High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 194
Abstract
It is of great importance to explore a creative route to improve the degradation efficiency of organic pollutants in wastewater. Herein, we construct a unique hybrid system by combining self-powered triboelectric nanogenerator (TENG) with carbon dots-TiO2 sheets doped three-dimensional graphene oxide photocatalyst (3DGA@CDs-TNs), which can significantly enhance the degradation efficiency of brilliant green (BG) and direct blue 5B (DB) owing to the powerful interaction of TENG and 3DGA@CDs-TNs photocatalyst. The power output of TENG can be applied for wastewater purification directly, which exhibits a self-powered electrocatalytic technology. Furthermore, the results also verify that TENG can replace conventional electric catalyst to remove pollutants effectively from wastewater without any consumption. Subsequently, the unstable fragments and the plausible removal pathways of the two pollutants are proposed. Our work sheds light on the development of efficient and sustainable TENG/photocatalyst system, opening up new opportunities and possibilities for comprehensive utilization of random energy.
Highlights:
1 Triboelectric nanogenerator (TENG)/carbon dots-TNs supported over three-dimensional graphene aerogel (3DGA@CDs-TNs) system was constructed.
2 TENG and 3DGA@CDs-TNs present excellent degradation activity toward brilliant green (88.26%, 40 min) and direct blue 5B (89.6%, 90 min).
3 The coupling interaction of photocatalysis and TENG leads to an enhanced removal ability.
4 The degradation pathways for brilliant green and direct blue 5B are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Hu, P. Zhang, W. An, L. Liu, Y. Liang et al., In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B-Environ. 245, 130–142 (2019). https://doi.org/10.1016/j.apcatb.2018.12.029
- B. Tian, Y. Wu, G. Lu, Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting. Appl. Catal. B-Environ. 280, 119410 (2021). https://doi.org/10.1016/j.apcatb.2020.119410
- P. Yang, R. Wang, H. Tao, Y. Zhang, M.-M. Titirici et al., Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B-Environ. 280, 119454 (2021). https://doi.org/10.1016/j.apcatb.2020.119454
- H. Xu, Y. Jiang, X. Yang, F. Li, A. Li et al., Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic tetracycline hydrochloride degradation. Mater. Res. Bull. 97, 158–168 (2018). https://doi.org/10.1016/j.materresbull.2017.09.004
- T. Xu, D. Wang, L. Dong, H. Shen, W. Lu et al., Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants. Appl. Catal. B-Environ. 244, 96–106 (2019). https://doi.org/10.1016/j.apcatb.2018.11.049
- J. Shi, F. Chen, L. Hou, G. Li, Y. Li et al., Eosin y bidentately bridged on UIO66NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl. Catal. B-Environ. 280, 119385 (2021). https://doi.org/10.1016/j.apcatb.2020.119385
- S. Shen, J.J. Fu, H.B. Wang, Unravelling the favorable photocatalystic effect of hydrogenation process on the novel g-C3N4 -TiO2 catalysts for water purification. Diam. Relat. Mater. 114, 108292 (2021). https://doi.org/10.1016/j.diamond.2021.108292
- S. Xin, G. Liu, X. Ma, J. Gong, B. Ma et al., High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism. Appl. Catal. B-Environ. 280, 119386 (2021). https://doi.org/10.1016/j.apcatb.2020.119386
- Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang et al., Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 15, 1804212 (2019). https://doi.org/10.1002/smll.201804212
- D.Y. Yoon, J.H. Park, H.C. Kang, P.S. Kim, I.S. Nam et al., Denox performance of Ag/Al2O3 catalyst by n-dodecane: Effect of calcination temperature. Appl. Catal. B-Environ. 101, 275–282 (2011). https://doi.org/10.1016/j.apcatb.2010.09.028
- Y. Wang, M. Zhang, H. Yu, Y. Zuo, J. Gao et al., Facile fabrication of Ag/graphene oxide/TiO2 nanorod array as a powerful substrate for photocatalytic degradation and surface-enhanced raman scattering detection. Appl. Catal. B-Environ. 252, 174–186 (2019). https://doi.org/10.1016/j.apcatb.2019.03.084
- J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Sulfur-doped g-C3N4/TiO2 s-scheme heterojunction photocatalyst for congo red photodegradation. Chinese J. Catal. 42(1), 56–68 (2021). https://doi.org/10.1016/s1872-2067(20)63634-8
- M.Y. Rizal, R. Saleh, S.P. Prakoso, A. Taufik, S. Yin, Ultraviolet- and visible-light photocatalytic and sonophotocatalytic activities toward congo red degradation using Ag/Mn3O4 nanocomposites. Mater. Sci. Semicon. Proc. 121, 105371 (2021). https://doi.org/10.1016/j.mssp.2020.105371
- X. Shan, G. Ge, Z. Zhao, Facile and scalable fabrication of porous g-C3N4 nanosheets with nitrogen defects and oxygen-doping for synergistically promoted visible light photocatalytic H2 evolution. Energy Technol. 7(5), 1800886 (2019). https://doi.org/10.1002/ente.201800886
- Z. Liu, Z. Wang, S. Qing, N. Xue, S. Jia, Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl. Catal. B-Environ. 223, 86–92 (2018). https://doi.org/10.1016/j.apcatb.2018.03.045
- F. Li, M. Zhang, D. Benetti, L. Shi, L.V. Besteiro et al., “Green”, gradient multi-shell CuInSe2/(CuInSeXS1-x)(5)/CuInS2 quantum dots for photo-electrochemical hydrogen generation. Appl. Catal. B-Environ. 280, 119402 (2021). https://doi.org/10.1016/j.apcatb.2020.119402
- J. Su, L. Zhu, G. Chen, Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Appl. Catal. B-Environ. 186, 127–135 (2016). https://doi.org/10.1016/j.apcatb.2015.12.050
- Y. Zhang, M. Wu, Y. Wang, Y.H. Kwok, W. Pan et al., Fluorinated TiO2 coupling with alpha-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. Appl. Catal. B-Environ. 280, 119402 (2021). https://doi.org/10.1016/j.apcatb.2020.119388
- B. Yang, J. Xu, D. Bin, J. Wang, J. Zhao et al., Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Appl. Catal. B-Environ. 283, 119583 (2021). https://doi.org/10.1016/j.apcatb.2020.119583
- D. Xing, Z. Cui, Y. Liu, Z. Wang, P. Wang et al., Two-dimensional Pi-d conjugated metal-organic framework Fe-3(hexaiminotriphenylene)(2) as a photo-fenton like catalyst for highly efficient degradation of antibiotics. Appl. Catal. B-Environ. 290, 120029 (2021). https://doi.org/10.1016/j.apcatb.2021.120029
- M.J. Bai, X.-Y. Huang, H. Yin, D.-L. Nu, J. Wan, Fe-doped graphitic carbon nitride for methylene blue degradation with visible-light. J. Nanosci. Nanotechn. 21(11), 5698–5706 (2021). https://doi.org/10.1166/jnn.2021.19487
- Z. Lu, X. Cao, H. Wei, W. Huo, Q. Wang et al., Strong enhancement effect of bisulfite on MIL-68(Fe)-catalyzed fenton-like reaction for organic pollutants degradation. Appl. Surface Sci. 542, 148631 (2021). https://doi.org/10.1016/j.apsusc.2020.148631
- P. Wu, C. Zhou, Y. Li, M. Zhang, P. Tao et al., Flower-like feooh hybridized with carbon quantum dots for efficient photo-fenton degradation of organic pollutants. Appl. Surface Sci. 540, 148362 (2021). https://doi.org/10.1016/j.apsusc.2020.148362
- A. Hq, A. Gy, A. Qh, A. Yn, A. Cb et al., Ingenious control of adsorbed oxygen species to construct dual reaction centers [emailprotected] photo-fenton catalyst with high-speed electron transmission channel for ppcps degradation. Appl. Catal. B-Environ. 291, 120064 (2021). https://doi.org/10.1016/j.apcatb.2021.120064
- X.X. Qiao, K. Yu, J.-Y. Xu, Y.-L. Cai, Y.-F. Li et al., Engineered nanoscale schwertmannites as fenton-like catalysts for highly efficient degradation of nitrophenols. Appl. Surface Sci. 548, 149248 (2021). https://doi.org/10.1016/j.apsusc.2021.149248
- S.G. Han, D.-D. Ma, S.-H. Zhou, K. Zhang, W.-B. Wei et al., Fluorine-tuned single-atom catalysts with dense surface Ni-N-4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B-Environ. 283, 119591 (2021). https://doi.org/10.1016/j.apcatb.2020.119591
- S.S. Yi, Z.-Y. Wang, H.-M. Li, Z. Zafar, Z.-T. Zhang et al., Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl. Catal. B-Environ. 283, 119649 (2021). https://doi.org/10.1016/j.apcatb.2020.119649
- Y.J. Chung, C.-S. Yang, J.-T. Lee, G.H. Wu, J.M. Wu, Coupling effect of piezo-flexocatalytic hydrogen evolution with hybrid 1T-and 2H-phase few-layered mose nanosheets. Adv. Energy Mater. 10(42), 2002082 (2020). https://doi.org/10.1002/aenm.202002082
- P. Song, S. Kuang, N. Panwar, G. Yang, D.J.H. Tng et al., A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 29(11), 1605668 (2017). https://doi.org/10.1002/adma.201605668
- L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32(38), 2003897 (2020). https://doi.org/10.1002/adma.202003897
- K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8(23), 1801111–1801114 (2018). https://doi.org/10.1002/aenm.201801114
- X. Peng, K. Dong, C. Ye, Y. Jiang, Z.L. Wang, A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), 9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- K. Dong, Z. Wu, J. Deng, A. Wang, H. Zhou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), e1804944 (2018). https://doi.org/10.1002/adma.201804944
- Y.T. Lin, S.N. Lai, J.M. Wu, Simultaneous piezoelectrocatalytic hydrogen-evolution and degradation of water pollutants by quartz microrods@few-layered mos hierarchical heterostructures. Adv. Mater. 32(34), 2002875 (2020). https://doi.org/10.1002/adma.202002875
- Y.C. Lai, Y.C. Hsiao, H.M. Wu, Z.L. Wang, Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 6(5), 1801883 (2019). https://doi.org/10.1002/advs.201801883
- Y.C. Lai, H.-M. Wu, H.C. Lin, C.L. Chang, H.H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019). https://doi.org/10.1002/adfm.201904626
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- G.R. Chen, Y.Z. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120(8), 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
- S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
- L. Jin, X. Xiao, W. Deng, A. Nashalian, D. He et al., Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 20(9), 6404–6411 (2020). https://doi.org/10.1021/acs.nanolett.0c01987
- Z.H. Zhou, L. Weng, T. Tat, A. Libanori, Z.M. Lin et al., Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 14(10), 14126–14133 (2020). https://doi.org/10.1021/acsnano.0c06949
- S.W. Chen, N. Wang, L. Ma, T. Li, M. Willander et al., Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 6(8), 9 (2016). https://doi.org/10.1002/aenm.201501778
- L. Ma, M. Zhou, R. Wu, A. Patil, Z.L. Wang, Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14(4), 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
- K. Dong, X. Peng, J. An, A.C. Wang, Z.L. Wang, Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11(1), 2868 (2020). https://doi.org/10.1038/s41467-020-16642-6
- K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
- L. Ma, Q. Liu, R. Wu, Z. Meng, X.Y. Liu, From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 16(26), 2000203 (2020). https://doi.org/10.1002/smll.202000203
- R. Wu, L. Ma, A.B. Patil, Z. Meng, X. Liu, Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 8(25), 12665–12673 (2020). https://doi.org/10.1039/D0TA02221G
- W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao et al., Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
- K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 705317 (2017). https://doi.org/10.1021/acsnano.7b05317
- Y.C. Wang, J.M. Wu, Effect of controlled oxygen vacancy on H2 production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 30(5), 1907619 (2020). https://doi.org/10.1002/adfm.201907619
- K. Han, J. Luo, Y. Feng, L. Xu, W. Tang et al., Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 13(8), 2450–2458 (2020). https://doi.org/10.1039/d0ee01102a
- A. Ahmed, I. Hassan, T. Ibn-Mohammed, H. Mostafa, I.M. Reaney et al., Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10(3), 653–671 (2017). https://doi.org/10.1039/c7ee00158d
- X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
- M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B-Environ. 203, 85–95 (2017). https://doi.org/10.1016/j.apcatb.2016.10.007
- K. Dong, Y. Hu, J. Yang, S.-W. Kim, W. Hu et al., Smart textile triboelectric nanogenerators: current status and perspectives. MRS Bull. 46, 2021 (2021). https://doi.org/10.1557/s43577-021-00123-2
- D. Liu, D. Chen, N. Li, Q. Xu, H. Li et al., ZIF67 derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small 15(31), 1902291 (2019). https://doi.org/10.1002/smll.201902291
- Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Construction of carbon dots modified MoO3/g-C3N4 z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl. Catal. B-Environ. 229, 96–104 (2018). https://doi.org/10.1016/j.apcatb.2018.02.011
References
J. Hu, P. Zhang, W. An, L. Liu, Y. Liang et al., In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B-Environ. 245, 130–142 (2019). https://doi.org/10.1016/j.apcatb.2018.12.029
B. Tian, Y. Wu, G. Lu, Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting. Appl. Catal. B-Environ. 280, 119410 (2021). https://doi.org/10.1016/j.apcatb.2020.119410
P. Yang, R. Wang, H. Tao, Y. Zhang, M.-M. Titirici et al., Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B-Environ. 280, 119454 (2021). https://doi.org/10.1016/j.apcatb.2020.119454
H. Xu, Y. Jiang, X. Yang, F. Li, A. Li et al., Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic tetracycline hydrochloride degradation. Mater. Res. Bull. 97, 158–168 (2018). https://doi.org/10.1016/j.materresbull.2017.09.004
T. Xu, D. Wang, L. Dong, H. Shen, W. Lu et al., Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants. Appl. Catal. B-Environ. 244, 96–106 (2019). https://doi.org/10.1016/j.apcatb.2018.11.049
J. Shi, F. Chen, L. Hou, G. Li, Y. Li et al., Eosin y bidentately bridged on UIO66NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl. Catal. B-Environ. 280, 119385 (2021). https://doi.org/10.1016/j.apcatb.2020.119385
S. Shen, J.J. Fu, H.B. Wang, Unravelling the favorable photocatalystic effect of hydrogenation process on the novel g-C3N4 -TiO2 catalysts for water purification. Diam. Relat. Mater. 114, 108292 (2021). https://doi.org/10.1016/j.diamond.2021.108292
S. Xin, G. Liu, X. Ma, J. Gong, B. Ma et al., High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism. Appl. Catal. B-Environ. 280, 119386 (2021). https://doi.org/10.1016/j.apcatb.2020.119386
Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang et al., Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 15, 1804212 (2019). https://doi.org/10.1002/smll.201804212
D.Y. Yoon, J.H. Park, H.C. Kang, P.S. Kim, I.S. Nam et al., Denox performance of Ag/Al2O3 catalyst by n-dodecane: Effect of calcination temperature. Appl. Catal. B-Environ. 101, 275–282 (2011). https://doi.org/10.1016/j.apcatb.2010.09.028
Y. Wang, M. Zhang, H. Yu, Y. Zuo, J. Gao et al., Facile fabrication of Ag/graphene oxide/TiO2 nanorod array as a powerful substrate for photocatalytic degradation and surface-enhanced raman scattering detection. Appl. Catal. B-Environ. 252, 174–186 (2019). https://doi.org/10.1016/j.apcatb.2019.03.084
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Sulfur-doped g-C3N4/TiO2 s-scheme heterojunction photocatalyst for congo red photodegradation. Chinese J. Catal. 42(1), 56–68 (2021). https://doi.org/10.1016/s1872-2067(20)63634-8
M.Y. Rizal, R. Saleh, S.P. Prakoso, A. Taufik, S. Yin, Ultraviolet- and visible-light photocatalytic and sonophotocatalytic activities toward congo red degradation using Ag/Mn3O4 nanocomposites. Mater. Sci. Semicon. Proc. 121, 105371 (2021). https://doi.org/10.1016/j.mssp.2020.105371
X. Shan, G. Ge, Z. Zhao, Facile and scalable fabrication of porous g-C3N4 nanosheets with nitrogen defects and oxygen-doping for synergistically promoted visible light photocatalytic H2 evolution. Energy Technol. 7(5), 1800886 (2019). https://doi.org/10.1002/ente.201800886
Z. Liu, Z. Wang, S. Qing, N. Xue, S. Jia, Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl. Catal. B-Environ. 223, 86–92 (2018). https://doi.org/10.1016/j.apcatb.2018.03.045
F. Li, M. Zhang, D. Benetti, L. Shi, L.V. Besteiro et al., “Green”, gradient multi-shell CuInSe2/(CuInSeXS1-x)(5)/CuInS2 quantum dots for photo-electrochemical hydrogen generation. Appl. Catal. B-Environ. 280, 119402 (2021). https://doi.org/10.1016/j.apcatb.2020.119402
J. Su, L. Zhu, G. Chen, Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Appl. Catal. B-Environ. 186, 127–135 (2016). https://doi.org/10.1016/j.apcatb.2015.12.050
Y. Zhang, M. Wu, Y. Wang, Y.H. Kwok, W. Pan et al., Fluorinated TiO2 coupling with alpha-MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. Appl. Catal. B-Environ. 280, 119402 (2021). https://doi.org/10.1016/j.apcatb.2020.119388
B. Yang, J. Xu, D. Bin, J. Wang, J. Zhao et al., Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Appl. Catal. B-Environ. 283, 119583 (2021). https://doi.org/10.1016/j.apcatb.2020.119583
D. Xing, Z. Cui, Y. Liu, Z. Wang, P. Wang et al., Two-dimensional Pi-d conjugated metal-organic framework Fe-3(hexaiminotriphenylene)(2) as a photo-fenton like catalyst for highly efficient degradation of antibiotics. Appl. Catal. B-Environ. 290, 120029 (2021). https://doi.org/10.1016/j.apcatb.2021.120029
M.J. Bai, X.-Y. Huang, H. Yin, D.-L. Nu, J. Wan, Fe-doped graphitic carbon nitride for methylene blue degradation with visible-light. J. Nanosci. Nanotechn. 21(11), 5698–5706 (2021). https://doi.org/10.1166/jnn.2021.19487
Z. Lu, X. Cao, H. Wei, W. Huo, Q. Wang et al., Strong enhancement effect of bisulfite on MIL-68(Fe)-catalyzed fenton-like reaction for organic pollutants degradation. Appl. Surface Sci. 542, 148631 (2021). https://doi.org/10.1016/j.apsusc.2020.148631
P. Wu, C. Zhou, Y. Li, M. Zhang, P. Tao et al., Flower-like feooh hybridized with carbon quantum dots for efficient photo-fenton degradation of organic pollutants. Appl. Surface Sci. 540, 148362 (2021). https://doi.org/10.1016/j.apsusc.2020.148362
A. Hq, A. Gy, A. Qh, A. Yn, A. Cb et al., Ingenious control of adsorbed oxygen species to construct dual reaction centers [emailprotected] photo-fenton catalyst with high-speed electron transmission channel for ppcps degradation. Appl. Catal. B-Environ. 291, 120064 (2021). https://doi.org/10.1016/j.apcatb.2021.120064
X.X. Qiao, K. Yu, J.-Y. Xu, Y.-L. Cai, Y.-F. Li et al., Engineered nanoscale schwertmannites as fenton-like catalysts for highly efficient degradation of nitrophenols. Appl. Surface Sci. 548, 149248 (2021). https://doi.org/10.1016/j.apsusc.2021.149248
S.G. Han, D.-D. Ma, S.-H. Zhou, K. Zhang, W.-B. Wei et al., Fluorine-tuned single-atom catalysts with dense surface Ni-N-4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B-Environ. 283, 119591 (2021). https://doi.org/10.1016/j.apcatb.2020.119591
S.S. Yi, Z.-Y. Wang, H.-M. Li, Z. Zafar, Z.-T. Zhang et al., Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl. Catal. B-Environ. 283, 119649 (2021). https://doi.org/10.1016/j.apcatb.2020.119649
Y.J. Chung, C.-S. Yang, J.-T. Lee, G.H. Wu, J.M. Wu, Coupling effect of piezo-flexocatalytic hydrogen evolution with hybrid 1T-and 2H-phase few-layered mose nanosheets. Adv. Energy Mater. 10(42), 2002082 (2020). https://doi.org/10.1002/aenm.202002082
P. Song, S. Kuang, N. Panwar, G. Yang, D.J.H. Tng et al., A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 29(11), 1605668 (2017). https://doi.org/10.1002/adma.201605668
L. Ma, R. Wu, S. Liu, A. Patil, H. Gong et al., A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 32(38), 2003897 (2020). https://doi.org/10.1002/adma.202003897
K. Dong, J. Deng, W. Ding, A.C. Wang, P. Wang et al., Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 8(23), 1801111–1801114 (2018). https://doi.org/10.1002/aenm.201801114
X. Peng, K. Dong, C. Ye, Y. Jiang, Z.L. Wang, A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), 9624 (2020). https://doi.org/10.1126/sciadv.aba9624
K. Dong, Z. Wu, J. Deng, A. Wang, H. Zhou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), e1804944 (2018). https://doi.org/10.1002/adma.201804944
Y.T. Lin, S.N. Lai, J.M. Wu, Simultaneous piezoelectrocatalytic hydrogen-evolution and degradation of water pollutants by quartz microrods@few-layered mos hierarchical heterostructures. Adv. Mater. 32(34), 2002875 (2020). https://doi.org/10.1002/adma.202002875
Y.C. Lai, Y.C. Hsiao, H.M. Wu, Z.L. Wang, Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 6(5), 1801883 (2019). https://doi.org/10.1002/advs.201801883
Y.C. Lai, H.-M. Wu, H.C. Lin, C.L. Chang, H.H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019). https://doi.org/10.1002/adfm.201904626
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
G.R. Chen, Y.Z. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120(8), 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
L. Jin, X. Xiao, W. Deng, A. Nashalian, D. He et al., Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 20(9), 6404–6411 (2020). https://doi.org/10.1021/acs.nanolett.0c01987
Z.H. Zhou, L. Weng, T. Tat, A. Libanori, Z.M. Lin et al., Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 14(10), 14126–14133 (2020). https://doi.org/10.1021/acsnano.0c06949
S.W. Chen, N. Wang, L. Ma, T. Li, M. Willander et al., Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 6(8), 9 (2016). https://doi.org/10.1002/aenm.201501778
L. Ma, M. Zhou, R. Wu, A. Patil, Z.L. Wang, Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14(4), 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
K. Dong, X. Peng, J. An, A.C. Wang, Z.L. Wang, Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11(1), 2868 (2020). https://doi.org/10.1038/s41467-020-16642-6
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
L. Ma, Q. Liu, R. Wu, Z. Meng, X.Y. Liu, From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 16(26), 2000203 (2020). https://doi.org/10.1002/smll.202000203
R. Wu, L. Ma, A.B. Patil, Z. Meng, X. Liu, Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A 8(25), 12665–12673 (2020). https://doi.org/10.1039/D0TA02221G
W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao et al., Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 705317 (2017). https://doi.org/10.1021/acsnano.7b05317
Y.C. Wang, J.M. Wu, Effect of controlled oxygen vacancy on H2 production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 30(5), 1907619 (2020). https://doi.org/10.1002/adfm.201907619
K. Han, J. Luo, Y. Feng, L. Xu, W. Tang et al., Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 13(8), 2450–2458 (2020). https://doi.org/10.1039/d0ee01102a
A. Ahmed, I. Hassan, T. Ibn-Mohammed, H. Mostafa, I.M. Reaney et al., Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10(3), 653–671 (2017). https://doi.org/10.1039/c7ee00158d
X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
M. Nawaz, W. Miran, J. Jang, D.S. Lee, One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B-Environ. 203, 85–95 (2017). https://doi.org/10.1016/j.apcatb.2016.10.007
K. Dong, Y. Hu, J. Yang, S.-W. Kim, W. Hu et al., Smart textile triboelectric nanogenerators: current status and perspectives. MRS Bull. 46, 2021 (2021). https://doi.org/10.1557/s43577-021-00123-2
D. Liu, D. Chen, N. Li, Q. Xu, H. Li et al., ZIF67 derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide. Small 15(31), 1902291 (2019). https://doi.org/10.1002/smll.201902291
Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Construction of carbon dots modified MoO3/g-C3N4 z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl. Catal. B-Environ. 229, 96–104 (2018). https://doi.org/10.1016/j.apcatb.2018.02.011