Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 86
Abstract
The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors. Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered, breathable, lightweight and deformable to satisfy the prolonged wearing demands. It is still struggling to achieve these traits in single device, as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability. In this article, we present an all-fiber iontronic triboelectric mechanoreceptor (ITM) to fully tackle these challenges, enabled by the high-output mechano-to-electrical energy conversion. The proposed ITM is ultralight, breathable and stretchable and is quite stable under various mechanical deformations. On the one hand, the ITM can achieve a superior instantaneous power density; on the other hand, the ITM shows excellent sensitivity serving as epidermal sensors. Precise health status monitoring is readily implemented by the ITM calibrating by detecting vital signals and physical activities of human bodies. The ITM can also realize acoustic-to-electrical conversion and distinguish voices from different people, and biometric application as a noise dosimeter is demonstrated. The ITM therefore is believed to open new sights in epidermal electronics and skin prosthesis fields.
Highlights:
1 An ultralight, ultrathin iontronic triboelectric mechanoreceptor (ITM) is proposed with high specific outputs for multi-functional epidermal applications.
2 Precise vital signals and physical activities monitoring of human bodies are noninvasively implemented by the ITM.
3 Acoustic-to-electrical energy conversion is realized by the ITM, and biometric applications such as voices differentiation and the noise dosimeter are demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Chortos, J. Liu, Z.A. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- Q.L. Hua, J.L. Sun, H.T. Liu, R.R. Bao, R.M. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
- C.H. Lang, J. Fang, H. Shao, X. Ding, T. Lin, High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016). https://doi.org/10.1038/ncomms11108
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
- T. Jin, Z.D. Sun, L. Li, Q. Zhang, M.L. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3(24), aau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
- Y.Z. Wu, Y.W. Liu, Y.L. Zhou, Q.K. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3(22), aat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
- R.C. Webb, Y.J. Ma, S. Krishnan, Y.H. Li, S. Yoon et al., Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1(9), 1500701 (2015). https://doi.org/10.1126/sciadv.1500701
- C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.G. Kim et al., Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
- Y. Wang, S. Lee, T. Yokota, H.Y. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- S.M. Niu, N. Matsuhisa, L. Beker, J.X. Li, S.H. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- H.L. Wang, S.Y. Kuang, H.Y. Li, Z.L. Wang, G. Zhu, Large-area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping. Small 16(2), 1906352 (2020). https://doi.org/10.1002/smll.201906352
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- W. Wang, A.F. Yu, J.Y. Zhai, Z.L. Wang, Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber. Mater. 3, 394–412 (2021). https://doi.org/10.1007/s42765-021-00077-9
- A. Ahmed, I. Hassan, A.S. Helal, V. Sencadas, A. Radhi et al., Triboelectric nanogenerator versus piezoelectric generator at low frequency (<4 Hz): a quantitative comparison. iScience 23(7), 101286 (2020). https://doi.org/10.1016/j.isci.2020.101286
- S. Park, J. Park, Y.G. Kim, S. Bae, T.W. Kim et al., Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020). https://doi.org/10.1016/j.nanoen.2020.105266
- C.Q. Dong, A. Leber, T.D. Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11, 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
- J.Q. Xiong, P. Cui, X.L. Chen, J.X. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, 4280 (2018). https://doi.org/10.1038/s41467-018-06759-0
- X. Pu, M.M. Liu, X.Y. Chen, J.M. Sun, C.H. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), 1700015 (2017). https://doi.org/10.1126/sciadv.1700015
- Y. Lee, S.H. Cha, Y.W. Kim, D. Choi, J.Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9, 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
- Y. Si, Z.J. Zhu, Y.J. Guo, Y.J. Zhang et al., Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29(36), 1700253 (2017). https://doi.org/10.1002/adma.201700253
- Z.H. Guo, M.M. Liu, Z.F. Cong, W.B. Guo, P.P. Zhang et al., Stretchable textile rechargeable Zn batteries enabled by a wax dyeing method. Adv. Mater. Technol. 5(11), 2000544 (2020). https://doi.org/10.1002/admt.202000544
- K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y.H. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). https://doi.org/10.1038/ncomms5779
- C.Y. Yan, P. Zhu, H. Jia, J.D. Zhu, R.K. Selvan et al., High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 1(1), 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x
- Y.X. Yu, J.H. Xie, H.Z. Zhang, R.F. Qin, X.Q. Liu et al., High-voltage rechargeable aqueous zinc-based batteries: latest progress and future perspectives. Small Sci. 1, 2000066 (2021). https://doi.org/10.1002/smsc.202000066
- H.W. Song, J. Su, C.X. Wang, The anion-cation relay battery prototype. Small Sci. 1(1), 2000030 (2021). https://doi.org/10.1002/smsc.202000030
- Y. Song, J.H. Min, Y. Yu, H.B. Wang, Y.R. Yang et al., Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6(40), eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842
- Q. Zheng, Q.Z. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18, 7–21 (2020). https://doi.org/10.1038/s41569-020-0426-4
- A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
- Z.H. Guo, Y.C. Jiao, H.L. Wang, C. Zhang, F. Liang et al., Self-powered electrowetting valve for instantaneous and simultaneous actuation of paper-based microfluidic assays. Adv. Funct. Mater. 29(15), 1808974 (2019). https://doi.org/10.1002/adfm.201808974
- X.F. Kang, C.X. Pan, Y.H. Chen, X. Pu, Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv. 10(30), 17752–17759 (2020). https://doi.org/10.1039/d0ra02181d
- Z.H. Zhao, Y.J. Dai, D. Liu, L.L. Zhou, S.X. Li et al., Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 11, 6186 (2020). https://doi.org/10.1038/s41467-020-20045-y
- Y.D. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 12(9), 2678–2684 (2019). https://doi.org/10.1039/c9ee01245a
- X.D. Zhong, Y. Yang, X. Wang, Z.L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13, 771–780 (2015). https://doi.org/10.1016/j.nanoen.2015.03.012
- T. Li, Y. Xu, M. Willander, F. Xing, X. Cao et al., Lightweight triboelectric nanogenerator for energy harvesting and sensing tiny mechanical motion. Adv. Funct. Mater. 26(24), 4370–4376 (2016). https://doi.org/10.1002/adfm.201600279
- Y.C. Wu, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162–170 (2015). https://doi.org/10.1016/j.nanoen.2014.10.035
- C.D. Xu, B. Ren, W.N. Di, Z. Liang, J. Jiao et al., Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3. Appl. Phys. Lett. 101(3), 033502 (2012). https://doi.org/10.1063/1.4737170
- F. Mokhtari, G.M. Spinks, S. Sayyar, Z.X. Cheng, A. Ruhparwar et al., Highly stretchable self-powered wearable electrical energy generator and sensors. Adv. Mater. Technol. 6(2), 2000841 (2021). https://doi.org/10.1002/admt.202000841
- S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
- X.S. Zhou, X. Chen, H. Zhu, X. Dong, L.Z. Li et al., Electrical energy generation by squeezing a graphene-based aerogel in an electrolyte. Nanoscale 13(17), 8304 (2021). https://doi.org/10.1039/d1nr00544h
- J. Choi, Y. Jung, S.J. Yang, J.Y. Oh, J. Oh et al., Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano 11(8), 7608–7614 (2017). https://doi.org/10.1021/acsnano.7b01771
- S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7(6), 1959–1965 (2014). https://doi.org/10.1039/c4ee00242c
- L. Gao, L.F. Chao, M.H. Hou, J. Liang, Y.H. Chen et al., Flexible, transparent nanocellulose paper-based perovskite solar cells. NPJ Flex. Electron. 3(1), 4 (2019). https://doi.org/10.1038/s41528-019-0048-2
- M. Kaltenbrunner, G. Adam, E.D. Glowacki, M. Drack, R. Schwodiauer et al., flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/Nmat4388
- S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang et al., Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561(7724), 516–521 (2018). https://doi.org/10.1038/s41586-018-0536-x
- X.L. Zhang, V.A. Oberg, J. Du, J.H. Liua, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11(2), 354–364 (2018). https://doi.org/10.1039/c7ee02772a
- R.X. Wang, L.W. Mu, Y.K. Bao, H. Lin, T. Ji et al., Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 32(32), 2002878 (2020). https://doi.org/10.1002/adma.202002878
- J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
- G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
- W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(S1), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
- H.Y. Guo, X.J. Pu, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7(7), eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
- Y.H. Jung, X. Xiao, P. Xu, T.C. Zhao, L.G. Song et al., Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv. Energy Mater. 9(46), 1902824 (2019). https://doi.org/10.1002/aenm.201902824
- Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32(35), 1904020 (2020). https://doi.org/10.1002/adma.201904020
References
A. Chortos, J. Liu, Z.A. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
Q.L. Hua, J.L. Sun, H.T. Liu, R.R. Bao, R.M. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
C.H. Lang, J. Fang, H. Shao, X. Ding, T. Lin, High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016). https://doi.org/10.1038/ncomms11108
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
T. Jin, Z.D. Sun, L. Li, Q. Zhang, M.L. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3(24), aau6914 (2018). https://doi.org/10.1126/scirobotics.aau6914
Y.Z. Wu, Y.W. Liu, Y.L. Zhou, Q.K. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3(22), aat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
R.C. Webb, Y.J. Ma, S. Krishnan, Y.H. Li, S. Yoon et al., Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1(9), 1500701 (2015). https://doi.org/10.1126/sciadv.1500701
C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.G. Kim et al., Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
Y. Wang, S. Lee, T. Yokota, H.Y. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), eaba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
S.M. Niu, N. Matsuhisa, L. Beker, J.X. Li, S.H. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
H.L. Wang, S.Y. Kuang, H.Y. Li, Z.L. Wang, G. Zhu, Large-area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping. Small 16(2), 1906352 (2020). https://doi.org/10.1002/smll.201906352
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
W. Wang, A.F. Yu, J.Y. Zhai, Z.L. Wang, Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber. Mater. 3, 394–412 (2021). https://doi.org/10.1007/s42765-021-00077-9
A. Ahmed, I. Hassan, A.S. Helal, V. Sencadas, A. Radhi et al., Triboelectric nanogenerator versus piezoelectric generator at low frequency (<4 Hz): a quantitative comparison. iScience 23(7), 101286 (2020). https://doi.org/10.1016/j.isci.2020.101286
S. Park, J. Park, Y.G. Kim, S. Bae, T.W. Kim et al., Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78, 105266 (2020). https://doi.org/10.1016/j.nanoen.2020.105266
C.Q. Dong, A. Leber, T.D. Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11, 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
J.Q. Xiong, P. Cui, X.L. Chen, J.X. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, 4280 (2018). https://doi.org/10.1038/s41467-018-06759-0
X. Pu, M.M. Liu, X.Y. Chen, J.M. Sun, C.H. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), 1700015 (2017). https://doi.org/10.1126/sciadv.1700015
Y. Lee, S.H. Cha, Y.W. Kim, D. Choi, J.Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9, 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
Y. Si, Z.J. Zhu, Y.J. Guo, Y.J. Zhang et al., Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29(36), 1700253 (2017). https://doi.org/10.1002/adma.201700253
Z.H. Guo, M.M. Liu, Z.F. Cong, W.B. Guo, P.P. Zhang et al., Stretchable textile rechargeable Zn batteries enabled by a wax dyeing method. Adv. Mater. Technol. 5(11), 2000544 (2020). https://doi.org/10.1002/admt.202000544
K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y.H. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). https://doi.org/10.1038/ncomms5779
C.Y. Yan, P. Zhu, H. Jia, J.D. Zhu, R.K. Selvan et al., High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 1(1), 46–60 (2019). https://doi.org/10.1007/s42765-019-00006-x
Y.X. Yu, J.H. Xie, H.Z. Zhang, R.F. Qin, X.Q. Liu et al., High-voltage rechargeable aqueous zinc-based batteries: latest progress and future perspectives. Small Sci. 1, 2000066 (2021). https://doi.org/10.1002/smsc.202000066
H.W. Song, J. Su, C.X. Wang, The anion-cation relay battery prototype. Small Sci. 1(1), 2000030 (2021). https://doi.org/10.1002/smsc.202000030
Y. Song, J.H. Min, Y. Yu, H.B. Wang, Y.R. Yang et al., Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6(40), eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842
Q. Zheng, Q.Z. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18, 7–21 (2020). https://doi.org/10.1038/s41569-020-0426-4
A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
Z.H. Guo, Y.C. Jiao, H.L. Wang, C. Zhang, F. Liang et al., Self-powered electrowetting valve for instantaneous and simultaneous actuation of paper-based microfluidic assays. Adv. Funct. Mater. 29(15), 1808974 (2019). https://doi.org/10.1002/adfm.201808974
X.F. Kang, C.X. Pan, Y.H. Chen, X. Pu, Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv. 10(30), 17752–17759 (2020). https://doi.org/10.1039/d0ra02181d
Z.H. Zhao, Y.J. Dai, D. Liu, L.L. Zhou, S.X. Li et al., Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 11, 6186 (2020). https://doi.org/10.1038/s41467-020-20045-y
Y.D. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 12(9), 2678–2684 (2019). https://doi.org/10.1039/c9ee01245a
X.D. Zhong, Y. Yang, X. Wang, Z.L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13, 771–780 (2015). https://doi.org/10.1016/j.nanoen.2015.03.012
T. Li, Y. Xu, M. Willander, F. Xing, X. Cao et al., Lightweight triboelectric nanogenerator for energy harvesting and sensing tiny mechanical motion. Adv. Funct. Mater. 26(24), 4370–4376 (2016). https://doi.org/10.1002/adfm.201600279
Y.C. Wu, X. Wang, Y. Yang, Z.L. Wang, Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162–170 (2015). https://doi.org/10.1016/j.nanoen.2014.10.035
C.D. Xu, B. Ren, W.N. Di, Z. Liang, J. Jiao et al., Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3. Appl. Phys. Lett. 101(3), 033502 (2012). https://doi.org/10.1063/1.4737170
F. Mokhtari, G.M. Spinks, S. Sayyar, Z.X. Cheng, A. Ruhparwar et al., Highly stretchable self-powered wearable electrical energy generator and sensors. Adv. Mater. Technol. 6(2), 2000841 (2021). https://doi.org/10.1002/admt.202000841
S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
X.S. Zhou, X. Chen, H. Zhu, X. Dong, L.Z. Li et al., Electrical energy generation by squeezing a graphene-based aerogel in an electrolyte. Nanoscale 13(17), 8304 (2021). https://doi.org/10.1039/d1nr00544h
J. Choi, Y. Jung, S.J. Yang, J.Y. Oh, J. Oh et al., Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano 11(8), 7608–7614 (2017). https://doi.org/10.1021/acsnano.7b01771
S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7(6), 1959–1965 (2014). https://doi.org/10.1039/c4ee00242c
L. Gao, L.F. Chao, M.H. Hou, J. Liang, Y.H. Chen et al., Flexible, transparent nanocellulose paper-based perovskite solar cells. NPJ Flex. Electron. 3(1), 4 (2019). https://doi.org/10.1038/s41528-019-0048-2
M. Kaltenbrunner, G. Adam, E.D. Glowacki, M. Drack, R. Schwodiauer et al., flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/Nmat4388
S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang et al., Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561(7724), 516–521 (2018). https://doi.org/10.1038/s41586-018-0536-x
X.L. Zhang, V.A. Oberg, J. Du, J.H. Liua, E.M.J. Johansson, Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. Energy Environ. Sci. 11(2), 354–364 (2018). https://doi.org/10.1039/c7ee02772a
R.X. Wang, L.W. Mu, Y.K. Bao, H. Lin, T. Ji et al., Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 32(32), 2002878 (2020). https://doi.org/10.1002/adma.202002878
J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(S1), 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
H.Y. Guo, X.J. Pu, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
H.S. Wang, S.K. Hong, J.H. Han, Y.H. Jung, H.K. Jeong et al., Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 7(7), eabe5683 (2021). https://doi.org/10.1126/sciadv.abe5683
Y.H. Jung, X. Xiao, P. Xu, T.C. Zhao, L.G. Song et al., Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv. Energy Mater. 9(46), 1902824 (2019). https://doi.org/10.1002/aenm.201902824
Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32(35), 1904020 (2020). https://doi.org/10.1002/adma.201904020