From Wave Energy to Electricity: Functional Design and Performance Analysis of Triboelectric Nanogenerators
Corresponding Author: Zhong Lin Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 298
Abstract
Triboelectric nanogenerators (TENGs) offer a self-sustaining power solution for marine regions abundant in resources but constrained by energy availability. Since their pioneering use in wave energy harvesting in 2014, nearly a decade of advancements has yielded nearly thousands of research articles in this domain. Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment. Nonetheless, there is a gap in comprehensive summaries and performance evaluations of TENG structural designs. This paper delineates six innovative structural designs, focusing on enhancing internal device output and adapting to external environments: high space utilization, hybrid generator, mechanical gain, broadband response, multi-directional operation, and hybrid energy-harvesting systems. We summarize the prevailing trends in device structure design identified by the research community. Furthermore, we conduct a meticulous comparison of the electrical performance of these devices under motorized, simulated wave, and real marine conditions, while also assessing their sustainability in terms of device durability and mechanical robustness. In conclusion, the paper outlines future research avenues and discusses the obstacles encountered in the TENG field. This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology.
Highlights:
1 Systematically expounding functional design of reported triboelectric nanogenerators (TENGs).
2 Conducting an extensive comparison of the power conversion efficiencies of TENGs in air and water wave environments.
3 Comprehensively assessing the existing challenges and delineating the future pathways for development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bilgen, Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 38, 890–902 (2014). https://doi.org/10.1016/j.rser.2014.07.004
- W.H. Donnelly, ENERGY: Production, consumption and consequences. Energy Policy 20(3), 273–274 (1992). https://doi.org/10.1016/0301-4215(92)90086-h
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- N. Khan, A. Kalair, N. Abas, A. Haider, Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 72, 590–604 (2017). https://doi.org/10.1016/j.rser.2017.01.079
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
- Y.-N. Yang, J. Wang, Z. Wang, C. Shao, Y. Han et al., Moisture-electric-moisture-sensitive heterostructure triggered proton hopping for quality-enhancing moist-electric generator. Nano-Micro Lett. 16(1), 56 (2023). https://doi.org/10.1007/s40820-023-01260-w
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- J. Shen, B. Li, Y. Yang, Z. Yang, X. Liu et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
- Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2022). https://doi.org/10.1007/s40820-022-00988-1
- J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
- X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- J. Sun, L. Zhang, S. Gong, J. Chen, H. Guo, Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogenerator. Nano Energy 119, 109010 (2024). https://doi.org/10.1016/j.nanoen.2023.109010
- Y. Jiang, X. Liang, T. Jiang, Z.L. Wang, Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring. Engineering 33, 204–224 (2024). https://doi.org/10.1016/j.eng.2023.05.023
- X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15(1), 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
- X. Cao, H. Zhou, Y. Zhou, Y. Hu, Y. Wang et al., High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting. Adv. Mater. Technol. 8(15), 2300327 (2023). https://doi.org/10.1002/admt.202300327
- J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
- Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 6, 129–136 (2014). https://doi.org/10.1016/j.nanoen.2014.03.015
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
- B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
- S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett. 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- B. Huang, P. Wang, L. Wang, S. Yang, D. Wu, Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: an overview. Nanotechnol. Rev. 9(1), 716–735 (2020). https://doi.org/10.1515/ntrev-2020-0055
- C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 13(19), 2300387 (2023). https://doi.org/10.1002/aenm.202300387
- T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li et al., Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 88, 106199 (2021). https://doi.org/10.1016/j.nanoen.2021.106199
- F. Shen, Z. Li, H. Guo, Z. Yang, H. Wu et al., Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Electron. Mater. 7(9), 2100277 (2021). https://doi.org/10.1002/aelm.202100277
- H. Zhai, S. Ding, X. Chen, Y. Wu, Z.L. Wang, Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Mater. Today 65, 166–188 (2023). https://doi.org/10.1016/j.mattod.2023.02.030
- S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee et al., Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small 19(25), 2300847 (2023). https://doi.org/10.1002/smll.202300847
- C. Zhang, Y. Hao, X. Lu, W. Su, H. Zhang et al., Advances in TENGs for marine energy harvesting and in situ electrochemistry. Nano-Micro Lett. 17(1), 124 (2025). https://doi.org/10.1007/s40820-024-01640-w
- Z.L. Wang, T. Jiang, T. Ma, R. Yang, Nanogenerators for blue energy. MRS Bull. 50(4), 450–458 (2025). https://doi.org/10.1557/s43577-025-00876-0
- W. Zhong, L. Xu, X. Yang, W. Tang, J. Shao et al., Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale 11(15), 7199–7208 (2019). https://doi.org/10.1039/C8NR09978B
- W. Liu, L. Xu, T. Bu, H. Yang, G. Liu et al., Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 58, 499–507 (2019). https://doi.org/10.1016/j.nanoen.2019.01.088
- M. Li, Y. Lou, J. Hu, W. Cui, L. Chen et al., High-coupled magnetic-levitation hybrid nanogenerator with frequency multiplication effect for wireless water level alarm. Small 20(42), 2402009 (2024). https://doi.org/10.1002/smll.202402009
- J. An, Z.M. Wang, T. Jiang, X. Liang, Z.L. Wang, Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 29(39), 1904867 (2019). https://doi.org/10.1002/adfm.201904867
- L. Gao, X. Xu, H. Han, W. Yang, R. Zhuo et al., A broadband hybrid blue energy nanogenerator for smart ocean IoT network. Nano Energy 127, 109697 (2024). https://doi.org/10.1016/j.nanoen.2024.109697
- J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat 2(4), e12059 (2020). https://doi.org/10.1002/eom2.12059
- C. Zhu, C. Xiang, M. Wu, C. Yu, S. Dai et al., Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications. Int. J. Extrem. Manuf. 6(6), 062009 (2024). https://doi.org/10.1088/2631-7990/ad7b04
- T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
- W. Yuan, B. Zhang, C. Zhang, O. Yang, Y. Liu et al., Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting. One Earth 5(9), 1055–1063 (2022). https://doi.org/10.1016/j.oneear.2022.08.013
- T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
- H. Pang, Y. Feng, J. An, P. Chen, J. Han et al., Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 31(47), 2106398 (2021). https://doi.org/10.1002/adfm.202106398
- X. Wang, C. Ye, P. Chen, H. Pang, C. Wei et al., Achieving high power density and durability of multilayered swing-structured triboelectric nanogenerator toward marine environmental protection. Adv. Funct. Mater. 34(6), 2311196 (2024). https://doi.org/10.1002/adfm.202311196
- P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin et al., Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019). https://doi.org/10.1016/j.nanoen.2018.12.054
- Z. Yuan, C. Wang, J. Xi, X. Han, J. Li et al., Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 6(8), 2809–2816 (2021). https://doi.org/10.1021/acsenergylett.1c01092
- H. Hong, T. Chen, J. Yang, Y. Hu, J. Hu et al., Omnidirectional water wave energy harvesting by a spherical triboelectric nanogenerator with sliced-pizza-shaped electrodes. Cell Rep. Phys. Sci. 5(5), 101933 (2024). https://doi.org/10.1016/j.xcrp.2024.101933
- X. Wang, S. Niu, Y. Yin, F. Yi, Z. You et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
- X. Miao, H. Yang, Z. Li, M. Cheng, Y. Zhao et al., A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 17(4), 3029–3034 (2024). https://doi.org/10.1007/s12274-023-6100-5
- S.-H. Chung, J. Chung, B. Kim, S. Kim, S. Lee, Screw pump-type water triboelectric nanogenerator for active water flow control. Adv. Eng. Mater. 23(1), 2000758 (2021). https://doi.org/10.1002/adem.202000758
- F. Xi, Y. Pang, G. Liu, S. Wang, W. Li et al., Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019). https://doi.org/10.1016/j.nanoen.2019.04.026
- R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
- X. Liang, Z. Liu, Y. Feng, J. Han, L. Li et al., Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 83, 105836 (2021). https://doi.org/10.1016/j.nanoen.2021.105836
- C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang et al., Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 11(12), 2003616 (2021). https://doi.org/10.1002/aenm.202003616
- G. Li, J. Wang, S. Fu, C. Shan, H. Wu et al., A nanogenerator enabled by a perfect combination and synergetic utilization of triboelectrification, charge excitation and electromagnetic induction to reach efficient energy conversion. Adv. Funct. Mater. 33(14), 2213893 (2023). https://doi.org/10.1002/adfm.202213893
- H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
- S. Liu, X. Liang, P. Chen, H. Long, T. Jiang et al., Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Meth. 7(3), 2201392 (2023). https://doi.org/10.1002/smtd.202201392
- Q. Wang, G. Yu, Y. Lou, M. Li, J. Hu et al., Elastic self-recovering hybrid nanogenerator for water wave energy harvesting and marine environmental monitoring. Sensors 24(12), 3770 (2024). https://doi.org/10.3390/s24123770
- Q. Gao, J. Wang, H. Li, Y. Yu, X. Zhang et al., High performance triboelectric nanogenerator for wave energy harvesting through the gas-assisted method. Chem. Eng. J. 493, 152730 (2024). https://doi.org/10.1016/j.cej.2024.152730
- G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9(26), 1900801 (2019). https://doi.org/10.1002/aenm.201900801
- C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33(47), 2305768 (2023). https://doi.org/10.1002/adfm.202305768
- J. Feng, H. Zhou, Z. Cao, E. Zhang, S. Xu et al., 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 9(35), e2204407 (2022). https://doi.org/10.1002/advs.202204407
- Y. Lou, M. Li, A. Yu, Z.L. Wang, J. Zhai, An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy. Energy Environ. Sci. 18(4), 1745–1755 (2025). https://doi.org/10.1039/D4EE04205K
- C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Magnetic suspension damped hybrid nanogenerator for water wave energy harvesting. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500130
- X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
- X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10(40), 2002123 (2020). https://doi.org/10.1002/aenm.202002123
- X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13(1), 277–285 (2020). https://doi.org/10.1039/C9EE03258D
- C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou et al., Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Adv. Mater. Technol. 5(9), 2000531 (2020). https://doi.org/10.1002/admt.202000531
- Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li et al., Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 14(13), 15187–15194 (2022). https://doi.org/10.1021/acsami.1c25004
- Y. Li, Z. Guo, Z. Zhao, Y. Gao, P. Yang et al., Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 336, 120792 (2023). https://doi.org/10.1016/j.apenergy.2023.120792
- C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
- Y. Lou, M. Li, J. Hu, Y. Zhao, W. Cui et al., Maximizing the energy conversion of triboelectric nanogenerator through the synergistic effect of high coupling and dual-track circuit for marine monitoring. Nano Energy 121, 109240 (2024). https://doi.org/10.1016/j.nanoen.2023.109240
- A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi et al., Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 7(7), 1601705 (2017). https://doi.org/10.1002/aenm.201601705
- Z. Saadatnia, E. Asadi, H. Askari, J. Zu, E. Esmailzadeh, Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 41(14), 2392–2404 (2017). https://doi.org/10.1002/er.3811
- L. Liu, X. Yang, L. Zhao, H. Hong, H. Cui et al., Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15(6), 9412–9421 (2021). https://doi.org/10.1021/acsnano.1c00345
- W. Zhong, L. Xu, H. Wang, D. Li, Z.L. Wang, Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 66, 104108 (2019). https://doi.org/10.1016/j.nanoen.2019.104108
- Y. Pang, Y. Fang, J. Su, H. Wang, Y. Tan et al., Soft ball-based triboelectric–electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 8(6), 2201246 (2023). https://doi.org/10.1002/admt.202201246
- W. Zhang, W. He, S. Dai, F. Ma, P. Lin et al., Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy 111, 108432 (2023). https://doi.org/10.1016/j.nanoen.2023.108432
- X. Wang, Q. Gao, M. Zhu, J. Wang, J. Zhu et al., Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 323, 119648 (2022). https://doi.org/10.1016/j.apenergy.2022.119648
- X. Yang, L. Xu, P. Lin, W. Zhong, Y. Bai et al., Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404–412 (2019). https://doi.org/10.1016/j.nanoen.2019.03.054
- Y. Duan, H. Xu, S. Liu, P. Chen, X. Wang et al., Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 16(9), 11646–11652 (2023). https://doi.org/10.1007/s12274-023-6035-x
- Y. Bai, L. Xu, C. He, L. Zhu, X. Yang et al., High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping. Nano Energy 66, 104117 (2019). https://doi.org/10.1016/j.nanoen.2019.104117
- C. Zhang, W. Yuan, B. Zhang, J. Yang, Y. Hu et al., A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 19(52), 2304412 (2023). https://doi.org/10.1002/smll.202304412
- Z. Qu, M. Huang, C. Chen, Y. An, H. Liu et al., Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 32(29), 2202048 (2022). https://doi.org/10.1002/adfm.202202048
- X. Chen, B. Cao, C. Yang, H. Zhang, L. Fang et al., Broadband and multi-cylinder-based triboelectric nanogenerators for mechanical energy harvesting with high space utilization. Materials 16(8), 3034 (2023). https://doi.org/10.3390/ma16083034
- X. Han, Y. Ji, L. Wu, Y. Xia, C.R. Bowen et al., Coupling enhancement of a flexible BiFeO3 film-based nanogenerator for simultaneously scavenging light and vibration energies. Nano-Micro Lett. 14(1), 198 (2022). https://doi.org/10.1007/s40820-022-00943-0
- Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11(31), 2101116 (2021). https://doi.org/10.1002/aenm.202101116
- F. Zheng, Y. Sun, X. Wei, J. Chen, Z. Yuan et al., A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy 90, 106631 (2021). https://doi.org/10.1016/j.nanoen.2021.106631
- Z. Wu, H. Guo, W. Ding, Y.C. Wang, L. Zhang et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
- H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616–624 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
- J. Chen, K. Wu, S. Gong, J. Wang, K. Wang et al., A magnetic-multiplier-enabled hybrid generator with frequency division operation and high energy utilization efficiency. Research 6, 0168 (2023). https://doi.org/10.34133/research.0168
- S. Tian, X. Wei, L. Lai, B. Li, Z. Wu et al., Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy 102, 107669 (2022). https://doi.org/10.1016/j.nanoen.2022.107669
- H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
- A. Chandrasekhar, V. Vivekananthan, S.-J. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020). https://doi.org/10.1016/j.nanoen.2019.104439
- X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
- R. Ouyang, J. Miao, T. Wu, J. Chen, C. Sun et al., Magnets assisted triboelectric nanogenerator for harvesting water wave energy. Adv. Mater. Technol. 7(9), 2200403 (2022). https://doi.org/10.1002/admt.202200403
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- H. Yang, M. Wang, M. Deng, H. Guo, W. Zhang et al., A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 56, 300–306 (2019). https://doi.org/10.1016/j.nanoen.2018.11.043
- Y. Xie, H. Zhang, G. Yao, S.A. Khan, M. Gao et al., Intelligent sensing system based on hybrid nanogenerator by harvesting multiple clean energy. Adv. Eng. Mater. 20(1), 1700886 (2018). https://doi.org/10.1002/adem.201700886
- S. Ding, H. Zhai, X. Tao, P. Yang, Z. Liu et al., A triboelectric-electromagnetic hybrid nanogenerator with magnetic coupling assisted waterproof encapsulation for long-lasting energy harvesting. Small 20(42), 2403879 (2024). https://doi.org/10.1002/smll.202403879
- Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, Design, simulation, and experimental characterization of a heaving triboelectric-electromagnetic wave energy harvester. Nano Energy 50, 281–290 (2018). https://doi.org/10.1016/j.nanoen.2018.05.059
- H. Yang, H. Yang, M. Lai, Y. Xi, Y. Guan et al., Triboelectric and electromagnetic hybrid nanogenerator based on a crankshaft piston system as a multifunctional energy harvesting device. Adv. Mater. Technol. 4(2), 1800278 (2019). https://doi.org/10.1002/admt.201800278
- J. Wang, L. Pan, H. Guo, B. Zhang, R. Zhang et al., Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 9(8), 1802892 (2019). https://doi.org/10.1002/aenm.201802892
- C. Hao, J. He, C. Zhai, W. Jia, L. Song et al., Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 58, 147–157 (2019). https://doi.org/10.1016/j.nanoen.2019.01.033
- X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
- L. Liu, Q. Shi, C. Lee, A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 76, 105052 (2020). https://doi.org/10.1016/j.nanoen.2020.105052
- Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
- H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15(2), 621–632 (2022). https://doi.org/10.1039/D1EE02549J
- Y. Zhang, K. Fan, J. Zhu, S. Wu, S. Zhang et al., Multi-purpose triboelectric-electromagnetic hybrid nanogenerator with a mechanical motion-controlled switch for harvesting low-frequency energy. Nano Energy 104, 107867 (2022). https://doi.org/10.1016/j.nanoen.2022.107867
- S. Zhang, Z. Jing, X. Wang, K. Fan, H. Zhao et al., Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism. ACS Energy Lett. 7(12), 4282–4289 (2022). https://doi.org/10.1021/acsenergylett.2c01908
- Z. Qu, X. Wang, M. Huang, C. Chen, Y. An et al., An eccentric-structured hybrid triboelectric-electromagnetic nanogenerator for low-frequency mechanical energy harvesting. Nano Energy 107, 108094 (2023). https://doi.org/10.1016/j.nanoen.2022.108094
- L.-C. Zhao, H.-X. Zou, X. Xie, D.-H. Guo, Q.-H. Gao et al., Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023). https://doi.org/10.1016/j.nanoen.2023.108222
- S. Gao, Y. Chen, S. Feng, X. Chen, J. Zhang et al., Triple-mode hybridized generator for efficient water flow energy harvesting and water quality monitoring applications. Nano Energy 113, 108530 (2023). https://doi.org/10.1016/j.nanoen.2023.108530
- J. Zhang, Y. Yu, H. Li, M. Zhu, S. Zhang et al., Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting. Appl. Energy 357, 122512 (2024). https://doi.org/10.1016/j.apenergy.2023.122512
- J. Dai, X. Xia, D. Zhang, S. He, D. Wan et al., High-performance self-desalination powered by triboelectric-electromagnetic hybrid nanogenerator. Water Res. 252, 121185 (2024). https://doi.org/10.1016/j.watres.2024.121185
- W. Wang, Y. Zhang, G. Wu, Z. Zhao, Y. Wu et al., Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system. Nanoscale Adv. 6(14), 3566–3572 (2024). https://doi.org/10.1039/D4NA00222A
- T. Li, X. Wang, K. Wang, Y. Liu, C. Li et al., Bidirectional rotating turbine hybrid triboelectric-electromagnetic wave energy harvester for marine environment monitoring. Adv. Energy Mater. 14(26), 2400313 (2024). https://doi.org/10.1002/aenm.202400313
- L. Zhai, H. Wen, H. Liu, D. Guo, G. Liu et al., High-sensitivity blue-energy-shuttle and in situ electrical behaviors in ocean. Nano Energy 125, 109546 (2024). https://doi.org/10.1016/j.nanoen.2024.109546
- L. Dong, J. Zhu, H. Li, J. Zhang, D. Zhao et al., Bionic dragonfly staggered flapping hydrofoils triboelectric-electromagnetic hybrid generator for low-speed water flow energy harvesting. Nano Energy 127, 109783 (2024). https://doi.org/10.1016/j.nanoen.2024.109783
- T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao et al., Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2017). https://doi.org/10.1016/j.nanoen.2016.12.004
- T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
- M. Yin, X. Lu, G. Qiao, Y. Xu, Y. Wang et al., Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 10(22), 2000627 (2020). https://doi.org/10.1002/aenm.202000627
- Y. Yang, X. Yu, L. Meng, X. Li, Y. Xu et al., Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 46, 101338 (2021). https://doi.org/10.1016/j.eml.2021.101338
- H. Jung, H. Ouro-Koura, A. Salalila, M. Salalila, Z.D. Deng, Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022). https://doi.org/10.1016/j.nanoen.2022.107365
- P. Chen, J. An, S. Shu, R. Cheng, J. Nie et al., Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 11(9), 2003066 (2021). https://doi.org/10.1002/aenm.202003066
- Y. Sun, Y. Yu, Q. Gao, X. Zhang, J. Zhang et al., Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy. Nano Energy 121, 109194 (2024). https://doi.org/10.1016/j.nanoen.2023.109194
- Z. Xie, Z. Qin, Y. Wang, D. Yu, Z. Li, Triboelectric–electromagnetic hybrid energy nanogenerator with variable-frequency effect inspired by magnetic gears for efficient use of low-speed flow energy. Energy Technol. 12(7), 2301701 (2024). https://doi.org/10.1002/ente.202301701
- B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202270194
- M.T. Rahman, S.M. Sohel Rana, P. Maharjan, M. Salauddin, T. Bhatta et al., Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smart-farming applications. Nano Energy 85, 105974 (2021). https://doi.org/10.1016/j.nanoen.2021.105974
- C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi et al., A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63, 103871 (2019). https://doi.org/10.1016/j.nanoen.2019.103871
- Y. Du, Z. Guan, D. Chen, J. Ye, P. Li et al., Broadband rotary hybrid generator for wide-flow-rate fluid energy harvesting and bubble power generation. Energy Convers. Manag. 250, 114833 (2021). https://doi.org/10.1016/j.enconman.2021.114833
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- H. Ning, W. Zhou, L. Tuo, C. Liang, C. Chen et al., Tensegrity triboelectric nanogenerator for broadband blue energy harvesting in all-sea areas. Nano Energy 117, 108906 (2023). https://doi.org/10.1016/j.nanoen.2023.108906
- K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10(28), 2000426 (2020). https://doi.org/10.1002/aenm.202000426
- H. Wen, P. Yang, G. Liu, S. Xu, H. Yao et al., Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 93, 106796 (2022). https://doi.org/10.1016/j.nanoen.2021.106796
- T. Bhatta, P. Maharjan, K. Shrestha, S. Lee, M. Salauddin et al., A hybrid self-powered arbitrary wave motion sensing system for real-time wireless marine environment monitoring application. Adv. Energy Mater. 12(7), 2102460 (2022). https://doi.org/10.1002/aenm.202102460
- L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
- L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
- Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
- Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-Liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
- Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
- Z. Lin, B. Zhang, Y. Xie, Z. Wu, J. Yang et al., Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 31(40), 2105237 (2021). https://doi.org/10.1002/adfm.202105237
- C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5(6), 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
- C. Hao, J. He, Z. Zhang, Y. Yuan, X. Chou et al., A pendulum hybrid generator for water wave energy harvesting and hydrophone-based wireless sensing. AIP Adv. 10(12), 125019 (2020). https://doi.org/10.1063/5.0036220
- P. Maharjan, T. Bhatta, X. Hui, G.B. Pradhan, H. Song et al., Brachistochrone bowl-inspired hybrid nanogenerator integrated with physio-electrochemical multisensors for self-sustainable smart pool monitoring systems. Adv. Energy Mater. 13(14), 2370056 (2023). https://doi.org/10.1002/aenm.202370056
- Y. Yang, J. Wen, F. Chen, Y. Hao, X. Gao et al., Barycenter self-adapting triboelectric nanogenerator for sea water wave high-entropy energy harvesting and self-powered forecasting in marine meteorology. Adv. Funct. Mater. 32(24), 2200521 (2022). https://doi.org/10.1002/adfm.202200521
- X. Zhang, Q. Yang, D. Ren, H. Yang, X. Li et al., Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: an advanced hardware solution to long-distance target detection. Nano Energy 114, 108614 (2023). https://doi.org/10.1016/j.nanoen.2023.108614
- Z. Zhu, H. Xiang, Y. Zeng, J. Zhu, X. Cao et al., Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy 93, 106776 (2022). https://doi.org/10.1016/j.nanoen.2021.106776
- H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
- Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12(1), 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
- Y. Xi, H. Guo, Y. Zi, X. Li, J. Wang et al., Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7(12), 1602397 (2017). https://doi.org/10.1002/aenm.201602397
- D. Guan, X. Cong, J. Li, H. Shen, C. Zhang et al., Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy 87, 106186 (2021). https://doi.org/10.1016/j.nanoen.2021.106186
- D. Guo, C. Chen, J. Li, L. Zhai, S. Li et al., Structural quality factor of flo-TENG under stochastic wave excitation. Adv. Sci. 11(38), e2405165 (2024). https://doi.org/10.1002/advs.202405165
- A. Wang, J. Chen, L. Wang, J. Han, W. Su et al., Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Appl. Energy 307, 118174 (2022). https://doi.org/10.1016/j.apenergy.2021.118174
- T. Jiang, L.M. Zhang, X. Chen, C.B. Han, W. Tang et al., Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 9(12), 12562–12572 (2015). https://doi.org/10.1021/acsnano.5b06372
- Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao et al., Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interf. 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
- W. Gao, J. Shao, K. Sagoe-Crentsil, W. Duan, Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy 80, 105583 (2021). https://doi.org/10.1016/j.nanoen.2020.105583
- W. Kong, L. He, D. Hao, X. Wu, L. Xiao et al., A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries. Renew. Energy 217, 119226 (2023). https://doi.org/10.1016/j.renene.2023.119226
- Y. Zhao, Z. Fan, C. Bi, H. Wang, J. Mi et al., On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples. Appl. Energy 308, 118323 (2022). https://doi.org/10.1016/j.apenergy.2021.118323
- Y. Fu, H. Ruan, Dynamical modeling and parametric analysis of an electret-based wave energy converter. Int. J. Mech. Sci. 243, 108049 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108049
- H. Qiu, H. Wang, L. Xu, M. Zheng, Z.L. Wang, Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves. Energy Environ. Sci. 16(2), 473–483 (2023). https://doi.org/10.1039/D2EE03395J
- J. Ren, C. Gao, J. An, Q. Liu, J. Wang et al., Arc-shaped triboelectric nanogenerator based on rolling structure for harvesting low-frequency water wave energy. Adv. Mater. Technol. 6(11), 2100359 (2021). https://doi.org/10.1002/admt.202100359
- D. Jiang, F. Guo, M. Xu, J. Cai, S. Cong et al., Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy 58, 842–851 (2019). https://doi.org/10.1016/j.nanoen.2019.01.083
- P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
- X. Wang, L. Chen, Z. Xu, P. Chen, C. Ye et al., High-durability stacked disc-type rolling triboelectric nanogenerators for environmental monitoring around charging buoys of unmanned ships. Small 20(23), 2310809 (2024). https://doi.org/10.1002/smll.202310809
- Z. Xu, L. Chen, Z. Zhang, J. Han, P. Chen et al., Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting. Small 20(15), e2307288 (2024). https://doi.org/10.1002/smll.202307288
- X. Zhang, Q. Yang, P. Ji, Z. Wu, Q. Li et al., Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 99, 107362 (2022). https://doi.org/10.1016/j.nanoen.2022.107362
- L. Xu, Y. Pang, C. Zhang, T. Jiang, X. Chen et al., Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 31, 351–358 (2017). https://doi.org/10.1016/j.nanoen.2016.11.037
- K. Xia, Z. Xu, Y. Hong, L. Wang, A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 24, 100467 (2023). https://doi.org/10.1016/j.mtsust.2023.100467
- H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang et al., Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 84, 105920 (2021). https://doi.org/10.1016/j.nanoen.2021.105920
- S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14(12), 2304184 (2024). https://doi.org/10.1002/aenm.202304184
- C. Zhang, S. Yang, X. Dai, Y. Tu, Z. Du et al., Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy. Nano Energy 128, 109929 (2024). https://doi.org/10.1016/j.nanoen.2024.109929
- H. Wu, Z. Wang, Y. Zi, Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 11(16), 2100038 (2021). https://doi.org/10.1002/aenm.202100038
- Z. Zhou, X. Li, Y. Wu, H. Zhang, Z. Lin et al., Wireless self-powered sensor networks driven by triboelectric nanogenerator for in situ real time survey of environmental monitoring. Nano Energy 53, 501–507 (2018). https://doi.org/10.1016/j.nanoen.2018.08.055
- W. Qiao, L. Zhou, Z. Zhao, P. Yang, D. Liu et al., MXene lubricated tribovoltaic nanogenerator with high current output and long lifetime. Nano-Micro Lett. 15(1), 218 (2023). https://doi.org/10.1007/s40820-023-01198-z
- S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14(1), 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
- J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa-1. Nano-Micro Lett. 14(1), 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
- Q. Zhang, M. He, X. Pan, D. Huang, H. Long et al., High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 103, 107810 (2022). https://doi.org/10.1016/j.nanoen.2022.107810
- M. Xu, S. Wang, S.L. Zhang, W. Ding, P.T. Kien et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574–580 (2019). https://doi.org/10.1016/j.nanoen.2018.12.041
- Y. Hou, X. Dong, D. Li, D. Shi, W. Tang et al., Self-powered underwater force sensor based on a T-shaped triboelectric nanogenerator for simultaneous detection of normal and tangential forces. Adv. Funct. Mater. 33(52), 2305719 (2023). https://doi.org/10.1002/adfm.202305719
- X. Zhang, J. Hu, Q. Zeng, H. Yang, W. He et al., A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting. Adv. Mater. Technol. 6(7), 2001199 (2021). https://doi.org/10.1002/admt.202001199
- S. Wu, J. Yang, Y. Wang, B. Liu, Y. Xiong et al., UFO-shaped integrated triboelectric nanogenerator for water wave energy harvesting. Adv. Sustain. Syst. 7(9), 2300135 (2023). https://doi.org/10.1002/adsu.202300135
- L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14(1), 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
- L. Zhang, X. Li, Y. Zhang, Y. Feng, F. Zhou et al., Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy 78, 105370 (2020). https://doi.org/10.1016/j.nanoen.2020.105370
- H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered Arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
- D.Y. Kim, H.S. Kim, D.S. Kong, M. Choi, H.B. Kim et al., Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 45, 247–254 (2018). https://doi.org/10.1016/j.nanoen.2017.12.052
- Q. Liang, X. Yan, X. Liao, Y. Zhang, Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 25, 18–25 (2016). https://doi.org/10.1016/j.nanoen.2016.04.033
- B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399
References
S. Bilgen, Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 38, 890–902 (2014). https://doi.org/10.1016/j.rser.2014.07.004
W.H. Donnelly, ENERGY: Production, consumption and consequences. Energy Policy 20(3), 273–274 (1992). https://doi.org/10.1016/0301-4215(92)90086-h
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
N. Khan, A. Kalair, N. Abas, A. Haider, Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 72, 590–604 (2017). https://doi.org/10.1016/j.rser.2017.01.079
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
G. Du, Y. Shao, B. Luo, T. Liu, J. Zhao et al., Compliant iontronic triboelectric gels with phase-locked structure enabled by competitive hydrogen bonding. Nano-Micro Lett. 16(1), 170 (2024). https://doi.org/10.1007/s40820-024-01387-4
Y.-N. Yang, J. Wang, Z. Wang, C. Shao, Y. Han et al., Moisture-electric-moisture-sensitive heterostructure triggered proton hopping for quality-enhancing moist-electric generator. Nano-Micro Lett. 16(1), 56 (2023). https://doi.org/10.1007/s40820-023-01260-w
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15(1), 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
J. Shen, B. Li, Y. Yang, Z. Yang, X. Liu et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2022). https://doi.org/10.1007/s40820-022-00988-1
J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
J. Sun, L. Zhang, S. Gong, J. Chen, H. Guo, Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogenerator. Nano Energy 119, 109010 (2024). https://doi.org/10.1016/j.nanoen.2023.109010
Y. Jiang, X. Liang, T. Jiang, Z.L. Wang, Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring. Engineering 33, 204–224 (2024). https://doi.org/10.1016/j.eng.2023.05.023
X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15(1), 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15(1), 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
X. Cao, H. Zhou, Y. Zhou, Y. Hu, Y. Wang et al., High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting. Adv. Mater. Technol. 8(15), 2300327 (2023). https://doi.org/10.1002/admt.202300327
J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). https://doi.org/10.1016/j.nanoen.2019.04.047
Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 6, 129–136 (2014). https://doi.org/10.1016/j.nanoen.2014.03.015
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17(1), 17 (2024). https://doi.org/10.1007/s40820-024-01530-1
S. Liu, F. Manshaii, J. Chen, X. Wang, S. Wang et al., Unleashing the potential of electroactive hybrid biomaterials and self-powered systems for bone therapeutics. Nano-Micro Lett. 17(1), 44 (2024). https://doi.org/10.1007/s40820-024-01536-9
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16(1), 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
B. Huang, P. Wang, L. Wang, S. Yang, D. Wu, Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: an overview. Nanotechnol. Rev. 9(1), 716–735 (2020). https://doi.org/10.1515/ntrev-2020-0055
C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 13(19), 2300387 (2023). https://doi.org/10.1002/aenm.202300387
T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li et al., Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 88, 106199 (2021). https://doi.org/10.1016/j.nanoen.2021.106199
F. Shen, Z. Li, H. Guo, Z. Yang, H. Wu et al., Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Electron. Mater. 7(9), 2100277 (2021). https://doi.org/10.1002/aelm.202100277
H. Zhai, S. Ding, X. Chen, Y. Wu, Z.L. Wang, Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Mater. Today 65, 166–188 (2023). https://doi.org/10.1016/j.mattod.2023.02.030
S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee et al., Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small 19(25), 2300847 (2023). https://doi.org/10.1002/smll.202300847
C. Zhang, Y. Hao, X. Lu, W. Su, H. Zhang et al., Advances in TENGs for marine energy harvesting and in situ electrochemistry. Nano-Micro Lett. 17(1), 124 (2025). https://doi.org/10.1007/s40820-024-01640-w
Z.L. Wang, T. Jiang, T. Ma, R. Yang, Nanogenerators for blue energy. MRS Bull. 50(4), 450–458 (2025). https://doi.org/10.1557/s43577-025-00876-0
W. Zhong, L. Xu, X. Yang, W. Tang, J. Shao et al., Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale 11(15), 7199–7208 (2019). https://doi.org/10.1039/C8NR09978B
W. Liu, L. Xu, T. Bu, H. Yang, G. Liu et al., Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 58, 499–507 (2019). https://doi.org/10.1016/j.nanoen.2019.01.088
M. Li, Y. Lou, J. Hu, W. Cui, L. Chen et al., High-coupled magnetic-levitation hybrid nanogenerator with frequency multiplication effect for wireless water level alarm. Small 20(42), 2402009 (2024). https://doi.org/10.1002/smll.202402009
J. An, Z.M. Wang, T. Jiang, X. Liang, Z.L. Wang, Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 29(39), 1904867 (2019). https://doi.org/10.1002/adfm.201904867
L. Gao, X. Xu, H. Han, W. Yang, R. Zhuo et al., A broadband hybrid blue energy nanogenerator for smart ocean IoT network. Nano Energy 127, 109697 (2024). https://doi.org/10.1016/j.nanoen.2024.109697
J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat 2(4), e12059 (2020). https://doi.org/10.1002/eom2.12059
C. Zhu, C. Xiang, M. Wu, C. Yu, S. Dai et al., Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications. Int. J. Extrem. Manuf. 6(6), 062009 (2024). https://doi.org/10.1088/2631-7990/ad7b04
T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
W. Yuan, B. Zhang, C. Zhang, O. Yang, Y. Liu et al., Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting. One Earth 5(9), 1055–1063 (2022). https://doi.org/10.1016/j.oneear.2022.08.013
T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
H. Pang, Y. Feng, J. An, P. Chen, J. Han et al., Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 31(47), 2106398 (2021). https://doi.org/10.1002/adfm.202106398
X. Wang, C. Ye, P. Chen, H. Pang, C. Wei et al., Achieving high power density and durability of multilayered swing-structured triboelectric nanogenerator toward marine environmental protection. Adv. Funct. Mater. 34(6), 2311196 (2024). https://doi.org/10.1002/adfm.202311196
P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin et al., Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019). https://doi.org/10.1016/j.nanoen.2018.12.054
Z. Yuan, C. Wang, J. Xi, X. Han, J. Li et al., Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 6(8), 2809–2816 (2021). https://doi.org/10.1021/acsenergylett.1c01092
H. Hong, T. Chen, J. Yang, Y. Hu, J. Hu et al., Omnidirectional water wave energy harvesting by a spherical triboelectric nanogenerator with sliced-pizza-shaped electrodes. Cell Rep. Phys. Sci. 5(5), 101933 (2024). https://doi.org/10.1016/j.xcrp.2024.101933
X. Wang, S. Niu, Y. Yin, F. Yi, Z. You et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
X. Miao, H. Yang, Z. Li, M. Cheng, Y. Zhao et al., A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 17(4), 3029–3034 (2024). https://doi.org/10.1007/s12274-023-6100-5
S.-H. Chung, J. Chung, B. Kim, S. Kim, S. Lee, Screw pump-type water triboelectric nanogenerator for active water flow control. Adv. Eng. Mater. 23(1), 2000758 (2021). https://doi.org/10.1002/adem.202000758
F. Xi, Y. Pang, G. Liu, S. Wang, W. Li et al., Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019). https://doi.org/10.1016/j.nanoen.2019.04.026
R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
X. Liang, Z. Liu, Y. Feng, J. Han, L. Li et al., Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 83, 105836 (2021). https://doi.org/10.1016/j.nanoen.2021.105836
C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang et al., Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 11(12), 2003616 (2021). https://doi.org/10.1002/aenm.202003616
G. Li, J. Wang, S. Fu, C. Shan, H. Wu et al., A nanogenerator enabled by a perfect combination and synergetic utilization of triboelectrification, charge excitation and electromagnetic induction to reach efficient energy conversion. Adv. Funct. Mater. 33(14), 2213893 (2023). https://doi.org/10.1002/adfm.202213893
H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019). https://doi.org/10.1002/aenm.201901149
S. Liu, X. Liang, P. Chen, H. Long, T. Jiang et al., Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Meth. 7(3), 2201392 (2023). https://doi.org/10.1002/smtd.202201392
Q. Wang, G. Yu, Y. Lou, M. Li, J. Hu et al., Elastic self-recovering hybrid nanogenerator for water wave energy harvesting and marine environmental monitoring. Sensors 24(12), 3770 (2024). https://doi.org/10.3390/s24123770
Q. Gao, J. Wang, H. Li, Y. Yu, X. Zhang et al., High performance triboelectric nanogenerator for wave energy harvesting through the gas-assisted method. Chem. Eng. J. 493, 152730 (2024). https://doi.org/10.1016/j.cej.2024.152730
G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9(26), 1900801 (2019). https://doi.org/10.1002/aenm.201900801
C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33(47), 2305768 (2023). https://doi.org/10.1002/adfm.202305768
J. Feng, H. Zhou, Z. Cao, E. Zhang, S. Xu et al., 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 9(35), e2204407 (2022). https://doi.org/10.1002/advs.202204407
Y. Lou, M. Li, A. Yu, Z.L. Wang, J. Zhai, An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy. Energy Environ. Sci. 18(4), 1745–1755 (2025). https://doi.org/10.1039/D4EE04205K
C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Magnetic suspension damped hybrid nanogenerator for water wave energy harvesting. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500130
X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10(40), 2002123 (2020). https://doi.org/10.1002/aenm.202002123
X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13(1), 277–285 (2020). https://doi.org/10.1039/C9EE03258D
C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou et al., Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Adv. Mater. Technol. 5(9), 2000531 (2020). https://doi.org/10.1002/admt.202000531
Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li et al., Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 14(13), 15187–15194 (2022). https://doi.org/10.1021/acsami.1c25004
Y. Li, Z. Guo, Z. Zhao, Y. Gao, P. Yang et al., Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 336, 120792 (2023). https://doi.org/10.1016/j.apenergy.2023.120792
C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
Y. Lou, M. Li, J. Hu, Y. Zhao, W. Cui et al., Maximizing the energy conversion of triboelectric nanogenerator through the synergistic effect of high coupling and dual-track circuit for marine monitoring. Nano Energy 121, 109240 (2024). https://doi.org/10.1016/j.nanoen.2023.109240
A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi et al., Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 7(7), 1601705 (2017). https://doi.org/10.1002/aenm.201601705
Z. Saadatnia, E. Asadi, H. Askari, J. Zu, E. Esmailzadeh, Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 41(14), 2392–2404 (2017). https://doi.org/10.1002/er.3811
L. Liu, X. Yang, L. Zhao, H. Hong, H. Cui et al., Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15(6), 9412–9421 (2021). https://doi.org/10.1021/acsnano.1c00345
W. Zhong, L. Xu, H. Wang, D. Li, Z.L. Wang, Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 66, 104108 (2019). https://doi.org/10.1016/j.nanoen.2019.104108
Y. Pang, Y. Fang, J. Su, H. Wang, Y. Tan et al., Soft ball-based triboelectric–electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technol. 8(6), 2201246 (2023). https://doi.org/10.1002/admt.202201246
W. Zhang, W. He, S. Dai, F. Ma, P. Lin et al., Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy 111, 108432 (2023). https://doi.org/10.1016/j.nanoen.2023.108432
X. Wang, Q. Gao, M. Zhu, J. Wang, J. Zhu et al., Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 323, 119648 (2022). https://doi.org/10.1016/j.apenergy.2022.119648
X. Yang, L. Xu, P. Lin, W. Zhong, Y. Bai et al., Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404–412 (2019). https://doi.org/10.1016/j.nanoen.2019.03.054
Y. Duan, H. Xu, S. Liu, P. Chen, X. Wang et al., Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 16(9), 11646–11652 (2023). https://doi.org/10.1007/s12274-023-6035-x
Y. Bai, L. Xu, C. He, L. Zhu, X. Yang et al., High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping. Nano Energy 66, 104117 (2019). https://doi.org/10.1016/j.nanoen.2019.104117
C. Zhang, W. Yuan, B. Zhang, J. Yang, Y. Hu et al., A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 19(52), 2304412 (2023). https://doi.org/10.1002/smll.202304412
Z. Qu, M. Huang, C. Chen, Y. An, H. Liu et al., Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 32(29), 2202048 (2022). https://doi.org/10.1002/adfm.202202048
X. Chen, B. Cao, C. Yang, H. Zhang, L. Fang et al., Broadband and multi-cylinder-based triboelectric nanogenerators for mechanical energy harvesting with high space utilization. Materials 16(8), 3034 (2023). https://doi.org/10.3390/ma16083034
X. Han, Y. Ji, L. Wu, Y. Xia, C.R. Bowen et al., Coupling enhancement of a flexible BiFeO3 film-based nanogenerator for simultaneously scavenging light and vibration energies. Nano-Micro Lett. 14(1), 198 (2022). https://doi.org/10.1007/s40820-022-00943-0
Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11(31), 2101116 (2021). https://doi.org/10.1002/aenm.202101116
F. Zheng, Y. Sun, X. Wei, J. Chen, Z. Yuan et al., A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy 90, 106631 (2021). https://doi.org/10.1016/j.nanoen.2021.106631
Z. Wu, H. Guo, W. Ding, Y.C. Wang, L. Zhang et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616–624 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
J. Chen, K. Wu, S. Gong, J. Wang, K. Wang et al., A magnetic-multiplier-enabled hybrid generator with frequency division operation and high energy utilization efficiency. Research 6, 0168 (2023). https://doi.org/10.34133/research.0168
S. Tian, X. Wei, L. Lai, B. Li, Z. Wu et al., Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy 102, 107669 (2022). https://doi.org/10.1016/j.nanoen.2022.107669
H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
A. Chandrasekhar, V. Vivekananthan, S.-J. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020). https://doi.org/10.1016/j.nanoen.2019.104439
X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
R. Ouyang, J. Miao, T. Wu, J. Chen, C. Sun et al., Magnets assisted triboelectric nanogenerator for harvesting water wave energy. Adv. Mater. Technol. 7(9), 2200403 (2022). https://doi.org/10.1002/admt.202200403
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
H. Yang, M. Wang, M. Deng, H. Guo, W. Zhang et al., A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 56, 300–306 (2019). https://doi.org/10.1016/j.nanoen.2018.11.043
Y. Xie, H. Zhang, G. Yao, S.A. Khan, M. Gao et al., Intelligent sensing system based on hybrid nanogenerator by harvesting multiple clean energy. Adv. Eng. Mater. 20(1), 1700886 (2018). https://doi.org/10.1002/adem.201700886
S. Ding, H. Zhai, X. Tao, P. Yang, Z. Liu et al., A triboelectric-electromagnetic hybrid nanogenerator with magnetic coupling assisted waterproof encapsulation for long-lasting energy harvesting. Small 20(42), 2403879 (2024). https://doi.org/10.1002/smll.202403879
Z. Saadatnia, E. Esmailzadeh, H.E. Naguib, Design, simulation, and experimental characterization of a heaving triboelectric-electromagnetic wave energy harvester. Nano Energy 50, 281–290 (2018). https://doi.org/10.1016/j.nanoen.2018.05.059
H. Yang, H. Yang, M. Lai, Y. Xi, Y. Guan et al., Triboelectric and electromagnetic hybrid nanogenerator based on a crankshaft piston system as a multifunctional energy harvesting device. Adv. Mater. Technol. 4(2), 1800278 (2019). https://doi.org/10.1002/admt.201800278
J. Wang, L. Pan, H. Guo, B. Zhang, R. Zhang et al., Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 9(8), 1802892 (2019). https://doi.org/10.1002/aenm.201802892
C. Hao, J. He, C. Zhai, W. Jia, L. Song et al., Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 58, 147–157 (2019). https://doi.org/10.1016/j.nanoen.2019.01.033
X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
L. Liu, Q. Shi, C. Lee, A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 76, 105052 (2020). https://doi.org/10.1016/j.nanoen.2020.105052
Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15(2), 621–632 (2022). https://doi.org/10.1039/D1EE02549J
Y. Zhang, K. Fan, J. Zhu, S. Wu, S. Zhang et al., Multi-purpose triboelectric-electromagnetic hybrid nanogenerator with a mechanical motion-controlled switch for harvesting low-frequency energy. Nano Energy 104, 107867 (2022). https://doi.org/10.1016/j.nanoen.2022.107867
S. Zhang, Z. Jing, X. Wang, K. Fan, H. Zhao et al., Enhancing low-velocity water flow energy harvesting of triboelectric–electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism. ACS Energy Lett. 7(12), 4282–4289 (2022). https://doi.org/10.1021/acsenergylett.2c01908
Z. Qu, X. Wang, M. Huang, C. Chen, Y. An et al., An eccentric-structured hybrid triboelectric-electromagnetic nanogenerator for low-frequency mechanical energy harvesting. Nano Energy 107, 108094 (2023). https://doi.org/10.1016/j.nanoen.2022.108094
L.-C. Zhao, H.-X. Zou, X. Xie, D.-H. Guo, Q.-H. Gao et al., Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023). https://doi.org/10.1016/j.nanoen.2023.108222
S. Gao, Y. Chen, S. Feng, X. Chen, J. Zhang et al., Triple-mode hybridized generator for efficient water flow energy harvesting and water quality monitoring applications. Nano Energy 113, 108530 (2023). https://doi.org/10.1016/j.nanoen.2023.108530
J. Zhang, Y. Yu, H. Li, M. Zhu, S. Zhang et al., Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting. Appl. Energy 357, 122512 (2024). https://doi.org/10.1016/j.apenergy.2023.122512
J. Dai, X. Xia, D. Zhang, S. He, D. Wan et al., High-performance self-desalination powered by triboelectric-electromagnetic hybrid nanogenerator. Water Res. 252, 121185 (2024). https://doi.org/10.1016/j.watres.2024.121185
W. Wang, Y. Zhang, G. Wu, Z. Zhao, Y. Wu et al., Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system. Nanoscale Adv. 6(14), 3566–3572 (2024). https://doi.org/10.1039/D4NA00222A
T. Li, X. Wang, K. Wang, Y. Liu, C. Li et al., Bidirectional rotating turbine hybrid triboelectric-electromagnetic wave energy harvester for marine environment monitoring. Adv. Energy Mater. 14(26), 2400313 (2024). https://doi.org/10.1002/aenm.202400313
L. Zhai, H. Wen, H. Liu, D. Guo, G. Liu et al., High-sensitivity blue-energy-shuttle and in situ electrical behaviors in ocean. Nano Energy 125, 109546 (2024). https://doi.org/10.1016/j.nanoen.2024.109546
L. Dong, J. Zhu, H. Li, J. Zhang, D. Zhao et al., Bionic dragonfly staggered flapping hydrofoils triboelectric-electromagnetic hybrid generator for low-speed water flow energy harvesting. Nano Energy 127, 109783 (2024). https://doi.org/10.1016/j.nanoen.2024.109783
T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao et al., Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2017). https://doi.org/10.1016/j.nanoen.2016.12.004
T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
M. Yin, X. Lu, G. Qiao, Y. Xu, Y. Wang et al., Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 10(22), 2000627 (2020). https://doi.org/10.1002/aenm.202000627
Y. Yang, X. Yu, L. Meng, X. Li, Y. Xu et al., Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 46, 101338 (2021). https://doi.org/10.1016/j.eml.2021.101338
H. Jung, H. Ouro-Koura, A. Salalila, M. Salalila, Z.D. Deng, Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system. Nano Energy 99, 107365 (2022). https://doi.org/10.1016/j.nanoen.2022.107365
P. Chen, J. An, S. Shu, R. Cheng, J. Nie et al., Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 11(9), 2003066 (2021). https://doi.org/10.1002/aenm.202003066
Y. Sun, Y. Yu, Q. Gao, X. Zhang, J. Zhang et al., Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy. Nano Energy 121, 109194 (2024). https://doi.org/10.1016/j.nanoen.2023.109194
Z. Xie, Z. Qin, Y. Wang, D. Yu, Z. Li, Triboelectric–electromagnetic hybrid energy nanogenerator with variable-frequency effect inspired by magnetic gears for efficient use of low-speed flow energy. Energy Technol. 12(7), 2301701 (2024). https://doi.org/10.1002/ente.202301701
B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202270194
M.T. Rahman, S.M. Sohel Rana, P. Maharjan, M. Salauddin, T. Bhatta et al., Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smart-farming applications. Nano Energy 85, 105974 (2021). https://doi.org/10.1016/j.nanoen.2021.105974
C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi et al., A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63, 103871 (2019). https://doi.org/10.1016/j.nanoen.2019.103871
Y. Du, Z. Guan, D. Chen, J. Ye, P. Li et al., Broadband rotary hybrid generator for wide-flow-rate fluid energy harvesting and bubble power generation. Energy Convers. Manag. 250, 114833 (2021). https://doi.org/10.1016/j.enconman.2021.114833
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
H. Ning, W. Zhou, L. Tuo, C. Liang, C. Chen et al., Tensegrity triboelectric nanogenerator for broadband blue energy harvesting in all-sea areas. Nano Energy 117, 108906 (2023). https://doi.org/10.1016/j.nanoen.2023.108906
K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10(28), 2000426 (2020). https://doi.org/10.1002/aenm.202000426
H. Wen, P. Yang, G. Liu, S. Xu, H. Yao et al., Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 93, 106796 (2022). https://doi.org/10.1016/j.nanoen.2021.106796
T. Bhatta, P. Maharjan, K. Shrestha, S. Lee, M. Salauddin et al., A hybrid self-powered arbitrary wave motion sensing system for real-time wireless marine environment monitoring application. Adv. Energy Mater. 12(7), 2102460 (2022). https://doi.org/10.1002/aenm.202102460
L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-Liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
Z. Lin, B. Zhang, Y. Xie, Z. Wu, J. Yang et al., Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 31(40), 2105237 (2021). https://doi.org/10.1002/adfm.202105237
C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5(6), 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
C. Hao, J. He, Z. Zhang, Y. Yuan, X. Chou et al., A pendulum hybrid generator for water wave energy harvesting and hydrophone-based wireless sensing. AIP Adv. 10(12), 125019 (2020). https://doi.org/10.1063/5.0036220
P. Maharjan, T. Bhatta, X. Hui, G.B. Pradhan, H. Song et al., Brachistochrone bowl-inspired hybrid nanogenerator integrated with physio-electrochemical multisensors for self-sustainable smart pool monitoring systems. Adv. Energy Mater. 13(14), 2370056 (2023). https://doi.org/10.1002/aenm.202370056
Y. Yang, J. Wen, F. Chen, Y. Hao, X. Gao et al., Barycenter self-adapting triboelectric nanogenerator for sea water wave high-entropy energy harvesting and self-powered forecasting in marine meteorology. Adv. Funct. Mater. 32(24), 2200521 (2022). https://doi.org/10.1002/adfm.202200521
X. Zhang, Q. Yang, D. Ren, H. Yang, X. Li et al., Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: an advanced hardware solution to long-distance target detection. Nano Energy 114, 108614 (2023). https://doi.org/10.1016/j.nanoen.2023.108614
Z. Zhu, H. Xiang, Y. Zeng, J. Zhu, X. Cao et al., Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy 93, 106776 (2022). https://doi.org/10.1016/j.nanoen.2021.106776
H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang et al., A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12(1), 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
Y. Xi, H. Guo, Y. Zi, X. Li, J. Wang et al., Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 7(12), 1602397 (2017). https://doi.org/10.1002/aenm.201602397
D. Guan, X. Cong, J. Li, H. Shen, C. Zhang et al., Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy 87, 106186 (2021). https://doi.org/10.1016/j.nanoen.2021.106186
D. Guo, C. Chen, J. Li, L. Zhai, S. Li et al., Structural quality factor of flo-TENG under stochastic wave excitation. Adv. Sci. 11(38), e2405165 (2024). https://doi.org/10.1002/advs.202405165
A. Wang, J. Chen, L. Wang, J. Han, W. Su et al., Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Appl. Energy 307, 118174 (2022). https://doi.org/10.1016/j.apenergy.2021.118174
T. Jiang, L.M. Zhang, X. Chen, C.B. Han, W. Tang et al., Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 9(12), 12562–12572 (2015). https://doi.org/10.1021/acsnano.5b06372
Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao et al., Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interf. 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
W. Gao, J. Shao, K. Sagoe-Crentsil, W. Duan, Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy 80, 105583 (2021). https://doi.org/10.1016/j.nanoen.2020.105583
W. Kong, L. He, D. Hao, X. Wu, L. Xiao et al., A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries. Renew. Energy 217, 119226 (2023). https://doi.org/10.1016/j.renene.2023.119226
Y. Zhao, Z. Fan, C. Bi, H. Wang, J. Mi et al., On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples. Appl. Energy 308, 118323 (2022). https://doi.org/10.1016/j.apenergy.2021.118323
Y. Fu, H. Ruan, Dynamical modeling and parametric analysis of an electret-based wave energy converter. Int. J. Mech. Sci. 243, 108049 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108049
H. Qiu, H. Wang, L. Xu, M. Zheng, Z.L. Wang, Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves. Energy Environ. Sci. 16(2), 473–483 (2023). https://doi.org/10.1039/D2EE03395J
J. Ren, C. Gao, J. An, Q. Liu, J. Wang et al., Arc-shaped triboelectric nanogenerator based on rolling structure for harvesting low-frequency water wave energy. Adv. Mater. Technol. 6(11), 2100359 (2021). https://doi.org/10.1002/admt.202100359
D. Jiang, F. Guo, M. Xu, J. Cai, S. Cong et al., Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy 58, 842–851 (2019). https://doi.org/10.1016/j.nanoen.2019.01.083
P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
X. Wang, L. Chen, Z. Xu, P. Chen, C. Ye et al., High-durability stacked disc-type rolling triboelectric nanogenerators for environmental monitoring around charging buoys of unmanned ships. Small 20(23), 2310809 (2024). https://doi.org/10.1002/smll.202310809
Z. Xu, L. Chen, Z. Zhang, J. Han, P. Chen et al., Durable roller-based swing-structured triboelectric nanogenerator for water wave energy harvesting. Small 20(15), e2307288 (2024). https://doi.org/10.1002/smll.202307288
X. Zhang, Q. Yang, P. Ji, Z. Wu, Q. Li et al., Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 99, 107362 (2022). https://doi.org/10.1016/j.nanoen.2022.107362
L. Xu, Y. Pang, C. Zhang, T. Jiang, X. Chen et al., Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 31, 351–358 (2017). https://doi.org/10.1016/j.nanoen.2016.11.037
K. Xia, Z. Xu, Y. Hong, L. Wang, A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 24, 100467 (2023). https://doi.org/10.1016/j.mtsust.2023.100467
H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang et al., Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 84, 105920 (2021). https://doi.org/10.1016/j.nanoen.2021.105920
S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14(12), 2304184 (2024). https://doi.org/10.1002/aenm.202304184
C. Zhang, S. Yang, X. Dai, Y. Tu, Z. Du et al., Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy. Nano Energy 128, 109929 (2024). https://doi.org/10.1016/j.nanoen.2024.109929
H. Wu, Z. Wang, Y. Zi, Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 11(16), 2100038 (2021). https://doi.org/10.1002/aenm.202100038
Z. Zhou, X. Li, Y. Wu, H. Zhang, Z. Lin et al., Wireless self-powered sensor networks driven by triboelectric nanogenerator for in situ real time survey of environmental monitoring. Nano Energy 53, 501–507 (2018). https://doi.org/10.1016/j.nanoen.2018.08.055
W. Qiao, L. Zhou, Z. Zhao, P. Yang, D. Liu et al., MXene lubricated tribovoltaic nanogenerator with high current output and long lifetime. Nano-Micro Lett. 15(1), 218 (2023). https://doi.org/10.1007/s40820-023-01198-z
S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14(1), 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa-1. Nano-Micro Lett. 14(1), 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
Q. Zhang, M. He, X. Pan, D. Huang, H. Long et al., High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 103, 107810 (2022). https://doi.org/10.1016/j.nanoen.2022.107810
M. Xu, S. Wang, S.L. Zhang, W. Ding, P.T. Kien et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574–580 (2019). https://doi.org/10.1016/j.nanoen.2018.12.041
Y. Hou, X. Dong, D. Li, D. Shi, W. Tang et al., Self-powered underwater force sensor based on a T-shaped triboelectric nanogenerator for simultaneous detection of normal and tangential forces. Adv. Funct. Mater. 33(52), 2305719 (2023). https://doi.org/10.1002/adfm.202305719
X. Zhang, J. Hu, Q. Zeng, H. Yang, W. He et al., A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting. Adv. Mater. Technol. 6(7), 2001199 (2021). https://doi.org/10.1002/admt.202001199
S. Wu, J. Yang, Y. Wang, B. Liu, Y. Xiong et al., UFO-shaped integrated triboelectric nanogenerator for water wave energy harvesting. Adv. Sustain. Syst. 7(9), 2300135 (2023). https://doi.org/10.1002/adsu.202300135
L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14(1), 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
L. Zhang, X. Li, Y. Zhang, Y. Feng, F. Zhou et al., Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy 78, 105370 (2020). https://doi.org/10.1016/j.nanoen.2020.105370
H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered Arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
D.Y. Kim, H.S. Kim, D.S. Kong, M. Choi, H.B. Kim et al., Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 45, 247–254 (2018). https://doi.org/10.1016/j.nanoen.2017.12.052
Q. Liang, X. Yan, X. Liao, Y. Zhang, Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 25, 18–25 (2016). https://doi.org/10.1016/j.nanoen.2016.04.033
B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399