021
- Z. Wang, Z. Zhang, Y. Chen, L. Gong, S. Dong et al., Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 15, 2366–2373 (2022)
- W. Qiao, Z. Zhao, L. Zhou, D. Liu, S. Li et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32, 2208544 (2022). https://doi.org/10.1002/adfm.202208544
- J. Xia, X. Luo, J. Li, L. Zhu, Z.L. Wang, Wear-resisting and stable 4H-SiC/Cu-based tribovoltaic nanogenerators for self-powered sensing in a harsh environment. ACS Appl. Mater. Interfaces 14, 55192–55200 (2022). https://doi.org/10.1021/acsami.2c15781
- Z. Zhang, T. He, J. Zhao, G. Liu, Z.L. Wang et al., Tribo-thermoelectric and tribovoltaic coupling effect at metalsemiconductor interface. Mater. Today Phys. 16, 100295 (2021). https://doi.org/10.1016/j.mtphys.2020.100295
- D. Yang, L. Zhang, N. Luo, Y. Liu, W. Sun et al., Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 99, 107370 (2022). https://doi.org/10.1016/j.nanoen.2022.107370
- Z. Wang, L. Gong, S. Dong, B. Fan, Y. Feng et al., A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J. Mater. Chem. A 10, 25230 (2022). https://doi.org/10.1039/d2ta07637c
- Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10, 1903713 (2020). https://doi.org/10.1002/aenm.201903713
- X. Luo, L. Liu, Y. Wang, J. Li, A. Berbille et al., Tribovoltaic nanogenerators based on mxene–silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors. Adv. Funct. Mater. 32, 2113149 (2022). https://doi.org/10.1002/adfm.202113149
- X. Xu, J. Li, X. Tao, Q. Yan, H. Wu et al., Study of interfacial design for direct-current tribovoltaic generators. Nano Energy 94, 106957 (2022). https://doi.org/10.1016/j.nanoen.2022.106957
- S. Yi, J. Li, Y. Liu, X. Ge, J. Zhang et al., In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity. Tribol. Int. 154, 106695 (2021). https://doi.org/10.1016/j.triboint.2020.106695
- M. Mariana, S. Tremmela, S. Wartzacka, G. Songb, B. Wangb et al., Mxene nanosheets as an emerging solid lubricant for machine elements—towards increased energy efficiency and service life. Appl. Surf. Sci. 523, 146503 (2020). https://doi.org/10.1016/j.apsusc.2020.146503
- S. Huang, K. Mutyala, A. Sumant, V. Mochalin, Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Mater. Today Adv. 9, 100133 (2021). https://doi.org/10.1016/j.mtadv.2021.100133
- P. Serles, M. Hamidinejad, P. Demingos, L. Ma, N. Barri et al., Friction of Ti3C2Tx MXenes. Nano Lett. 22, 3356–3363 (2022). https://doi.org/10.1021/acs.nanolett.2c00614
- P. Pendyala, J. Lee, S. Kim, E. Yoon, Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets. Appl. Surface Sci. 603, 154402 (2022). https://doi.org/10.1016/j.apsusc.2022.154402
- A. Rosenkranz, M. Righi, A. Sumant, B. Anasori, V. Mochalin, Perspectives of 2D MXene tribology. Adv. Mater. 35, 2207757 (2023). https://doi.org/10.1002/adma.202207757
References
Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012). https://doi.org/10.1002/anie.201201656
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
X. Yin, D. Liu, L. Zhou, X. Li, G. Xu et al., A motion vector sensor via direct-current triboelectric nanogenerator. Adv. Funct. Mater. 30, 2002547 (2020). https://doi.org/10.1002/adfm.202002547
S. Li, Z. Zhao, D. Liu, J. An, Y. Gao et al., A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Adv. Mater. 10, 1002 (2022). https://doi.org/10.1002/adma.202110363
S. Li, L. Liu, Z. Zhao, L. Zhou, X. Yin et al., A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14, 2475–2482 (2020). https://doi.org/10.1021/acsnano.9b10142
M. Xu, P. Wang, Y. Wang, S. Zhang, A. Wang et al., A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv. Energy Mater. 8, 1702432 (2018). https://doi.org/10.1002/aenm.201702432
X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen et al., Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 9, 1902460 (2019). https://doi.org/10.1002/aenm.201902460
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim, Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Micro Lett. 14, 139 (2022). https://doi.org/10.1007/s40820-022-00887-5
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14, 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3d honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32, 2003897 (2020). https://doi.org/10.1002/adma.202003897
R. Wu, S. Liu, Z. Lin, S. Zhu, L. Ma et al., Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 12, 2201288 (2022). https://doi.org/10.1002/aenm.202201288
L. Ma, M. Zhou, J. Wang, W. Guo, Z.L. Wang et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14, 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
X. Hang, X. Xiang, J. Nie, D. Peng, F. Yang et al., Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nat. Commun. 12, 2268 (2021). https://doi.org/10.1038/s41467-021-22371-1
Z.L. Wang, A. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
M. Zheng, S. Lin, Z. Tang, Y. Feng, Z.L. Wang, Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy 83, 105810 (2021). https://doi.org/10.1016/j.nanoen.2021.105810
G. Liu, J. Liu, W. Dou, Non-adiabatic quantum dynamics of tribovoltaic effects at sliding metal–semiconductor interfaces. Nano Energy 96, 107034 (2022). https://doi.org/10.1016/j.nanoen.2022.107034
H. Yuan, Z. Xiao, J. Wan, Y. Xiang, G. Dai et al., A rolling-mode Al/CsPbBr3 schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy. Adv. Energy Mater. 12, 2200550 (2022). https://doi.org/10.1002/aenm.202200550
L. Ren, A. Yu, W. Wang, D. Guo, M. Jia et al., p–n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21, 10099–10106 (2021). https://doi.org/10.1021/acs.nanolett.1c03922
S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020). https://doi.org/10.1016/j.nanoen.2020.105070
Y. Lu, Y. Yan, X. Yu, X. Zhou, S. Feng et al., Polarized water driven dynamic p–n junction-based direct-current generator. Research 221, 7505638 (2021). https://doi.org/10.34133/2021/7505638
Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34, 2200146 (2022). https://doi.org/10.1002/adma.202200146
M. Zheng, S. Lin, L. Zhu, Z. Tang, Z.L. Wang, Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv. Mater. Interfaces 9, 2101757 (2021). https://doi.org/10.1002/admi.202101757
M. Zheng, S. Lin, L. Xu, L. Zhu, Z.L. Wang, Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv. Mater. 32, 2000928 (2020). https://doi.org/10.1002/adma.202000928
Y. Chen, Z. Zhang, Z. Wang, T. Bu, S. Dong et al., Friction-dominated carrier excitation and transport mechanism for gan-based direct-current triboelectric nanogenerators. ACS Appl. Mater. Interfaces 14, 24020–24027 (2022). https://doi.org/10.1021/acsami.2c03853
M. Benner, R. Yang, L. Lin, M. Liu, H. Li et al., Mechanism of in-plane and out-of-plane tribovoltaic direct-current transport with a metal/oxide/metal dynamic heterojunction. ACS Appl. Mater. Interfaces 14, 2968–2978 (2022). https://doi.org/10.1021/acsami.1c22438
R. Yang, Z. He, S. Lin, W. Dou, Z.L. Wang et al., Tunable tribovoltaic effect via metal−insulator transition. Nano Lett. 22, 9084–9091 (2022). https://doi.org/10.1021/acs.nanolett.2c03481
A. Šutka, M. Zubkins, A. Linarts, L. Lapcinskis, K. Ma ̌lalnieks et al., Tribovoltaic device based on the W/WO3 schottky junction operating through hot carrier extraction. J. Phys. Chem. C 125, 14212–14220 (2021). https://doi.org/10.1021/acs.jpcc.1c04312
J. Meng, Z. Guo, C. Pan, L. Wang, C. Chang et al., Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 6, 2442–2450 (2021). https://doi.org/10.1021/acsenergylett.1c00288
L. Zhang, H. Cai, L. Xu, L. Ji, D. Wang et al., Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter 5, 1532–1546 (2022). https://doi.org/10.1016/j.matt.2022.02.021
Z. Wang, Z. Zhang, Y. Chen, L. Gong, S. Dong et al., Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 15, 2366–2373 (2022)
W. Qiao, Z. Zhao, L. Zhou, D. Liu, S. Li et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32, 2208544 (2022). https://doi.org/10.1002/adfm.202208544
J. Xia, X. Luo, J. Li, L. Zhu, Z.L. Wang, Wear-resisting and stable 4H-SiC/Cu-based tribovoltaic nanogenerators for self-powered sensing in a harsh environment. ACS Appl. Mater. Interfaces 14, 55192–55200 (2022). https://doi.org/10.1021/acsami.2c15781
Z. Zhang, T. He, J. Zhao, G. Liu, Z.L. Wang et al., Tribo-thermoelectric and tribovoltaic coupling effect at metalsemiconductor interface. Mater. Today Phys. 16, 100295 (2021). https://doi.org/10.1016/j.mtphys.2020.100295
D. Yang, L. Zhang, N. Luo, Y. Liu, W. Sun et al., Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 99, 107370 (2022). https://doi.org/10.1016/j.nanoen.2022.107370
Z. Wang, L. Gong, S. Dong, B. Fan, Y. Feng et al., A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J. Mater. Chem. A 10, 25230 (2022). https://doi.org/10.1039/d2ta07637c
Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10, 1903713 (2020). https://doi.org/10.1002/aenm.201903713
X. Luo, L. Liu, Y. Wang, J. Li, A. Berbille et al., Tribovoltaic nanogenerators based on mxene–silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors. Adv. Funct. Mater. 32, 2113149 (2022). https://doi.org/10.1002/adfm.202113149
X. Xu, J. Li, X. Tao, Q. Yan, H. Wu et al., Study of interfacial design for direct-current tribovoltaic generators. Nano Energy 94, 106957 (2022). https://doi.org/10.1016/j.nanoen.2022.106957
S. Yi, J. Li, Y. Liu, X. Ge, J. Zhang et al., In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity. Tribol. Int. 154, 106695 (2021). https://doi.org/10.1016/j.triboint.2020.106695
M. Mariana, S. Tremmela, S. Wartzacka, G. Songb, B. Wangb et al., Mxene nanosheets as an emerging solid lubricant for machine elements—towards increased energy efficiency and service life. Appl. Surf. Sci. 523, 146503 (2020). https://doi.org/10.1016/j.apsusc.2020.146503
S. Huang, K. Mutyala, A. Sumant, V. Mochalin, Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Mater. Today Adv. 9, 100133 (2021). https://doi.org/10.1016/j.mtadv.2021.100133
P. Serles, M. Hamidinejad, P. Demingos, L. Ma, N. Barri et al., Friction of Ti3C2Tx MXenes. Nano Lett. 22, 3356–3363 (2022). https://doi.org/10.1021/acs.nanolett.2c00614
P. Pendyala, J. Lee, S. Kim, E. Yoon, Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets. Appl. Surface Sci. 603, 154402 (2022). https://doi.org/10.1016/j.apsusc.2022.154402
A. Rosenkranz, M. Righi, A. Sumant, B. Anasori, V. Mochalin, Perspectives of 2D MXene tribology. Adv. Mater. 35, 2207757 (2023). https://doi.org/10.1002/adma.202207757