TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 265
Abstract
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
Highlights:
1 The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.
2 Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study.
3 Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Robbins, R.E. Gerszten, Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J. Clin. Invest. 133(11), e168121 (2023). https://doi.org/10.1172/JCI168121
- T. Althoff, R. Sosič, J.L. Hicks, A.C. King, S.L. Delp et al., Large-scale physical activity data reveal worldwide activity inequality. Nature 547(7663), 336–339 (2017). https://doi.org/10.1038/nature23018
- E.L. Watts, C.E. Matthews, J.R. Freeman, J.S. Gorzelitz, H.G. Hong et al., Association of leisure time physical activity types and risks of all-cause, cardiovascular, and cancer mortality among older adults. JAMA Netw. Open 5(8), e2228510 (2022). https://doi.org/10.1001/jamanetworkopen.2022.28510
- N. Gonzalez-Jaramillo, M. Wilhelm, A.M. Arango-Rivas, V. Gonzalez-Jaramillo, C. Mesa-Vieira et al., Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J. Am. Coll. Cardiol. 79(17), 1690–1700 (2022). https://doi.org/10.1016/j.jacc.2022.02.036
- D.H. Lee, L.F.M. Rezende, H.K. Joh, N. Keum, G. Ferrari et al., Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: a prospective cohort of US adults. Circulation 146(7), 523–534 (2022). https://doi.org/10.1161/CIRCULATIONAHA.121.058162
- A.E. Paluch, S. Bajpai, D.R. Bassett, M.R. Carnethon, U. Ekelund et al., Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public Health 7(3), e219–e228 (2022). https://doi.org/10.1016/S2468-2667(21)00302-9
- S.N. Blair, Physical inactivity: the biggest public health problem of the 21st century. Br. J. Sports Med. 43(1), 1–2 (2009). https://doi.org/10.1136/BJSM.2009.059360
- J. Abbasi, Phone apps and wearable trackers modestly improve activity. JAMA 325(6), 522 (2021). https://doi.org/10.1001/jama.2021.0495
- X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
- A. Ahmadi, E. Mitchell, C. Richter, F. Destelle, M. Gowing et al., Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015). https://doi.org/10.1109/JIOT.2014.2377238
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- A.M. Walker, C. Applegate, T. Pfau, E.L. Sparkes, A.M. Wilson et al., The kinematics and kinetics of riding a racehorse: a quantitative comparison of a training simulator and real horses. J. Biomech. 49(14), 3368–3374 (2016). https://doi.org/10.1016/j.jbiomech.2016.08.031
- L. Jin, S.L. Zhang, S. Xu, H. Guo, W. Yang et al., Free-fixed rotational triboelectric nanogenerator for self-powered real-time wheel monitoring. Adv. Mater. Technol. 6(3), 2000918 (2021). https://doi.org/10.1002/admt.202000918
- K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10(28), 2000426 (2020). https://doi.org/10.1002/aenm.202000426
- K. Xia, D. Wu, J. Fu, N.A. Hoque, Y. Ye et al., A high-output triboelectric nanogenerator based on nickel–copper bimetallic hydroxide nanowrinkles for self-powered wearable electronics. J. Mater. Chem. A 8(48), 25995–26003 (2020). https://doi.org/10.1039/D0TA09440D
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- P. Tan, Q. Zheng, Y. Zou, B. Shi, D. Jiang et al., A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 9(36), 1901875 (2019). https://doi.org/10.1002/aenm.201901875
- Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang et al., TENG-based self-powered device- the heart of life. Nano Energy 119, 109080 (2024). https://doi.org/10.1016/j.nanoen.2023.109080
- Y. Mu, Y. Chu, L. Pan, B. Wu, L. Zou et al., 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications. Int. J. Extrem. Manuf. 5(4), 042008 (2023). https://doi.org/10.1088/2631-7990/acf172
- H. Wen, X. Yang, R. Huang, D. Zheng, J. Yuan et al., Universal energy solution for triboelectric sensors toward the 5G era and internet of things. Adv. Sci. 10(22), 2302009 (2023). https://doi.org/10.1002/advs.202302009
- S. He, J. Dai, D. Wan, S. Sun, X. Yang et al., Biomimetic bimodal haptic perception using triboelectric effect. Sci. Adv. 10(27), eado6793 (2024). https://doi.org/10.1126/sciadv.ado6793
- T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Meth. Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
- S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett. 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
- L. Zhao, B. Qin, C. Fang, L. Liu, P. Poechmueller et al., Serpentine liquid electrode based dual-mode skin sensors: monitoring biomechanical movements by resistive or triboelectric mode. Chem. Eng. J. 479, 147898 (2024). https://doi.org/10.1016/j.cej.2023.147898
- L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
- L. Zhao, X. Guo, Y. Pan, S. Jia, L. Liu et al., Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 6(5), e12520 (2024). https://doi.org/10.1002/inf2.12520
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- L. Zhao, S. Jia, C. Fang, B. Qin, Y. Hu et al., Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature. Chem. Eng. J. 503, 158637 (2025). https://doi.org/10.1016/j.cej.2024.158637
- J. Wang, Z. Wu, L. Pan, R. Gao, B. Zhang et al., Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 13(2), 2587–2598 (2019). https://doi.org/10.1021/acsnano.8b09642
- X. Han, Y. Ji, L. Wu, Y. Xia, C.R. Bowen et al., Coupling enhancement of a flexible BiFeO3 film-based nanogenerator for simultaneously scavenging light and vibration energies. Nano-Micro Lett. 14(1), 198 (2022). https://doi.org/10.1007/s40820-022-00943-0
- P. Saxena, P. Shukla, Review: recent progress, challenges, and trends in polymer-based wearable sensors. J. Electrochem. Soc. 171(4), 047504 (2024). https://doi.org/10.1149/1945-7111/ad3a18
- Ł Kidziński, B. Yang, J.L. Hicks, A. Rajagopal, S.L. Delp et al., Deep neural networks enable quantitative movement analysis using single-camera videos. Nat. Commun. 11(1), 4054 (2020). https://doi.org/10.1038/s41467-020-17807-z
- Y. Ding, M. Kim, S. Kuindersma, C.J. Walsh, Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci. Robot. 3(15), eaar5438 (2018). https://doi.org/10.1126/scirobotics.aar5438
- Z. Wu, Y. Wen, P. Li, A power supply of self-powered online monitoring systems for power cords. IEEE Trans. Energy Convers. 28(4), 921–928 (2013). https://doi.org/10.1109/TEC.2013.2281075
- Y. Nemirovsky, A. Nemirovsky, P. Muralt, N. Setter, Design of novel thin-film piezoelectric accelerometer. Sens. Actuat. A Phys. 56(3), 239–249 (1996). https://doi.org/10.1016/S0924-4247(96)01324-6
- Z. Liu, Z. Zhao, X. Zeng, X. Fu, Y. Hu, Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 59, 295–301 (2019). https://doi.org/10.1016/j.nanoen.2019.02.057
- C. Li, R. Luo, Y. Bai, J. Shao, J. Ji et al., Molecular doped biodegradable triboelectric nanogenerator with optimal output performance. Adv. Funct. Mater. 34(29), 2400277 (2024). https://doi.org/10.1002/adfm.202400277
- H.G. Menge, N.D. Huynh, K. Choi, C. Cho, D. Choi et al., Body-patchable, antimicrobial, encodable TENGs with ultrathin, free-standing, translucent chitosan/alginate/silver nanocomposite multilayers. Adv. Funct. Mater. 33(7), 2210571 (2023). https://doi.org/10.1002/adfm.202210571
- S. Zhang, Y. Zhu, Y. Xia, K. Liu, S. Li et al., Wearable integrated self-powered electroluminescence display device based on all-In-one MXene electrode for information encryption. Adv. Funct. Mater. 33(44), 2307609 (2023). https://doi.org/10.1002/adfm.202307609
- C. Cai, X. Meng, L. Zhang, B. Luo, Y. Liu et al., High strength and toughness polymeric triboelectric materials enabled by dense crystal-domain cross-linking. Nano Lett. 24(12), 3826–3834 (2024). https://doi.org/10.1021/acs.nanolett.4c00918
- H. Duo, H. Wang, S. Shima, E. Takamura, H. Sakamoto, Hydrogen-bond enhanced interior charge transport and trapping in all-fiber triboelectric nanogenerators for human motion sensing and communication. Nano Energy 131, 110297 (2024). https://doi.org/10.1016/j.nanoen.2024.110297
- P. Ding, Z. Ge, K. Yuan, J. Li, Y. Zhao et al., Muscle-inspired anisotropic conductive foams with low-detection limit and wide linear sensing range for abnormal gait monitoring. Nano Energy 124, 109490 (2024). https://doi.org/10.1016/j.nanoen.2024.109490
- Y.-H. Tsao, C.-H. Chen, Z.-H. Lin, Self-powered electrochemical systems for the synthesis of metal nanops and their use in lactate detection. ECS Trans. 77(7), 51–55 (2017). https://doi.org/10.1149/07707.0051ecst
- X. Xuan, C. Chen, A. Molinero-Fernandez, E. Ekelund, D. Cardinale et al., Fully integrated wearable device for continuous sweat lactate monitoring in sports. ACS Sens. 8(6), 2401–2409 (2023). https://doi.org/10.1021/acssensors.3c00708
- A.C.N. Rodrigues, A.S. Pereira, R.M.S. Mendes, A.G. Araújo, M.S. Couceiro et al., Using artificial intelligence for pattern recognition in a sports context. Sensors 20(11), 3040 (2020). https://doi.org/10.3390/s20113040
- F. Sun, Y. Zhu, C. Jia, B. Ouyang, T. Zhao et al., A flexible lightweight triboelectric nanogenerator for protector and scoring system in taekwondo competition monitoring. Electronics 11(9), 1306 (2022). https://doi.org/10.3390/electronics11091306
- Q. Zheng, Q. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18(1), 7–21 (2021). https://doi.org/10.1038/s41569-020-0426-4
- Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- Z. Lin, Z. Wu, B. Zhang, Y.-C. Wang, H. Guo et al., A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 4(2), 1800360 (2019). https://doi.org/10.1002/admt.201800360
- C. Jia, Y. Zhu, F. Sun, Y. Wen, Q. Wang et al., Gas-supported triboelectric nanogenerator based on in situ gap-generation method for biomechanical energy harvesting and wearable motion monitoring. Sustainability 14(21), 14422 (2022). https://doi.org/10.3390/su142114422
- J. Choi, C. Han, S. Cho, K. Kim, J. Ahn et al., Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming. Sci. Adv. 7(42), eabj0694 (2021). https://doi.org/10.1126/sciadv.abj0694
- C. He, W. Zhu, G.Q. Gu, T. Jiang, L. Xu et al., Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 11(2), 1157–1164 (2018). https://doi.org/10.1007/s12274-017-1824-8
- L. Wang, X. Sun, D. Wang, C. Wang, Z. Bi et al., Construction of stretchable and large deformation green triboelectric nanogenerator and its application in technical action monitoring of racket sports. ACS Sustain. Chem. Eng. 11(18), 7102–7114 (2023). https://doi.org/10.1021/acssuschemeng.3c00124
- W. Yang, N.-W. Li, S. Zhao, Z. Yuan, J. Wang et al., A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv. Mater. Technol. 3(2), 1700241 (2018). https://doi.org/10.1002/admt.201700241
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- D. Chen, Q. Pei, Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117(17), 11239–11268 (2017). https://doi.org/10.1021/acs.chemrev.7b00019
- Y. Shi, X. Wei, K. Wang, D. He, Z. Yuan et al., Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl. Mater. Interfaces 13(42), 50329–50337 (2021). https://doi.org/10.1021/acsami.1c13420
- M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang et al., Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12(6), 6156–6162 (2018). https://doi.org/10.1021/acsnano.8b02562
- F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
- Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9(33), 1901124 (2019). https://doi.org/10.1002/aenm.201901124
- Y. Yang, X. Hou, W. Geng, J. Mu, L. Zhang et al., Human movement monitoring and behavior recognition for intelligent sports using customizable and flexible triboelectric nanogenerator. Sci. China Technol. Sci. 65(4), 826–836 (2022). https://doi.org/10.1007/s11431-021-1984-9
- T.M. Seeberg, J. Tjønnås, O.M.H. Rindal, P. Haugnes, S. Dalgard et al., A multi-sensor system for automatic analysis of classical cross-country skiing techniques. Phys. Eng. 20(4), 313–327 (2017). https://doi.org/10.1007/s12283-017-0252-z
- M. Gerth, M. Haecker, P. Kohmann, Influence of mountain bike riding velocity, braking and rider action on pedal kickback. Phys. Eng. 23(1), 1 (2019). https://doi.org/10.1007/s12283-019-0315-4
- Y. Hao, J. Wen, X. Gao, D. Nan, J. Pan et al., Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics. ACS Nano 16(1), 1271–1279 (2022). https://doi.org/10.1021/acsnano.1c09096
- C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
- S.W. Park, P.S. Das, A. Chhetry, J.Y. Park, A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens. J. 17(20), 6558–6564 (2017). https://doi.org/10.1109/JSEN.2017.2749233
- D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Piezoelectric sensors: self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1770272 (2017). https://doi.org/10.1002/adma.201770272
- S. Hong, J.J. Lee, S. Gandla, J. Park, H. Cho et al., Resistive water sensors based on PEDOT: PSS- g-PEGME copolymer and laser treatment for water ingress monitoring systems. ACS Sens. 4(12), 3291–3297 (2019). https://doi.org/10.1021/acssensors.9b01917
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
- M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang et al., Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29(44), 1704107 (2017). https://doi.org/10.1002/adma.201704107
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- C. Chen, J. Song, S. Zhu, Y. Li, Y. Kuang et al., Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4(3), 544–554 (2018). https://doi.org/10.1016/j.chempr.2017.12.028
- J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10(1), 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
- J. Xu, X. Wei, R. Li, Y. Shi, Y. Peng et al., Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 15(7), 6483–6489 (2022). https://doi.org/10.1007/s12274-022-4218-5
- S. Hu, H. Li, W. Lu, T. Han, Y. Xu et al., Triboelectric insoles with normal-shear plantar stress perception. Adv. Funct. Mater. 34(16), 2313458 (2024). https://doi.org/10.1002/adfm.202313458
- D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia et al., Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 32(28), 2201335 (2022). https://doi.org/10.1002/adfm.202201335
- M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
- H. Liu, J. Cao, S. Feng, G. Cheng, Z. Zhang et al., Highly sensitive and durable, triboelectric based self-powered nanosensor for boundary detection in sports event. Adv. Mater. Technol. 8(8), 2201766 (2023). https://doi.org/10.1002/admt.202201766
- H. Xiang, L. Peng, Q. Yang, N. Wang, X. Cao et al., Carbon fibre reinforced triboelectric nanogenerator for self-powered sporting events monitoring. Nano Energy 123, 109403 (2024). https://doi.org/10.1016/j.nanoen.2024.109403
- Z. Tian, Z. Zhu, S. Yue, Y. Liu, Y. Li et al., Self-powered, self-healing, and anti-freezing triboelectric sensors for violation detection in sport events. Nano Energy 122, 109276 (2024). https://doi.org/10.1016/j.nanoen.2024.109276
- T.J. Gabbett, G.P. Nassis, E. Oetter, J. Pretorius, N. Johnston et al., The athlete monitoring cycle: a practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 51(20), 1451–1452 (2017). https://doi.org/10.1136/bjsports-2016-097298
- D. Bhatia, S.H. Jo, Y. Ryu, Y. Kim, D.H. Kim et al., Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 80, 105508 (2021). https://doi.org/10.1016/j.nanoen.2020.105508
- D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit. Med. 2, 71 (2019). https://doi.org/10.1038/s41746-019-0149-2
- Y. Shen, H. Liu, On-site emergency protocols in sports: lessons from the field. Lancet 404(10455), 843–844 (2024). https://doi.org/10.1016/S0140-6736(24)01610-6
- D.H. Daneshvar, C.J. Nowinski, A.C. McKee, R.C. Cantu, The epidemiology of sport-related concussion. Clin. Sports Med. 30(1), 1–17 (2011). https://doi.org/10.1016/j.csm.2010.08.006
- R.C. Gardner, K. Yaffe, Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 66, 75–80 (2015). https://doi.org/10.1016/j.mcn.2015.03.001
- L. Zu, J. Wen, S. Wang, M. Zhang, W. Sun et al., Multiangle, self-powered sensor array for monitoring head impacts. Sci. Adv. 9(20), eadg5152 (2023). https://doi.org/10.1126/sciadv.adg5152
- C. Hrysomallis, Neck muscular strength, training, performance and sport injury risk: a review. Sports Med. 46(8), 1111–1124 (2016). https://doi.org/10.1007/s40279-016-0490-4
- R.C. Cantu, Y.M. Li, M. Abdulhamid, L.S. Chin, Return to play after cervical spine injury in sports. Curr. Phys. Med. Rep. 12(1), 14–17 (2013). https://doi.org/10.1249/jsr.0b013e31827dc1fb
- F. Sun, Y. Zhu, C. Jia, Y. Wen, Y. Zhang et al., Deep-learning-assisted neck motion monitoring system self-powered through biodegradable triboelectric sensors. Adv. Funct. Mater. 34(13), 2310742 (2024). https://doi.org/10.1002/adfm.202310742
- Y. Xin, T. Liu, Y. Xu, J. Zhu, T. Lin et al., Development of respiratory monitoring and actions recognition based on a pressure sensor with multi-arch structures. Sens. Actuat. A Phys. 296, 357–366 (2019). https://doi.org/10.1016/j.sna.2019.06.049
- J. Pan, W. Sun, X. Li, Y. Hao, Y. Bai et al., A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring. J. Colloid Interface Sci. 671, 336–343 (2024). https://doi.org/10.1016/j.jcis.2024.05.127
- R. Izzo, G. Guarnieri, G. Guglielmi, M. Muto, Biomechanics of the spine part I: spinal stability. Eur. J. Radiol. 82(1), 118–126 (2013). https://doi.org/10.1016/j.ejrad.2012.07.024
- J. Cholewicki, S. McGill, Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin. Biomech. 11(1), 1–15 (1996). https://doi.org/10.1016/0268-0033(95)00035-6
- C. Li, D. Liu, C. Xu, Z. Wang, S. Shu et al., Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12(1), 2950 (2021). https://doi.org/10.1038/s41467-021-23207-8
- M.D. Bucknor, K.J. Stevens, L.S. Steinbach, Elbow imaging in sport: sports imaging series. Radiology 280(1), 328 (2016). https://doi.org/10.1148/radiol.2016164015
- C. Wei, R. Cheng, C. Ning, X. Wei, X. Peng et al., A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 33(35), 2303562 (2023). https://doi.org/10.1002/adfm.202303562
- K. Trompeter, D. Fett, P. Platen, Prevalence of back pain in sports: a systematic review of the literature. Sports Med. 47(6), 1183–1207 (2017). https://doi.org/10.1007/s40279-016-0645-3
- P. Slade, M.J. Kochenderfer, S.L. Delp, S.H. Collins, Sensing leg movement enhances wearable monitoring of energy expenditure. Nat. Commun. 12(1), 4312 (2021). https://doi.org/10.1038/s41467-021-24173-x
- Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
- Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
- S. Gao, T. He, Z. Zhang, H. Ao, H. Jiang et al., A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications. Adv. Sci. 8(20), 2101834 (2021). https://doi.org/10.1002/advs.202101834
- Z. Cheng, Y. Wen, Z. Xie, M. Zhang, Q. Feng et al., A multi-sensor coupled supramolecular elastomer empowers intelligent monitoring of human gait and arch health. Chem. Eng. J. 504, 158760 (2025). https://doi.org/10.1016/j.cej.2024.158760
- Y.-J. Huang, C.-K. Chung, Design and fabrication of polymer triboelectric nanogenerators for self-powered insole applications. Polymers 15(20), 4035 (2023). https://doi.org/10.3390/polym15204035
- P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
- C. Yeh, F.-C. Kao, P.-H. Wei, A. Pal, K. Kaswan et al., Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 104, 107852 (2022). https://doi.org/10.1016/j.nanoen.2022.107852
- M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
- K. Yan, L. Liu, Y. Xiang, Q. Jin, Guest editorial: AI and machine learning solution cyber intelligence technologies: new methodologies and applications. IEEE Trans. Ind. Inform. 16(10), 6626–6631 (2020). https://doi.org/10.1109/TII.2020.2988944
- J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia et al., A survey of visual analytics techniques for machine learning. Comput. Vis. Medium. 7(1), 3–36 (2021). https://doi.org/10.1007/s41095-020-0191-7
- M.Z.A. Bhuiyan, S.-Y. Kuo, G. Wang, Guest editorial: trustworthiness of AI/ML/DL approaches in industrial Internet of Things and applications. IEEE Trans. Ind. Inform. 19(1), 969–972 (2023). https://doi.org/10.1109/TII.2022.3201588
- P. Sofotasiou, B.R. Hughes, J.K. Calautit, Qatar 2022: facing the FIFA World Cup climatic and legacy challenges. Sustain. Cities Soc. 14, 16–30 (2015). https://doi.org/10.1016/j.scs.2014.07.007
- A. Al-Hamrani, D. Kim, M. Kucukvar, N.C. Onat, Circular economy application for a Green Stadium construction towards sustainable FIFA world cup Qatar 2022™. Environ. Impact Assess. Rev. 87, 106543 (2021). https://doi.org/10.1016/j.eiar.2020.106543
- M.V. Ferrari, Test, swarm, normalize: how surveillance technologies have infiltrated Paris 2024 olympic games. Cad. Metrop. 25(56), 75–96 (2023). https://doi.org/10.1590/2236-9996.2023-5603
- F. Brocherie, M. Pascal, R. Lagarrigue, G.P. Millet, Climate and health challenges for Paris 2024 olympics and paralympics. Br. Medical J (2024). https://doi.org/10.1136/bmj-2023-077925
- J. Shen, Z. Yang, Y. Yang, B. Yang, Y. Song et al., A remote monitoring system for wind speed and direction based on non-contact triboelectric nanogenerator. Nano Energy 133, 110453 (2025). https://doi.org/10.1016/j.nanoen.2024.110453
- Y. Wang, Q. Gao, W. Liu, C. Bao, H. Li et al., Wind aggregation enhanced triboelectric-electromagnetic hybrid generator with slit effect. ACS Appl. Mater. Interfaces (2024). https://doi.org/10.1021/acsami.4c03113
- Y. Yang, Q. Shi, Z. Zhang, X. Shan, B. Salam et al., Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 5(1), e12360 (2023). https://doi.org/10.1002/inf2.12360
- T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). https://doi.org/10.1002/adma.201504299
- D. Liu, Y. Wen, Z. Xie, M. Zhang, Y. Wang et al., Self-powered, flexible, wireless and intelligent human health management system based on natural recyclable materials. ACS Sens. 9(11), 6236–6246 (2024). https://doi.org/10.1021/acssensors.4c02186
- J. Yuan, J. Xue, M. Liu, L. Wu, J. Cheng et al., Self-powered intelligent badminton racket for machine learning-enhanced real-time training monitoring. Nano Energy 132, 110377 (2024). https://doi.org/10.1016/j.nanoen.2024.110377
- X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
- G. Su, N. Wang, Y. Liu, R. Zhang, Z. Li et al., From fluorescence-transfer-lightening-printing-assisted conductive adhesive nanocomposite hydrogels toward wearable interactive optical information-electronic strain sensors. Adv. Mater. 36(25), 2400085 (2024). https://doi.org/10.1002/adma.202400085
- Q. Chen, D. Xu, Y. Yan, Z. Qu, H. Zhao et al., A self-powered tennis training system based on micro-nano structured sensing yarn arrays. Adv. Funct. Mater. 35(5), 2414395 (2025). https://doi.org/10.1002/adfm.202414395
- H. Ahmadi, M. Yousefizad, N. Manavizadeh, Smartifying martial arts: lightweight triboelectric nanogenerator as a self-powered sensor for accurate judging and AI-driven performance analysis. IEEE Sens. J. 24(19), 30176–30183 (2024). https://doi.org/10.1109/JSEN.2024.3443229
- Y.M. Mekki, O.H. Ahmed, D. Powell, A. Price, H.P. Dijkstra, Author Correction: games Wide Open to athlete partnership in building artificial intelligence systems. NPJ Digit. Med. 7, 291 (2024). https://doi.org/10.1038/s41746-024-01261-y
- B. Liu, S. Li, Y. Wen, Z. Xie, M. Zhang et al., Papermaking-inspired sustainable triboelectric sensors for intelligent detecting system. Nano Energy 131, 110322 (2024). https://doi.org/10.1016/j.nanoen.2024.110322
- Q. Feng, Z. Xie, Y. Wen, Z. Cheng, M. Zhang et al., An eco-friendly, sodium alginate degradable conformal triboelectric nanogenerator for self-powered sensing and real-time injury monitoring. Sustain. Mater. Technol. 43, e01262 (2025). https://doi.org/10.1016/j.susmat.2025.e01262
- K.-H. Yu, A.L. Beam, I.S. Kohane, Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018). https://doi.org/10.1038/s41551-018-0305-z
- X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119(18), 10520–10594 (2019). https://doi.org/10.1021/acs.chemrev.8b00728
- Z. Wang, R.S. Srinivasan, A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 75, 796–808 (2017). https://doi.org/10.1016/j.rser.2016.10.079
- J. Liao, D. Yang, N.I. Arshad, K. Venkatachalam, A. Ahmadian, MEMS: an automated multi-energy management system for smart residences using the DD-LSTM approach. Sustain. Cities Soc. 98, 104850 (2023). https://doi.org/10.1016/j.scs.2023.104850
- F. Tang, Y. Kawamoto, N. Kato, J. Liu, Future intelligent and secure vehicular network toward 6G: machine-learning approaches. Proc. IEEE 108(2), 292–307 (2020). https://doi.org/10.1109/JPROC.2019.2954595
- R. Mooney, L.R. Quinlan, G. Corley, A. Godfrey, C. Osborough et al., Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis. PLoS ONE 12(2), e0170902 (2017). https://doi.org/10.1371/journal.pone.0170902
- T.S. Bincy, A.P.S. Prasanna, A.S. Balaji, K.J. Sivasankar, D.J. Thiruvadigal et al., Computational analysis of starch for sustainable power generation towards integrated wearable IoT. Appl. Energy 370, 123590 (2024). https://doi.org/10.1016/j.apenergy.2024.123590
- L.S. Luteberget, M. Spencer, M. Gilgien, Validity of the catapult ClearSky T6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 9, 115 (2018). https://doi.org/10.3389/fphys.2018.00115
- R. Umapathi, M. Rethinasabapathy, V. Kakani, H. Kim, Y. Park et al., Hexagonal boron nitride composite film based triboelectric nanogenerator for energy harvesting and machine learning assisted handwriting recognition. Nano Energy 136, 110689 (2025). https://doi.org/10.1016/j.nanoen.2025.110689
- Z. Bai, Y. Xu, J. Li, J. Zhu, C. Gao et al., An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 12(38), 42880–42890 (2020). https://doi.org/10.1021/acsami.0c12709
- J.-T. Zhang, A.C. Novak, B. Brouwer, Q. Li, Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 34(8), N63 (2013). https://doi.org/10.1088/0967-3334/34/8/N63
- J. Lan, K. Wang, S. Song, K. Li, C. Liu et al., Method for measuring non-stationary motion attitude based on MEMS-IMU array data fusion and adaptive filtering. Meas. Sci. Technol. 35(8), 086304 (2024). https://doi.org/10.1088/1361-6501/ad44c8
- F. Sun, Y. Zhu, C. Jia, T. Zhao, L. Chu et al., Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators. J. Energy Chem. 79, 477–488 (2023). https://doi.org/10.1016/j.jechem.2022.12.024
- M. Rana, V. Mittal, Wearable sensors for real-time kinematics analysis in sports: a review. IEEE Sens. J. 21(2), 1187–1207 (2021). https://doi.org/10.1109/JSEN.2020.3019016
- Y. Hao, T. Guo, J. Ren, Y. Wang, L. Wang et al., Characterization of a thermostable, protease-tolerant inhibitor of α-glycosidase from carrot: a potential oral additive for treatment of diabetes. Int. J. Biol. Macromol. 209, 1271–1279 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.110
- S.M. Sohel Rana, O. Faruk, M. Selim Reza, M. Robiul Islam, H. Kim et al., All porous Ecoflex and SEBS-based stretchable high-performance triboelectric nanogenerator for self-powered human activity monitoring. Chem. Eng. J. 488, 151050 (2024). https://doi.org/10.1016/j.cej.2024.151050
- W. Akram, Q. Chen, X. Zhang, S. Ren, L. Niu et al., Coaxial tribonegative yarn TENG with aromatic polyimide as charge entrapment layer for real-time edge ball assessment in cricket sports. Nano Energy 131, 110275 (2024). https://doi.org/10.1016/j.nanoen.2024.110275
- A. Galli, R.J.H. Montree, S. Que, E. Peri, R. Vullings, An overview of the sensors for heart rate monitoring used in extramural applications. Sensors 22(11), 4035 (2022). https://doi.org/10.3390/s22114035
- W. Kim, M. Kim, Soccer kick detection using a wearable sensor, in 2016 international conference on information and communication technology convergence (ICTC). October 19–21, 2016, Jeju, Korea. IEEE, (2016)., 1207–1209.
- I. Bayios, E. Rousanoglou, G. Sikalias, K. Boudolos, ιnertial sensing of the hands’ kinematics during lateral shuttle running in handball and football goalkeepers. Med. Sci. Phys. Exerc. 54(9S), 440 (2022). https://doi.org/10.1249/01.mss.0000880588.05542.db
- P.B. Gastin, O. McLean, M. Spittle, R.V.P. Breed, Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J. Sci. Med. Sport 16(6), 589–593 (2013). https://doi.org/10.1016/j.jsams.2013.01.007
- G.P. Siegmund, K.M. Guskiewicz, S.W. Marshall, A.L. DeMarco, S.J. Bonin, Laboratory validation of two wearable sensor systems for measuring head impact severity in football players. Ann. Biomed. Eng. 44(4), 1257–1274 (2016). https://doi.org/10.1007/s10439-015-1420-6
- M. Armitage, M. Beato, S.A. McErlain-Naylor, Inter-unit reliability of IMU Step metrics using IMeasureU Blue Trident inertial measurement units for running-based team sport tasks. J. Sports Sci. 39(13), 1512–1518 (2021). https://doi.org/10.1080/02640414.2021.1882726
- T. Tamura, Y. Maeda, M. Sekine, M. Yoshida, Wearable photoplethysmographic sensors: past and present. Electronics 3(2), 282–302 (2014). https://doi.org/10.3390/electronics3020282
- Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
- D. Liu, Y. Wang, Q. Feng, Z. Cheng, D. Liu et al., An intelligent human-computer interaction system based on wireless self-powered sensor for motion monitoring. J. Nanoelectron. Optoelectron. 19(1), 1–9 (2024). https://doi.org/10.1166/jno.2024.3529
- B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun et al., Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11(7), 7440–7446 (2017). https://doi.org/10.1021/acsnano.7b03818
- B. Baro, S. Khimhun, U. Das, S. Bayan, ZnO based triboelectric nanogenerator on textile platform for wearable sweat sensing application. Nano Energy 108, 108212 (2023). https://doi.org/10.1016/j.nanoen.2023.108212
- P. Siirtola, P. Laurinen, J. Röning, H. Kinnunen, Efficient accelerometer-based swimming exercise tracking, in 2011 IEEE symposium on computational intelligence and data mining (CIDM). April 11-15, 2011, Paris, France. IEEE, (2011), 156–161
- D.E. Bolanakis, Evaluating performance of MEMS barometric sensors in differential altimetry systems. IEEE Aerosp. Electron. Syst. Mag. 32(9), 34–39 (2017). https://doi.org/10.1109/MAES.2017.160248
- E.M. Nijmeijer, P. Heuvelmans, R. Bolt, A. Gokeler, E. Otten et al., Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomech. 154, 111637 (2023). https://doi.org/10.1016/j.jbiomech.2023.111637
- Y. Yu, Q. Gao, D. Zhao, X. Li, Z.L. Wang et al., Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Mater. Today Phys. 25, 100701 (2022). https://doi.org/10.1016/j.mtphys.2022.100701
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
- B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier et al., Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014). https://doi.org/10.1016/j.gaitpost.2014.01.008
- M. Cheng, X. Liu, Z. Li, Y. Zhao, X. Miao et al., Multiple textile triboelectric nanogenerators based on UV-protective, radiative cooling, and antibacterial composite yarns. Chem. Eng. J. 468, 143800 (2023). https://doi.org/10.1016/j.cej.2023.143800
- Y. Wen, F. Sun, Z. Xie, M. Zhang, Z. An et al., Machine learning-assisted novel recyclable flexible triboelectric nanogenerators for intelligent motion. iScience 27(4), 109615 (2024). https://doi.org/10.1016/j.isci.2024.109615
- Y. Li, S. Chen, H. Yan, H. Jiang, J. Luo et al., Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 468, 143572 (2023). https://doi.org/10.1016/j.cej.2023.143572
- Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
- D. Khan, M. Alonazi, M. Abdelhaq, N. Al Mudawi, A. Algarni et al., Robust human locomotion and localization activity recognition over multisensory. Front. Physiol. 15, 1344887 (2024). https://doi.org/10.3389/fphys.2024.1344887
- S. Barrett, Monitoring elite soccer players’ external loads using real-time data. Int. J. Sports Physiol. Perform. 12(10), 1285–1287 (2017). https://doi.org/10.1123/ijspp.2016-0516
- S. Chen, T. Huang, H. Zuo, S. Qian, Y. Guo et al., A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 28(46), 1805108 (2018). https://doi.org/10.1002/adfm.201805108
- M. Hardegger, D. Roggen, S. Mazilu, G. Tröster, ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM. in 2012 international conference on indoor positioning and indoor navigation (IPIN). November 13–15, 2012, Sydney, NSW, Australia. IEEE, (2012), 1–10.
- R. Srivastava, A. Patwari, S. Kumar, G. Mishra, L. Kaligounder et al., Efficient characterization of tennis shots and game analysis using wearable sensors data, in 2015 IEEE SENSORS. November 1-4, 2015, Busan, Korea. IEEE, (2015)., 1–4
- B. Adamová, P. Kutilek, O. Cakrt, Z. Svoboda, S. Viteckova et al., Quantifying postural stability of patients with cerebellar disorder during quiet stance using three-axis accelerometer. Biomed. Signal Process. Control 40, 378–384 (2018). https://doi.org/10.1016/j.bspc.2017.09.025
- S. Wang, M. He, B. Weng, L. Gan, Y. Zhao et al., Stretchable and wearable triboelectric nanogenerator based on kinesio tape for self-powered human motion sensing. Nanomaterials 8(9), 657 (2018). https://doi.org/10.3390/nano8090657
- A. Yu, Y. Zhu, W. Wang, J. Zhai, Progress in triboelectric materials: toward high performance and widespread applications. Adv. Funct. Mater. 29(41), 1900098 (2019). https://doi.org/10.1002/adfm.201900098
- H. Yang, F.R. Fan, Y. Xi, W. Wu, Bio-derived natural materials based triboelectric devices for self-powered ubiquitous wearable and implantable intelligent devices. Adv. Sustain. Syst. 4(9), 2000108 (2020). https://doi.org/10.1002/adsu.202000108
- S. Bhatia, Natural polymers vs synthetic polymer. Natural Polymer Drug Delivery Systems. Springer International Publishing, (2016)., pp 95–118. https://doi.org/10.1007/978-3-319-41129-3_3
- A. Vinod, M.R. Sanjay, S. Suchart, P. Jyotishkumar, Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 258, 120978 (2020). https://doi.org/10.1016/j.jclepro.2020.120978
- M.M. Abe, J.R. Martins, P.B. Sanvezzo, J.V. Macedo, M.C. Branciforti et al., Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13(15), 2484 (2021). https://doi.org/10.3390/polym13152484
- J. Wang, Y. Lou, B. Wang, Q. Sun, M. Zhou et al., Highly sensitive, breathable, and flexible pressure sensor based on electrospun membrane with assistance of AgNW/TPU as composite dielectric layer. Sensors 20(9), 2459 (2020). https://doi.org/10.3390/s20092459
- H. Niu, X. Du, S. Zhao, Z. Yuan, X. Zhang et al., Polymer nanocomposite-enabled high-performance triboelectric nanogenerator with self-healing capability. RSC Adv. 8(54), 30661–30668 (2018). https://doi.org/10.1039/c8ra05305g
- Q. Wang, M. Chen, W. Li, Z. Li, Y. Chen et al., Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers. Nano Energy 41, 128–138 (2017). https://doi.org/10.1016/j.nanoen.2017.09.030
- H. Guo, X. Jia, L. Liu, X. Cao, N. Wang et al., Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 12(4), 3461–3467 (2018). https://doi.org/10.1021/acsnano.8b00140
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- G. Liu, J. Guan, X. Wang, J. Yu, B. Ding, Large-scale preparation of mechanically high-performance and biodegradable PLA/PHBV melt-blown nonwovens with nanofibers. Engineering 39, 244–252 (2024). https://doi.org/10.1016/j.eng.2023.02.021
- M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
- F. Mo, G. Liang, Z. Huang, H. Li, D. Wang et al., An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32(5), 1902151 (2020). https://doi.org/10.1002/adma.201902151
- K. Wang, Y. Shen, T. Wang, Z. Li, B. Zheng et al., An ultrahigh-strength braided smart yarn for wearable individual sensing and protection. Adv. Fiber Mater. 6(3), 786–797 (2024). https://doi.org/10.1007/s42765-024-00385-w
- Y. Gao, H. Li, S. Chao, Y. Wang, L. Hou et al., Zebra-patterned stretchable helical yarn for triboelectric self-powered multifunctional sensing. ACS Nano 18(26), 16958–16966 (2024). https://doi.org/10.1021/acsnano.4c03115
- C. Ning, C. Wei, F. Sheng, R. Cheng, Y. Li et al., Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Res. 16(5), 7518–7526 (2023). https://doi.org/10.1007/s12274-022-5273-7
- Y. Jiang, J. An, F. Liang, G. Zuo, J. Yi et al., Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res. 15(9), 8389–8397 (2022). https://doi.org/10.1007/s12274-022-4409-0
- F. Xing, X. Gao, J. Wen, H. Li, H. Liu et al., Multistrand twisted triboelectric kevlar yarns for harvesting high impact energy, body injury location and levels evaluation. Adv. Sci. 11(21), 2401076 (2024). https://doi.org/10.1002/advs.202401076
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- J. Yu, X. Hou, M. Cui, S. Shi, J. He et al., Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China Mater. 62(10), 1423–1432 (2019). https://doi.org/10.1007/s40843-019-9446-1
- J.H. Park, C. Wu, S. Sung, T.W. Kim, Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy 57, 872–878 (2019). https://doi.org/10.1016/j.nanoen.2019.01.001
- D. Yang, Y. Ni, X. Kong, S. Li, X. Chen et al., Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9), 14653–14661 (2021). https://doi.org/10.1021/acsnano.1c04384
- H. Wei, A. Li, D. Kong, Z. Li, D. Cui et al., Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 4(1), 86–95 (2021). https://doi.org/10.1007/s42114-020-00201-0
- W. Liu, Z. Long, G. Yang, L. Xing, A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors 12(2), 60 (2022). https://doi.org/10.3390/bios12020060
- J. Wu, Z. Fan, Portable referee system for volleyball game based on pressure monitoring and self-powering communication. Mechanics 30(1), 91–96 (2024). https://doi.org/10.5755/j02.mech.33756
- X. Gao, M. Zheng, H. Lv, Y. Zhang, M. Zhu et al., Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Compos. Sci. Technol. 229, 109693 (2022). https://doi.org/10.1016/j.compscitech.2022.109693
- Z. Lu, Y. Zhu, C. Jia, T. Zhao, M. Bian et al., A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 11(4), 108 (2021). https://doi.org/10.3390/bios11040108
- X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15(1), 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
- X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
- Z. Feng, Q. He, X. Wang, J. Qiu, H. Wu et al., Waterproof iontronic yarn for highly sensitive biomechanical strain monitoring in wearable electronics. Adv. Fiber Mater. 6(3), 925–935 (2024). https://doi.org/10.1007/s42765-024-00381-0
- H. Gao, T. Chen, A flexible ultra-highly sensitive capacitive pressure sensor for basketball motion monitoring. Discov. Nano 18(1), 17 (2023). https://doi.org/10.1186/s11671-023-03783-y
- X. Ge, Z. Sun, Y. Guo, C. Gong, R. Han et al., Plant-inspired dual-functional sensor for monitoring pulse and sweat volume. Adv. Mater. Technol. 9(10), 2302083 (2024). https://doi.org/10.1002/admt.202302083
- Y. Zhao, S. Gao, X. Zhang, W. Huo, H. Xu et al., Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 30(25), 2001553 (2020). https://doi.org/10.1002/adfm.202001553
- M. Pieralisi, V. Di Mattia, V. Petrini, A. De Leo, G. Manfredi et al., An electromagnetic sensor for the autonomous running of visually impaired and blind athletes (part I: the fixed infrastructure). Sensors 17(2), 364 (2017). https://doi.org/10.3390/s17020364
- M.-Z. Huang, P. Parashar, A.-R. Chen, S.-C. Shi, Y.-H. Tseng et al., Snake-scale stimulated robust biomimetic composite triboelectric layer for energy harvesting and smart health monitoring. Nano Energy 122, 109266 (2024). https://doi.org/10.1016/j.nanoen.2024.109266
- L. Liu, J. Li, Z. Tian, X. Hu, H. Wu et al., Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring. Nano Energy 128, 109817 (2024). https://doi.org/10.1016/j.nanoen.2024.109817
- Z. Yang, Q. Wang, H. Yu, Q. Xu, Y. Li et al., Self-powered biomimetic pressure sensor based on Mn–Ag electrochemical reaction for monitoring rehabilitation training of athletes. Adv. Sci. 11(25), 2401515 (2024). https://doi.org/10.1002/advs.202401515
References
J.M. Robbins, R.E. Gerszten, Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J. Clin. Invest. 133(11), e168121 (2023). https://doi.org/10.1172/JCI168121
T. Althoff, R. Sosič, J.L. Hicks, A.C. King, S.L. Delp et al., Large-scale physical activity data reveal worldwide activity inequality. Nature 547(7663), 336–339 (2017). https://doi.org/10.1038/nature23018
E.L. Watts, C.E. Matthews, J.R. Freeman, J.S. Gorzelitz, H.G. Hong et al., Association of leisure time physical activity types and risks of all-cause, cardiovascular, and cancer mortality among older adults. JAMA Netw. Open 5(8), e2228510 (2022). https://doi.org/10.1001/jamanetworkopen.2022.28510
N. Gonzalez-Jaramillo, M. Wilhelm, A.M. Arango-Rivas, V. Gonzalez-Jaramillo, C. Mesa-Vieira et al., Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J. Am. Coll. Cardiol. 79(17), 1690–1700 (2022). https://doi.org/10.1016/j.jacc.2022.02.036
D.H. Lee, L.F.M. Rezende, H.K. Joh, N. Keum, G. Ferrari et al., Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: a prospective cohort of US adults. Circulation 146(7), 523–534 (2022). https://doi.org/10.1161/CIRCULATIONAHA.121.058162
A.E. Paluch, S. Bajpai, D.R. Bassett, M.R. Carnethon, U. Ekelund et al., Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public Health 7(3), e219–e228 (2022). https://doi.org/10.1016/S2468-2667(21)00302-9
S.N. Blair, Physical inactivity: the biggest public health problem of the 21st century. Br. J. Sports Med. 43(1), 1–2 (2009). https://doi.org/10.1136/BJSM.2009.059360
J. Abbasi, Phone apps and wearable trackers modestly improve activity. JAMA 325(6), 522 (2021). https://doi.org/10.1001/jama.2021.0495
X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
A. Ahmadi, E. Mitchell, C. Richter, F. Destelle, M. Gowing et al., Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015). https://doi.org/10.1109/JIOT.2014.2377238
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
A.M. Walker, C. Applegate, T. Pfau, E.L. Sparkes, A.M. Wilson et al., The kinematics and kinetics of riding a racehorse: a quantitative comparison of a training simulator and real horses. J. Biomech. 49(14), 3368–3374 (2016). https://doi.org/10.1016/j.jbiomech.2016.08.031
L. Jin, S.L. Zhang, S. Xu, H. Guo, W. Yang et al., Free-fixed rotational triboelectric nanogenerator for self-powered real-time wheel monitoring. Adv. Mater. Technol. 6(3), 2000918 (2021). https://doi.org/10.1002/admt.202000918
K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10(28), 2000426 (2020). https://doi.org/10.1002/aenm.202000426
K. Xia, D. Wu, J. Fu, N.A. Hoque, Y. Ye et al., A high-output triboelectric nanogenerator based on nickel–copper bimetallic hydroxide nanowrinkles for self-powered wearable electronics. J. Mater. Chem. A 8(48), 25995–26003 (2020). https://doi.org/10.1039/D0TA09440D
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
P. Tan, Q. Zheng, Y. Zou, B. Shi, D. Jiang et al., A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 9(36), 1901875 (2019). https://doi.org/10.1002/aenm.201901875
Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang et al., TENG-based self-powered device- the heart of life. Nano Energy 119, 109080 (2024). https://doi.org/10.1016/j.nanoen.2023.109080
Y. Mu, Y. Chu, L. Pan, B. Wu, L. Zou et al., 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications. Int. J. Extrem. Manuf. 5(4), 042008 (2023). https://doi.org/10.1088/2631-7990/acf172
H. Wen, X. Yang, R. Huang, D. Zheng, J. Yuan et al., Universal energy solution for triboelectric sensors toward the 5G era and internet of things. Adv. Sci. 10(22), 2302009 (2023). https://doi.org/10.1002/advs.202302009
S. He, J. Dai, D. Wan, S. Sun, X. Yang et al., Biomimetic bimodal haptic perception using triboelectric effect. Sci. Adv. 10(27), eado6793 (2024). https://doi.org/10.1126/sciadv.ado6793
T. Cheng, J. Shao, Z.L. Wang, Triboelectric nanogenerators. Nat. Rev. Meth. Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3
S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett. 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
L. Zhao, B. Qin, C. Fang, L. Liu, P. Poechmueller et al., Serpentine liquid electrode based dual-mode skin sensors: monitoring biomechanical movements by resistive or triboelectric mode. Chem. Eng. J. 479, 147898 (2024). https://doi.org/10.1016/j.cej.2023.147898
L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
L. Zhao, X. Guo, Y. Pan, S. Jia, L. Liu et al., Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 6(5), e12520 (2024). https://doi.org/10.1002/inf2.12520
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
L. Zhao, S. Jia, C. Fang, B. Qin, Y. Hu et al., Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature. Chem. Eng. J. 503, 158637 (2025). https://doi.org/10.1016/j.cej.2024.158637
J. Wang, Z. Wu, L. Pan, R. Gao, B. Zhang et al., Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 13(2), 2587–2598 (2019). https://doi.org/10.1021/acsnano.8b09642
X. Han, Y. Ji, L. Wu, Y. Xia, C.R. Bowen et al., Coupling enhancement of a flexible BiFeO3 film-based nanogenerator for simultaneously scavenging light and vibration energies. Nano-Micro Lett. 14(1), 198 (2022). https://doi.org/10.1007/s40820-022-00943-0
P. Saxena, P. Shukla, Review: recent progress, challenges, and trends in polymer-based wearable sensors. J. Electrochem. Soc. 171(4), 047504 (2024). https://doi.org/10.1149/1945-7111/ad3a18
Ł Kidziński, B. Yang, J.L. Hicks, A. Rajagopal, S.L. Delp et al., Deep neural networks enable quantitative movement analysis using single-camera videos. Nat. Commun. 11(1), 4054 (2020). https://doi.org/10.1038/s41467-020-17807-z
Y. Ding, M. Kim, S. Kuindersma, C.J. Walsh, Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci. Robot. 3(15), eaar5438 (2018). https://doi.org/10.1126/scirobotics.aar5438
Z. Wu, Y. Wen, P. Li, A power supply of self-powered online monitoring systems for power cords. IEEE Trans. Energy Convers. 28(4), 921–928 (2013). https://doi.org/10.1109/TEC.2013.2281075
Y. Nemirovsky, A. Nemirovsky, P. Muralt, N. Setter, Design of novel thin-film piezoelectric accelerometer. Sens. Actuat. A Phys. 56(3), 239–249 (1996). https://doi.org/10.1016/S0924-4247(96)01324-6
Z. Liu, Z. Zhao, X. Zeng, X. Fu, Y. Hu, Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 59, 295–301 (2019). https://doi.org/10.1016/j.nanoen.2019.02.057
C. Li, R. Luo, Y. Bai, J. Shao, J. Ji et al., Molecular doped biodegradable triboelectric nanogenerator with optimal output performance. Adv. Funct. Mater. 34(29), 2400277 (2024). https://doi.org/10.1002/adfm.202400277
H.G. Menge, N.D. Huynh, K. Choi, C. Cho, D. Choi et al., Body-patchable, antimicrobial, encodable TENGs with ultrathin, free-standing, translucent chitosan/alginate/silver nanocomposite multilayers. Adv. Funct. Mater. 33(7), 2210571 (2023). https://doi.org/10.1002/adfm.202210571
S. Zhang, Y. Zhu, Y. Xia, K. Liu, S. Li et al., Wearable integrated self-powered electroluminescence display device based on all-In-one MXene electrode for information encryption. Adv. Funct. Mater. 33(44), 2307609 (2023). https://doi.org/10.1002/adfm.202307609
C. Cai, X. Meng, L. Zhang, B. Luo, Y. Liu et al., High strength and toughness polymeric triboelectric materials enabled by dense crystal-domain cross-linking. Nano Lett. 24(12), 3826–3834 (2024). https://doi.org/10.1021/acs.nanolett.4c00918
H. Duo, H. Wang, S. Shima, E. Takamura, H. Sakamoto, Hydrogen-bond enhanced interior charge transport and trapping in all-fiber triboelectric nanogenerators for human motion sensing and communication. Nano Energy 131, 110297 (2024). https://doi.org/10.1016/j.nanoen.2024.110297
P. Ding, Z. Ge, K. Yuan, J. Li, Y. Zhao et al., Muscle-inspired anisotropic conductive foams with low-detection limit and wide linear sensing range for abnormal gait monitoring. Nano Energy 124, 109490 (2024). https://doi.org/10.1016/j.nanoen.2024.109490
Y.-H. Tsao, C.-H. Chen, Z.-H. Lin, Self-powered electrochemical systems for the synthesis of metal nanops and their use in lactate detection. ECS Trans. 77(7), 51–55 (2017). https://doi.org/10.1149/07707.0051ecst
X. Xuan, C. Chen, A. Molinero-Fernandez, E. Ekelund, D. Cardinale et al., Fully integrated wearable device for continuous sweat lactate monitoring in sports. ACS Sens. 8(6), 2401–2409 (2023). https://doi.org/10.1021/acssensors.3c00708
A.C.N. Rodrigues, A.S. Pereira, R.M.S. Mendes, A.G. Araújo, M.S. Couceiro et al., Using artificial intelligence for pattern recognition in a sports context. Sensors 20(11), 3040 (2020). https://doi.org/10.3390/s20113040
F. Sun, Y. Zhu, C. Jia, B. Ouyang, T. Zhao et al., A flexible lightweight triboelectric nanogenerator for protector and scoring system in taekwondo competition monitoring. Electronics 11(9), 1306 (2022). https://doi.org/10.3390/electronics11091306
Q. Zheng, Q. Tang, Z.L. Wang, Z. Li, Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 18(1), 7–21 (2021). https://doi.org/10.1038/s41569-020-0426-4
Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
Z. Lin, Z. Wu, B. Zhang, Y.-C. Wang, H. Guo et al., A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 4(2), 1800360 (2019). https://doi.org/10.1002/admt.201800360
C. Jia, Y. Zhu, F. Sun, Y. Wen, Q. Wang et al., Gas-supported triboelectric nanogenerator based on in situ gap-generation method for biomechanical energy harvesting and wearable motion monitoring. Sustainability 14(21), 14422 (2022). https://doi.org/10.3390/su142114422
J. Choi, C. Han, S. Cho, K. Kim, J. Ahn et al., Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming. Sci. Adv. 7(42), eabj0694 (2021). https://doi.org/10.1126/sciadv.abj0694
C. He, W. Zhu, G.Q. Gu, T. Jiang, L. Xu et al., Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 11(2), 1157–1164 (2018). https://doi.org/10.1007/s12274-017-1824-8
L. Wang, X. Sun, D. Wang, C. Wang, Z. Bi et al., Construction of stretchable and large deformation green triboelectric nanogenerator and its application in technical action monitoring of racket sports. ACS Sustain. Chem. Eng. 11(18), 7102–7114 (2023). https://doi.org/10.1021/acssuschemeng.3c00124
W. Yang, N.-W. Li, S. Zhao, Z. Yuan, J. Wang et al., A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv. Mater. Technol. 3(2), 1700241 (2018). https://doi.org/10.1002/admt.201700241
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
D. Chen, Q. Pei, Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117(17), 11239–11268 (2017). https://doi.org/10.1021/acs.chemrev.7b00019
Y. Shi, X. Wei, K. Wang, D. He, Z. Yuan et al., Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl. Mater. Interfaces 13(42), 50329–50337 (2021). https://doi.org/10.1021/acsami.1c13420
M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang et al., Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12(6), 6156–6162 (2018). https://doi.org/10.1021/acsnano.8b02562
F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9(33), 1901124 (2019). https://doi.org/10.1002/aenm.201901124
Y. Yang, X. Hou, W. Geng, J. Mu, L. Zhang et al., Human movement monitoring and behavior recognition for intelligent sports using customizable and flexible triboelectric nanogenerator. Sci. China Technol. Sci. 65(4), 826–836 (2022). https://doi.org/10.1007/s11431-021-1984-9
T.M. Seeberg, J. Tjønnås, O.M.H. Rindal, P. Haugnes, S. Dalgard et al., A multi-sensor system for automatic analysis of classical cross-country skiing techniques. Phys. Eng. 20(4), 313–327 (2017). https://doi.org/10.1007/s12283-017-0252-z
M. Gerth, M. Haecker, P. Kohmann, Influence of mountain bike riding velocity, braking and rider action on pedal kickback. Phys. Eng. 23(1), 1 (2019). https://doi.org/10.1007/s12283-019-0315-4
Y. Hao, J. Wen, X. Gao, D. Nan, J. Pan et al., Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics. ACS Nano 16(1), 1271–1279 (2022). https://doi.org/10.1021/acsnano.1c09096
C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
S.W. Park, P.S. Das, A. Chhetry, J.Y. Park, A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens. J. 17(20), 6558–6564 (2017). https://doi.org/10.1109/JSEN.2017.2749233
D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Piezoelectric sensors: self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1770272 (2017). https://doi.org/10.1002/adma.201770272
S. Hong, J.J. Lee, S. Gandla, J. Park, H. Cho et al., Resistive water sensors based on PEDOT: PSS- g-PEGME copolymer and laser treatment for water ingress monitoring systems. ACS Sens. 4(12), 3291–3297 (2019). https://doi.org/10.1021/acssensors.9b01917
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang et al., Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29(44), 1704107 (2017). https://doi.org/10.1002/adma.201704107
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
C. Chen, J. Song, S. Zhu, Y. Li, Y. Kuang et al., Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4(3), 544–554 (2018). https://doi.org/10.1016/j.chempr.2017.12.028
J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10(1), 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
J. Xu, X. Wei, R. Li, Y. Shi, Y. Peng et al., Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 15(7), 6483–6489 (2022). https://doi.org/10.1007/s12274-022-4218-5
S. Hu, H. Li, W. Lu, T. Han, Y. Xu et al., Triboelectric insoles with normal-shear plantar stress perception. Adv. Funct. Mater. 34(16), 2313458 (2024). https://doi.org/10.1002/adfm.202313458
D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia et al., Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 32(28), 2201335 (2022). https://doi.org/10.1002/adfm.202201335
M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
H. Liu, J. Cao, S. Feng, G. Cheng, Z. Zhang et al., Highly sensitive and durable, triboelectric based self-powered nanosensor for boundary detection in sports event. Adv. Mater. Technol. 8(8), 2201766 (2023). https://doi.org/10.1002/admt.202201766
H. Xiang, L. Peng, Q. Yang, N. Wang, X. Cao et al., Carbon fibre reinforced triboelectric nanogenerator for self-powered sporting events monitoring. Nano Energy 123, 109403 (2024). https://doi.org/10.1016/j.nanoen.2024.109403
Z. Tian, Z. Zhu, S. Yue, Y. Liu, Y. Li et al., Self-powered, self-healing, and anti-freezing triboelectric sensors for violation detection in sport events. Nano Energy 122, 109276 (2024). https://doi.org/10.1016/j.nanoen.2024.109276
T.J. Gabbett, G.P. Nassis, E. Oetter, J. Pretorius, N. Johnston et al., The athlete monitoring cycle: a practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 51(20), 1451–1452 (2017). https://doi.org/10.1136/bjsports-2016-097298
D. Bhatia, S.H. Jo, Y. Ryu, Y. Kim, D.H. Kim et al., Wearable triboelectric nanogenerator based exercise system for upper limb rehabilitation post neurological injuries. Nano Energy 80, 105508 (2021). https://doi.org/10.1016/j.nanoen.2020.105508
D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes et al., Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit. Med. 2, 71 (2019). https://doi.org/10.1038/s41746-019-0149-2
Y. Shen, H. Liu, On-site emergency protocols in sports: lessons from the field. Lancet 404(10455), 843–844 (2024). https://doi.org/10.1016/S0140-6736(24)01610-6
D.H. Daneshvar, C.J. Nowinski, A.C. McKee, R.C. Cantu, The epidemiology of sport-related concussion. Clin. Sports Med. 30(1), 1–17 (2011). https://doi.org/10.1016/j.csm.2010.08.006
R.C. Gardner, K. Yaffe, Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 66, 75–80 (2015). https://doi.org/10.1016/j.mcn.2015.03.001
L. Zu, J. Wen, S. Wang, M. Zhang, W. Sun et al., Multiangle, self-powered sensor array for monitoring head impacts. Sci. Adv. 9(20), eadg5152 (2023). https://doi.org/10.1126/sciadv.adg5152
C. Hrysomallis, Neck muscular strength, training, performance and sport injury risk: a review. Sports Med. 46(8), 1111–1124 (2016). https://doi.org/10.1007/s40279-016-0490-4
R.C. Cantu, Y.M. Li, M. Abdulhamid, L.S. Chin, Return to play after cervical spine injury in sports. Curr. Phys. Med. Rep. 12(1), 14–17 (2013). https://doi.org/10.1249/jsr.0b013e31827dc1fb
F. Sun, Y. Zhu, C. Jia, Y. Wen, Y. Zhang et al., Deep-learning-assisted neck motion monitoring system self-powered through biodegradable triboelectric sensors. Adv. Funct. Mater. 34(13), 2310742 (2024). https://doi.org/10.1002/adfm.202310742
Y. Xin, T. Liu, Y. Xu, J. Zhu, T. Lin et al., Development of respiratory monitoring and actions recognition based on a pressure sensor with multi-arch structures. Sens. Actuat. A Phys. 296, 357–366 (2019). https://doi.org/10.1016/j.sna.2019.06.049
J. Pan, W. Sun, X. Li, Y. Hao, Y. Bai et al., A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring. J. Colloid Interface Sci. 671, 336–343 (2024). https://doi.org/10.1016/j.jcis.2024.05.127
R. Izzo, G. Guarnieri, G. Guglielmi, M. Muto, Biomechanics of the spine part I: spinal stability. Eur. J. Radiol. 82(1), 118–126 (2013). https://doi.org/10.1016/j.ejrad.2012.07.024
J. Cholewicki, S. McGill, Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin. Biomech. 11(1), 1–15 (1996). https://doi.org/10.1016/0268-0033(95)00035-6
C. Li, D. Liu, C. Xu, Z. Wang, S. Shu et al., Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12(1), 2950 (2021). https://doi.org/10.1038/s41467-021-23207-8
M.D. Bucknor, K.J. Stevens, L.S. Steinbach, Elbow imaging in sport: sports imaging series. Radiology 280(1), 328 (2016). https://doi.org/10.1148/radiol.2016164015
C. Wei, R. Cheng, C. Ning, X. Wei, X. Peng et al., A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 33(35), 2303562 (2023). https://doi.org/10.1002/adfm.202303562
K. Trompeter, D. Fett, P. Platen, Prevalence of back pain in sports: a systematic review of the literature. Sports Med. 47(6), 1183–1207 (2017). https://doi.org/10.1007/s40279-016-0645-3
P. Slade, M.J. Kochenderfer, S.L. Delp, S.H. Collins, Sensing leg movement enhances wearable monitoring of energy expenditure. Nat. Commun. 12(1), 4312 (2021). https://doi.org/10.1038/s41467-021-24173-x
Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
S. Gao, T. He, Z. Zhang, H. Ao, H. Jiang et al., A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications. Adv. Sci. 8(20), 2101834 (2021). https://doi.org/10.1002/advs.202101834
Z. Cheng, Y. Wen, Z. Xie, M. Zhang, Q. Feng et al., A multi-sensor coupled supramolecular elastomer empowers intelligent monitoring of human gait and arch health. Chem. Eng. J. 504, 158760 (2025). https://doi.org/10.1016/j.cej.2024.158760
Y.-J. Huang, C.-K. Chung, Design and fabrication of polymer triboelectric nanogenerators for self-powered insole applications. Polymers 15(20), 4035 (2023). https://doi.org/10.3390/polym15204035
P. Yang, Y. Shi, S. Li, X. Tao, Z. Liu et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022). https://doi.org/10.1021/acsnano.1c11321
C. Yeh, F.-C. Kao, P.-H. Wei, A. Pal, K. Kaswan et al., Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 104, 107852 (2022). https://doi.org/10.1016/j.nanoen.2022.107852
M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
K. Yan, L. Liu, Y. Xiang, Q. Jin, Guest editorial: AI and machine learning solution cyber intelligence technologies: new methodologies and applications. IEEE Trans. Ind. Inform. 16(10), 6626–6631 (2020). https://doi.org/10.1109/TII.2020.2988944
J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia et al., A survey of visual analytics techniques for machine learning. Comput. Vis. Medium. 7(1), 3–36 (2021). https://doi.org/10.1007/s41095-020-0191-7
M.Z.A. Bhuiyan, S.-Y. Kuo, G. Wang, Guest editorial: trustworthiness of AI/ML/DL approaches in industrial Internet of Things and applications. IEEE Trans. Ind. Inform. 19(1), 969–972 (2023). https://doi.org/10.1109/TII.2022.3201588
P. Sofotasiou, B.R. Hughes, J.K. Calautit, Qatar 2022: facing the FIFA World Cup climatic and legacy challenges. Sustain. Cities Soc. 14, 16–30 (2015). https://doi.org/10.1016/j.scs.2014.07.007
A. Al-Hamrani, D. Kim, M. Kucukvar, N.C. Onat, Circular economy application for a Green Stadium construction towards sustainable FIFA world cup Qatar 2022™. Environ. Impact Assess. Rev. 87, 106543 (2021). https://doi.org/10.1016/j.eiar.2020.106543
M.V. Ferrari, Test, swarm, normalize: how surveillance technologies have infiltrated Paris 2024 olympic games. Cad. Metrop. 25(56), 75–96 (2023). https://doi.org/10.1590/2236-9996.2023-5603
F. Brocherie, M. Pascal, R. Lagarrigue, G.P. Millet, Climate and health challenges for Paris 2024 olympics and paralympics. Br. Medical J (2024). https://doi.org/10.1136/bmj-2023-077925
J. Shen, Z. Yang, Y. Yang, B. Yang, Y. Song et al., A remote monitoring system for wind speed and direction based on non-contact triboelectric nanogenerator. Nano Energy 133, 110453 (2025). https://doi.org/10.1016/j.nanoen.2024.110453
Y. Wang, Q. Gao, W. Liu, C. Bao, H. Li et al., Wind aggregation enhanced triboelectric-electromagnetic hybrid generator with slit effect. ACS Appl. Mater. Interfaces (2024). https://doi.org/10.1021/acsami.4c03113
Y. Yang, Q. Shi, Z. Zhang, X. Shan, B. Salam et al., Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 5(1), e12360 (2023). https://doi.org/10.1002/inf2.12360
T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). https://doi.org/10.1002/adma.201504299
D. Liu, Y. Wen, Z. Xie, M. Zhang, Y. Wang et al., Self-powered, flexible, wireless and intelligent human health management system based on natural recyclable materials. ACS Sens. 9(11), 6236–6246 (2024). https://doi.org/10.1021/acssensors.4c02186
J. Yuan, J. Xue, M. Liu, L. Wu, J. Cheng et al., Self-powered intelligent badminton racket for machine learning-enhanced real-time training monitoring. Nano Energy 132, 110377 (2024). https://doi.org/10.1016/j.nanoen.2024.110377
X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
G. Su, N. Wang, Y. Liu, R. Zhang, Z. Li et al., From fluorescence-transfer-lightening-printing-assisted conductive adhesive nanocomposite hydrogels toward wearable interactive optical information-electronic strain sensors. Adv. Mater. 36(25), 2400085 (2024). https://doi.org/10.1002/adma.202400085
Q. Chen, D. Xu, Y. Yan, Z. Qu, H. Zhao et al., A self-powered tennis training system based on micro-nano structured sensing yarn arrays. Adv. Funct. Mater. 35(5), 2414395 (2025). https://doi.org/10.1002/adfm.202414395
H. Ahmadi, M. Yousefizad, N. Manavizadeh, Smartifying martial arts: lightweight triboelectric nanogenerator as a self-powered sensor for accurate judging and AI-driven performance analysis. IEEE Sens. J. 24(19), 30176–30183 (2024). https://doi.org/10.1109/JSEN.2024.3443229
Y.M. Mekki, O.H. Ahmed, D. Powell, A. Price, H.P. Dijkstra, Author Correction: games Wide Open to athlete partnership in building artificial intelligence systems. NPJ Digit. Med. 7, 291 (2024). https://doi.org/10.1038/s41746-024-01261-y
B. Liu, S. Li, Y. Wen, Z. Xie, M. Zhang et al., Papermaking-inspired sustainable triboelectric sensors for intelligent detecting system. Nano Energy 131, 110322 (2024). https://doi.org/10.1016/j.nanoen.2024.110322
Q. Feng, Z. Xie, Y. Wen, Z. Cheng, M. Zhang et al., An eco-friendly, sodium alginate degradable conformal triboelectric nanogenerator for self-powered sensing and real-time injury monitoring. Sustain. Mater. Technol. 43, e01262 (2025). https://doi.org/10.1016/j.susmat.2025.e01262
K.-H. Yu, A.L. Beam, I.S. Kohane, Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018). https://doi.org/10.1038/s41551-018-0305-z
X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119(18), 10520–10594 (2019). https://doi.org/10.1021/acs.chemrev.8b00728
Z. Wang, R.S. Srinivasan, A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 75, 796–808 (2017). https://doi.org/10.1016/j.rser.2016.10.079
J. Liao, D. Yang, N.I. Arshad, K. Venkatachalam, A. Ahmadian, MEMS: an automated multi-energy management system for smart residences using the DD-LSTM approach. Sustain. Cities Soc. 98, 104850 (2023). https://doi.org/10.1016/j.scs.2023.104850
F. Tang, Y. Kawamoto, N. Kato, J. Liu, Future intelligent and secure vehicular network toward 6G: machine-learning approaches. Proc. IEEE 108(2), 292–307 (2020). https://doi.org/10.1109/JPROC.2019.2954595
R. Mooney, L.R. Quinlan, G. Corley, A. Godfrey, C. Osborough et al., Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis. PLoS ONE 12(2), e0170902 (2017). https://doi.org/10.1371/journal.pone.0170902
T.S. Bincy, A.P.S. Prasanna, A.S. Balaji, K.J. Sivasankar, D.J. Thiruvadigal et al., Computational analysis of starch for sustainable power generation towards integrated wearable IoT. Appl. Energy 370, 123590 (2024). https://doi.org/10.1016/j.apenergy.2024.123590
L.S. Luteberget, M. Spencer, M. Gilgien, Validity of the catapult ClearSky T6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 9, 115 (2018). https://doi.org/10.3389/fphys.2018.00115
R. Umapathi, M. Rethinasabapathy, V. Kakani, H. Kim, Y. Park et al., Hexagonal boron nitride composite film based triboelectric nanogenerator for energy harvesting and machine learning assisted handwriting recognition. Nano Energy 136, 110689 (2025). https://doi.org/10.1016/j.nanoen.2025.110689
Z. Bai, Y. Xu, J. Li, J. Zhu, C. Gao et al., An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 12(38), 42880–42890 (2020). https://doi.org/10.1021/acsami.0c12709
J.-T. Zhang, A.C. Novak, B. Brouwer, Q. Li, Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 34(8), N63 (2013). https://doi.org/10.1088/0967-3334/34/8/N63
J. Lan, K. Wang, S. Song, K. Li, C. Liu et al., Method for measuring non-stationary motion attitude based on MEMS-IMU array data fusion and adaptive filtering. Meas. Sci. Technol. 35(8), 086304 (2024). https://doi.org/10.1088/1361-6501/ad44c8
F. Sun, Y. Zhu, C. Jia, T. Zhao, L. Chu et al., Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators. J. Energy Chem. 79, 477–488 (2023). https://doi.org/10.1016/j.jechem.2022.12.024
M. Rana, V. Mittal, Wearable sensors for real-time kinematics analysis in sports: a review. IEEE Sens. J. 21(2), 1187–1207 (2021). https://doi.org/10.1109/JSEN.2020.3019016
Y. Hao, T. Guo, J. Ren, Y. Wang, L. Wang et al., Characterization of a thermostable, protease-tolerant inhibitor of α-glycosidase from carrot: a potential oral additive for treatment of diabetes. Int. J. Biol. Macromol. 209, 1271–1279 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.110
S.M. Sohel Rana, O. Faruk, M. Selim Reza, M. Robiul Islam, H. Kim et al., All porous Ecoflex and SEBS-based stretchable high-performance triboelectric nanogenerator for self-powered human activity monitoring. Chem. Eng. J. 488, 151050 (2024). https://doi.org/10.1016/j.cej.2024.151050
W. Akram, Q. Chen, X. Zhang, S. Ren, L. Niu et al., Coaxial tribonegative yarn TENG with aromatic polyimide as charge entrapment layer for real-time edge ball assessment in cricket sports. Nano Energy 131, 110275 (2024). https://doi.org/10.1016/j.nanoen.2024.110275
A. Galli, R.J.H. Montree, S. Que, E. Peri, R. Vullings, An overview of the sensors for heart rate monitoring used in extramural applications. Sensors 22(11), 4035 (2022). https://doi.org/10.3390/s22114035
W. Kim, M. Kim, Soccer kick detection using a wearable sensor, in 2016 international conference on information and communication technology convergence (ICTC). October 19–21, 2016, Jeju, Korea. IEEE, (2016)., 1207–1209.
I. Bayios, E. Rousanoglou, G. Sikalias, K. Boudolos, ιnertial sensing of the hands’ kinematics during lateral shuttle running in handball and football goalkeepers. Med. Sci. Phys. Exerc. 54(9S), 440 (2022). https://doi.org/10.1249/01.mss.0000880588.05542.db
P.B. Gastin, O. McLean, M. Spittle, R.V.P. Breed, Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J. Sci. Med. Sport 16(6), 589–593 (2013). https://doi.org/10.1016/j.jsams.2013.01.007
G.P. Siegmund, K.M. Guskiewicz, S.W. Marshall, A.L. DeMarco, S.J. Bonin, Laboratory validation of two wearable sensor systems for measuring head impact severity in football players. Ann. Biomed. Eng. 44(4), 1257–1274 (2016). https://doi.org/10.1007/s10439-015-1420-6
M. Armitage, M. Beato, S.A. McErlain-Naylor, Inter-unit reliability of IMU Step metrics using IMeasureU Blue Trident inertial measurement units for running-based team sport tasks. J. Sports Sci. 39(13), 1512–1518 (2021). https://doi.org/10.1080/02640414.2021.1882726
T. Tamura, Y. Maeda, M. Sekine, M. Yoshida, Wearable photoplethysmographic sensors: past and present. Electronics 3(2), 282–302 (2014). https://doi.org/10.3390/electronics3020282
Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
D. Liu, Y. Wang, Q. Feng, Z. Cheng, D. Liu et al., An intelligent human-computer interaction system based on wireless self-powered sensor for motion monitoring. J. Nanoelectron. Optoelectron. 19(1), 1–9 (2024). https://doi.org/10.1166/jno.2024.3529
B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun et al., Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11(7), 7440–7446 (2017). https://doi.org/10.1021/acsnano.7b03818
B. Baro, S. Khimhun, U. Das, S. Bayan, ZnO based triboelectric nanogenerator on textile platform for wearable sweat sensing application. Nano Energy 108, 108212 (2023). https://doi.org/10.1016/j.nanoen.2023.108212
P. Siirtola, P. Laurinen, J. Röning, H. Kinnunen, Efficient accelerometer-based swimming exercise tracking, in 2011 IEEE symposium on computational intelligence and data mining (CIDM). April 11-15, 2011, Paris, France. IEEE, (2011), 156–161
D.E. Bolanakis, Evaluating performance of MEMS barometric sensors in differential altimetry systems. IEEE Aerosp. Electron. Syst. Mag. 32(9), 34–39 (2017). https://doi.org/10.1109/MAES.2017.160248
E.M. Nijmeijer, P. Heuvelmans, R. Bolt, A. Gokeler, E. Otten et al., Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomech. 154, 111637 (2023). https://doi.org/10.1016/j.jbiomech.2023.111637
Y. Yu, Q. Gao, D. Zhao, X. Li, Z.L. Wang et al., Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Mater. Today Phys. 25, 100701 (2022). https://doi.org/10.1016/j.mtphys.2022.100701
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier et al., Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014). https://doi.org/10.1016/j.gaitpost.2014.01.008
M. Cheng, X. Liu, Z. Li, Y. Zhao, X. Miao et al., Multiple textile triboelectric nanogenerators based on UV-protective, radiative cooling, and antibacterial composite yarns. Chem. Eng. J. 468, 143800 (2023). https://doi.org/10.1016/j.cej.2023.143800
Y. Wen, F. Sun, Z. Xie, M. Zhang, Z. An et al., Machine learning-assisted novel recyclable flexible triboelectric nanogenerators for intelligent motion. iScience 27(4), 109615 (2024). https://doi.org/10.1016/j.isci.2024.109615
Y. Li, S. Chen, H. Yan, H. Jiang, J. Luo et al., Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 468, 143572 (2023). https://doi.org/10.1016/j.cej.2023.143572
Y. Jiang, K. Dong, X. Li, J. An, D. Wu et al., Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 31(1), 2005584 (2021). https://doi.org/10.1002/adfm.202005584
D. Khan, M. Alonazi, M. Abdelhaq, N. Al Mudawi, A. Algarni et al., Robust human locomotion and localization activity recognition over multisensory. Front. Physiol. 15, 1344887 (2024). https://doi.org/10.3389/fphys.2024.1344887
S. Barrett, Monitoring elite soccer players’ external loads using real-time data. Int. J. Sports Physiol. Perform. 12(10), 1285–1287 (2017). https://doi.org/10.1123/ijspp.2016-0516
S. Chen, T. Huang, H. Zuo, S. Qian, Y. Guo et al., A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 28(46), 1805108 (2018). https://doi.org/10.1002/adfm.201805108
M. Hardegger, D. Roggen, S. Mazilu, G. Tröster, ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM. in 2012 international conference on indoor positioning and indoor navigation (IPIN). November 13–15, 2012, Sydney, NSW, Australia. IEEE, (2012), 1–10.
R. Srivastava, A. Patwari, S. Kumar, G. Mishra, L. Kaligounder et al., Efficient characterization of tennis shots and game analysis using wearable sensors data, in 2015 IEEE SENSORS. November 1-4, 2015, Busan, Korea. IEEE, (2015)., 1–4
B. Adamová, P. Kutilek, O. Cakrt, Z. Svoboda, S. Viteckova et al., Quantifying postural stability of patients with cerebellar disorder during quiet stance using three-axis accelerometer. Biomed. Signal Process. Control 40, 378–384 (2018). https://doi.org/10.1016/j.bspc.2017.09.025
S. Wang, M. He, B. Weng, L. Gan, Y. Zhao et al., Stretchable and wearable triboelectric nanogenerator based on kinesio tape for self-powered human motion sensing. Nanomaterials 8(9), 657 (2018). https://doi.org/10.3390/nano8090657
A. Yu, Y. Zhu, W. Wang, J. Zhai, Progress in triboelectric materials: toward high performance and widespread applications. Adv. Funct. Mater. 29(41), 1900098 (2019). https://doi.org/10.1002/adfm.201900098
H. Yang, F.R. Fan, Y. Xi, W. Wu, Bio-derived natural materials based triboelectric devices for self-powered ubiquitous wearable and implantable intelligent devices. Adv. Sustain. Syst. 4(9), 2000108 (2020). https://doi.org/10.1002/adsu.202000108
S. Bhatia, Natural polymers vs synthetic polymer. Natural Polymer Drug Delivery Systems. Springer International Publishing, (2016)., pp 95–118. https://doi.org/10.1007/978-3-319-41129-3_3
A. Vinod, M.R. Sanjay, S. Suchart, P. Jyotishkumar, Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 258, 120978 (2020). https://doi.org/10.1016/j.jclepro.2020.120978
M.M. Abe, J.R. Martins, P.B. Sanvezzo, J.V. Macedo, M.C. Branciforti et al., Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13(15), 2484 (2021). https://doi.org/10.3390/polym13152484
J. Wang, Y. Lou, B. Wang, Q. Sun, M. Zhou et al., Highly sensitive, breathable, and flexible pressure sensor based on electrospun membrane with assistance of AgNW/TPU as composite dielectric layer. Sensors 20(9), 2459 (2020). https://doi.org/10.3390/s20092459
H. Niu, X. Du, S. Zhao, Z. Yuan, X. Zhang et al., Polymer nanocomposite-enabled high-performance triboelectric nanogenerator with self-healing capability. RSC Adv. 8(54), 30661–30668 (2018). https://doi.org/10.1039/c8ra05305g
Q. Wang, M. Chen, W. Li, Z. Li, Y. Chen et al., Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers. Nano Energy 41, 128–138 (2017). https://doi.org/10.1016/j.nanoen.2017.09.030
H. Guo, X. Jia, L. Liu, X. Cao, N. Wang et al., Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano 12(4), 3461–3467 (2018). https://doi.org/10.1021/acsnano.8b00140
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13(1), 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
G. Liu, J. Guan, X. Wang, J. Yu, B. Ding, Large-scale preparation of mechanically high-performance and biodegradable PLA/PHBV melt-blown nonwovens with nanofibers. Engineering 39, 244–252 (2024). https://doi.org/10.1016/j.eng.2023.02.021
M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick et al., Electronic textiles for wearable point-of-care systems. Chem. Rev. 122(3), 3259–3291 (2022). https://doi.org/10.1021/acs.chemrev.1c00502
F. Mo, G. Liang, Z. Huang, H. Li, D. Wang et al., An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32(5), 1902151 (2020). https://doi.org/10.1002/adma.201902151
K. Wang, Y. Shen, T. Wang, Z. Li, B. Zheng et al., An ultrahigh-strength braided smart yarn for wearable individual sensing and protection. Adv. Fiber Mater. 6(3), 786–797 (2024). https://doi.org/10.1007/s42765-024-00385-w
Y. Gao, H. Li, S. Chao, Y. Wang, L. Hou et al., Zebra-patterned stretchable helical yarn for triboelectric self-powered multifunctional sensing. ACS Nano 18(26), 16958–16966 (2024). https://doi.org/10.1021/acsnano.4c03115
C. Ning, C. Wei, F. Sheng, R. Cheng, Y. Li et al., Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Res. 16(5), 7518–7526 (2023). https://doi.org/10.1007/s12274-022-5273-7
Y. Jiang, J. An, F. Liang, G. Zuo, J. Yi et al., Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res. 15(9), 8389–8397 (2022). https://doi.org/10.1007/s12274-022-4409-0
F. Xing, X. Gao, J. Wen, H. Li, H. Liu et al., Multistrand twisted triboelectric kevlar yarns for harvesting high impact energy, body injury location and levels evaluation. Adv. Sci. 11(21), 2401076 (2024). https://doi.org/10.1002/advs.202401076
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
J. Yu, X. Hou, M. Cui, S. Shi, J. He et al., Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China Mater. 62(10), 1423–1432 (2019). https://doi.org/10.1007/s40843-019-9446-1
J.H. Park, C. Wu, S. Sung, T.W. Kim, Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy 57, 872–878 (2019). https://doi.org/10.1016/j.nanoen.2019.01.001
D. Yang, Y. Ni, X. Kong, S. Li, X. Chen et al., Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9), 14653–14661 (2021). https://doi.org/10.1021/acsnano.1c04384
H. Wei, A. Li, D. Kong, Z. Li, D. Cui et al., Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 4(1), 86–95 (2021). https://doi.org/10.1007/s42114-020-00201-0
W. Liu, Z. Long, G. Yang, L. Xing, A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors 12(2), 60 (2022). https://doi.org/10.3390/bios12020060
J. Wu, Z. Fan, Portable referee system for volleyball game based on pressure monitoring and self-powering communication. Mechanics 30(1), 91–96 (2024). https://doi.org/10.5755/j02.mech.33756
X. Gao, M. Zheng, H. Lv, Y. Zhang, M. Zhu et al., Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Compos. Sci. Technol. 229, 109693 (2022). https://doi.org/10.1016/j.compscitech.2022.109693
Z. Lu, Y. Zhu, C. Jia, T. Zhao, M. Bian et al., A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 11(4), 108 (2021). https://doi.org/10.3390/bios11040108
X. Lu, D. Xie, K. Zhu, S. Wei, Z. Mo et al., Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nano-Micro Lett. 15(1), 196 (2023). https://doi.org/10.1007/s40820-023-01170-x
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
Z. Feng, Q. He, X. Wang, J. Qiu, H. Wu et al., Waterproof iontronic yarn for highly sensitive biomechanical strain monitoring in wearable electronics. Adv. Fiber Mater. 6(3), 925–935 (2024). https://doi.org/10.1007/s42765-024-00381-0
H. Gao, T. Chen, A flexible ultra-highly sensitive capacitive pressure sensor for basketball motion monitoring. Discov. Nano 18(1), 17 (2023). https://doi.org/10.1186/s11671-023-03783-y
X. Ge, Z. Sun, Y. Guo, C. Gong, R. Han et al., Plant-inspired dual-functional sensor for monitoring pulse and sweat volume. Adv. Mater. Technol. 9(10), 2302083 (2024). https://doi.org/10.1002/admt.202302083
Y. Zhao, S. Gao, X. Zhang, W. Huo, H. Xu et al., Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 30(25), 2001553 (2020). https://doi.org/10.1002/adfm.202001553
M. Pieralisi, V. Di Mattia, V. Petrini, A. De Leo, G. Manfredi et al., An electromagnetic sensor for the autonomous running of visually impaired and blind athletes (part I: the fixed infrastructure). Sensors 17(2), 364 (2017). https://doi.org/10.3390/s17020364
M.-Z. Huang, P. Parashar, A.-R. Chen, S.-C. Shi, Y.-H. Tseng et al., Snake-scale stimulated robust biomimetic composite triboelectric layer for energy harvesting and smart health monitoring. Nano Energy 122, 109266 (2024). https://doi.org/10.1016/j.nanoen.2024.109266
L. Liu, J. Li, Z. Tian, X. Hu, H. Wu et al., Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring. Nano Energy 128, 109817 (2024). https://doi.org/10.1016/j.nanoen.2024.109817
Z. Yang, Q. Wang, H. Yu, Q. Xu, Y. Li et al., Self-powered biomimetic pressure sensor based on Mn–Ag electrochemical reaction for monitoring rehabilitation training of athletes. Adv. Sci. 11(25), 2401515 (2024). https://doi.org/10.1002/advs.202401515