Rapid Outgassing of Hydrophilic TiO2 Electrodes Achieves Long-Term Stability of Anion Exchange Membrane Water Electrolyzers
Corresponding Author: Sang‑Il Choi
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 186
Abstract
The state-of-the-art anion-exchange membrane water electrolyzers (AEMWEs) require highly stable electrodes for prolonged operation. The stability of the electrode is closely linked to the effective evacuation of H2 or O2 gas generated from electrode surface during the electrolysis. In this study, we prepared a super-hydrophilic electrode by depositing porous nickel–iron nanoparticles on annealed TiO2 nanotubes (NiFe/ATNT) for rapid outgassing of such nonpolar gases. The super-hydrophilic NiFe/ATNT electrode exhibited an overpotential of 235 mV at 10 mA cm−2 for oxygen evolution reaction in 1.0 M KOH solution, and was utilized as the anode in the AEMWE to achieve a current density of 1.67 A cm−2 at 1.80 V. In addition, the AEMWE with NiFe/ATNT electrode, which enables effective outgassing, showed record stability for 1500 h at 0.50 A cm−2 under harsh temperature conditions of 80 ± 3 °C.
Highlights:
1 A super-hydrophilic electrode was successfully developed by depositing porous NiFe nanoparticles onto annealed TiO2 nanotubes (NiFe/ATNT), facilitating rapid outgassing of nonpolar gases.
2 The NiFe/ATNT electrode demonstrated an overpotential of 235 mV at 10 mA cm−2 for the oxygen evolution reaction in 1.0 M KOH and served as the anode in the anion exchange membrane water electrolyzer (AEMWE), achieving a current density of 1.67 A cm−2 at 1.80 V.
3 The AEMWE utilizing the NiFe/ATNT electrode exhibited remarkable stability, maintaining operation for 1500 h at 0.50 A cm−2 under challenging thermal conditions of 80 ± 3 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Hu, Y. Wang, Y.M. Lee, Ether-free alkaline polyelectrolytes for water electrolyzers: recent advances and perspectives. Angew. Chem. Int. Ed. 64, e202418324 (2025). https://doi.org/10.1002/anie.202418324
- S. Shaik, J. Kundu, Y. Yuan, W. Chung, D. Han et al., Recent progress and perspective in pure water-fed anion exchange membrane water electrolyzers. Adv. Energy Mater. 14, 2470148 (2024). https://doi.org/10.1002/aenm.202470148
- Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu et al., Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 4, 100087 (2022). https://doi.org/10.1016/j.enchem.2022.100087
- J. Ding, Z. Peng, Z. Wang, C. Zeng, Y. Feng et al., Phosphorus–tungsten dual-doping boosts acidic overall seawater splitting performance over RuOx nanocrystals. J. Mater. Chem. A 12, 28023–28031 (2024). https://doi.org/10.1039/D4TA05277C
- W. Liu, W. Liu, T. Hou, J. Ding, Z. Wang et al., Coupling Co–Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 17, 4797–4806 (2024). https://doi.org/10.1007/s12274-024-6433-8
- D. Zha, R. Wang, S. Tian, Z.-J. Jiang, Z. Xu et al., Defect engineering and carbon supporting to achieve Ni-doped CoP3 with high catalytic activities for overall water splitting. Nano-Micro Lett. 16, 250 (2024). https://doi.org/10.1007/s40820-024-01471-9
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16, 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- X. Gao, S. Dai, Y. Teng, Q. Wang, Z. Zhang et al., Ultra-efficient and cost-effective platinum nanomembrane electrocatalyst for sustainable hydrogen production. Nano-Micro Lett. 16, 108 (2024). https://doi.org/10.1007/s40820-024-01324-5
- X. Wang, W. Pi, S. Hu, H. Bao, N. Yao et al., Boosting oxygen evolution reaction performance on NiFe-based catalysts through d-orbital hybridization. Nano-Micro Lett. 17, 11 (2024). https://doi.org/10.1007/s40820-024-01528-9
- X. Jiang, V. Kyriakou, B. Wang, S. Deng, S. Costil et al., Hierarchical microporous Ni-based electrodes enable “two birds with one stone” in highly efficient and robust anion exchange membrane water electrolysis (AEMWE). Chem. Eng. J. 486, 150180 (2024). https://doi.org/10.1016/j.cej.2024.150180
- M.K. Kabiraz, J. Kim, H.J. Lee, S. Park, Y.W. Lee et al., Nickel nanoplates enclosed by (111) facets as durable oxygen evolution catalysts in anion exchange membrane water electrolyzers. Adv. Funct. Mater. 34, 2406175 (2024). https://doi.org/10.1002/adfm.202406175
- Z. Liang, D. Shen, Y. Wei, F. Sun, Y. Xie et al., Modulating the electronic structure of cobalt-vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 36, e2408634 (2024). https://doi.org/10.1002/adma.202408634
- Y. Shi, L. Song, Y. Liu, T. Wang, C. Li et al., Dual cocatalytic sites synergize NiFe layered double hydroxide to boost oxygen evolution reaction in anion exchange membrane water electrolyzer. Adv. Energy Mater. 14, 2402046 (2024). https://doi.org/10.1002/aenm.202402046
- F. Malaj, A. Tampucci, D. Lentini, L. Brogi, E. Berretti et al., One-pot synthesis of FeNi3/FeNiOx nanops for PGM-free anion exchange membrane water electrolysis. Electrochim. Acta 507, 145109 (2024). https://doi.org/10.1016/j.electacta.2024.145109
- L. Wu, M. Ning, X. Xing, Y. Wang, F. Zhang et al., Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 35, e2306097 (2023). https://doi.org/10.1002/adma.202306097
- G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
- N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16, 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
- A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D.F. Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005
- F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues et al., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 5, 1776–1799 (2021). https://doi.org/10.1016/j.joule.2021.05.006
- L. Wan, Z. Xu, P. Wang, P.-F. Liu, Q. Xu et al., Dual regulation both intrinsic activity and mass transport for self-supported electrodes using in anion exchange membrane water electrolysis. Chem. Eng. J. 431, 133942 (2022). https://doi.org/10.1016/j.cej.2021.133942
- K. Dastafkan, S. Wang, S. Song, Q. Meyer, Q. Zhang et al., operando monitoring of gas bubble evolution in water electrolysis by single high-frequency impedance. EES. Catal. 1, 998–1008 (2023). https://doi.org/10.1039/d3ey00182b
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- M. Bellini, E. Berretti, M. Innocenti, G. Magherini, M.V. Pagliaro et al., 3D titania nanotube array support for water electrolysis palladium catalysts. Electrochim. Acta 383, 138338 (2021). https://doi.org/10.1016/j.electacta.2021.138338
- J. Wang, J. Tian, W. Wang, Z. Zhao, L. Li et al., Enhanced photocatalytic activity of graphene/TiO2 nanotubes composites prepared by wet transfer method. Fuller. Nanotub. Carbon Nanostruct. 30, 495–502 (2022). https://doi.org/10.1080/1536383X.2021.1960510
- Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu et al., Efficient charge separation in Ag/PCN/UPDI ternary heterojunction for optimized photothermal-photocatalytic performance via tandem electric fields. Small 20, e2306692 (2024). https://doi.org/10.1002/smll.202306692
- F. He, Y. Liu, X. Yang, Y. Chen, C.-C. Yang et al., Accelerating oxygen electrocatalysis kinetics on metal-organic frameworks via bond length optimization. Nano-Micro Lett. 16, 175 (2024). https://doi.org/10.1007/s40820-024-01382-9
- A. Zabilska, A.H. Clark, B.M. Moskowitz, I.E. Wachs, Y. Kakiuchi et al., Redox dynamics of active VOx sites promoted by TiOx during oxidative dehydrogenation of ethanol detected by operando quick XAS. JACS Au 2, 762–776 (2022). https://doi.org/10.1021/jacsau.2c00027
- G. Rossi, M. Calizzi, V. Di Cintio, S. Magkos, L. Amidani et al., Local structure of V dopants in TiO2 nanops: X-ray absorption spectroscopy, including ab-initio and full potential simulations. J. Phys. Chem. C 120, 7457–7466 (2016). https://doi.org/10.1021/acs.jpcc.5b12045
- J. He, W. Liu, Z. Hu, X. Wang, J. Liu et al., Well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals from asymmetric to symmetric. Small 20, e2406783 (2024). https://doi.org/10.1002/smll.202406783
- S.H. Ahn, A. Manthiram, Single Ni atoms and clusters embedded in N-doped carbon “tubes on fibers” matrix with bifunctional activity for water splitting at high current densities. Small 16, 2002511 (2020). https://doi.org/10.1002/smll.202002511
- D. Peng, C. Hu, X. Luo, J. Huang, Y. Ding et al., Electrochemical reconstruction of NiFe/NiFeOOH superparamagnetic core/catalytic shell heterostructure for magnetic heating enhancement of oxygen evolution reaction. Small 19, e2205665 (2023). https://doi.org/10.1002/smll.202205665
- R. Li, L. Gao, Z. Dou, L. Cui, Obtaining the high valence of Ni/Fe sites in a heterostructure induced by implanting the NiFe-DTO MOF as a highly active OER catalyst. ACS Sustain. Chem. Eng. 12, 17761–17769 (2024). https://doi.org/10.1021/acssuschemeng.4c06643
- M. Bele, P. Jovanovič, Ž Marinko, S. Drev, V.S. Šelih et al., Increasing the oxygen-evolution reaction performance of nanotubular titanium oxynitride-supported Ir nanops by a strong metal–support interaction. ACS Catal. 10, 13688–13700 (2020). https://doi.org/10.1021/acscatal.0c03688
- D. Kim, X. Qin, B. Yan, Y. Piao, Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chem. Eng. J. 408, 127331 (2021). https://doi.org/10.1016/j.cej.2020.127331
- H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977). https://doi.org/10.1063/1.323539
- V. Mansfeldova, M. Zlamalova, H. Tarabkova, P. Janda, M. Vorokhta et al., Work function of TiO2 (anatase, rutile, and brookite) single crystals: effects of the environment. J. Phys. Chem. C 125, 1902–1912 (2021). https://doi.org/10.1021/acs.jpcc.0c10519
- E. Hua, S. Choi, S. Ren, S. Kim, G. Ali et al., Negatively charged platinum nanops on dititanium oxide electride for ultra-durable electrocatalytic oxygen reduction. Energy Environ. Sci. 16, 4464–4473 (2023). https://doi.org/10.1039/D3EE01211E
- S.H. Baker, A.M. Asaduzzaman, M. Roy, S.J. Gurman, C. Binns et al., Atomic structure and magnetic moments in cluster-assembled nanocomposite Fe/Cu films. Phys. Rev. B 78, 014422 (2008). https://doi.org/10.1103/physrevb.78.014422
- Y. Lin, L. Zhao, L. Wang, Y. Gong, Ruthenium-doped NiFe-based metal–organic framework nanops as highly efficient catalysts for the oxygen evolution reaction. Dalton Trans. 50, 4280–4287 (2021). https://doi.org/10.1039/D0DT04133E
- B.-A. Mei, J. Lau, T. Lin, S.H. Tolbert, B.S. Dunn et al., Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J. Phys. Chem. C 122, 24499–24511 (2018). https://doi.org/10.1021/acs.jpcc.8b05241
- S. Seenivasan, H. Moon, D.-H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
- Y. Hu, C. Wang, Electrodeposition of nickel–cobalt alloys from metal chloride-l-serine deep eutectic solvent for the hydrogen evolution reaction. J. Mater. Chem. A 12, 16769–16779 (2024). https://doi.org/10.1039/D4TA02433H
- R.K. Dharman, H. Im, M.K. Kabiraz, J. Kim, K.P. Shejale et al., Stable 1T-MoS2 by facile phase transition synthesis for efficient electrocatalytic oxygen evolution reaction. Small Meth. 8, 2301251 (2024). https://doi.org/10.1002/smtd.202301251
- Y.J. Park, J. Lee, Y.S. Park, J. Yang, M.J. Jang et al., Electrodeposition of high-surface-area IrO2 films on Ti felt as an efficient catalyst for the oxygen evolution reaction. Front. Chem. 8, 593272 (2020). https://doi.org/10.3389/fchem.2020.593272
- S.S. Jeon, P.W. Kang, M. Klingenhof, H. Lee, F. Dionigi et al., Active surface area and intrinsic catalytic oxygen evolution reactivity of NiFe LDH at reactive electrode potentials using capacitances. ACS Catal. 13, 1186–1196 (2023). https://doi.org/10.1021/acscatal.2c04452
- B. Kim, M.K. Kabiraz, J. Lee, C. Choi, H. Baik et al., Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 4, 3585–3604 (2021). https://doi.org/10.1016/j.matt.2021.09.003
- H. Sun, C.W. Tung, Y. Qiu, W. Zhang, Q. Wang et al., Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 144, 1174–1186 (2022). https://doi.org/10.1021/jacs.1c08890
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- L. Pan, J. Sun, H. Qi, M. Han, Q. Dai et al., Dead-zone-compensated design as general method of flow field optimization for redox flow batteries. Proc. Natl. Acad. Sci. U.S.A. 120, e2305572120 (2023). https://doi.org/10.1073/pnas.2305572120
- R. Andaveh, G. Barati Darband, M. Maleki, A. Sabour Rouhaghdam, Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: a comprehensive review. J. Mater. Chem. A 10, 5147–5173 (2022). https://doi.org/10.1039/D1TA10519A
- A.R. Zeradjanin, P. Narangoda, I. Spanos, J. Masa, R. Schlögl, How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021). https://doi.org/10.1016/j.coelec.2021.100797
- I. Bakonyi, Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Eur. Phys. J. Plus 136, 410 (2021). https://doi.org/10.1140/epjp/s13360-021-01303-4
- G.H.A. Wijaya, K.S. Im, S.Y. Nam, Advancements in commercial anion exchange membranes: a review of membrane properties in water electrolysis applications. Desalin. Water Treat. 320, 100605 (2024). https://doi.org/10.1016/j.dwt.2024.100605
- G.A. Lindquist, S.Z. Oener, R. Krivina, A.R. Motz, A. Keane et al., Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation. ACS Appl. Mater. Interfaces 13, 51917–51924 (2021). https://doi.org/10.1021/acsami.1c06053
- D. Chanda, K. Kannan, J. Gautam, M.M. Meshesha, S.G. Jang et al., Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis. Appl. Catal. B Environ. 321, 122039 (2023). https://doi.org/10.1016/j.apcatb.2022.122039
- A. Martinez-Lazaro, A. Caprì, I. Gatto, J. Ledesma-García, N. Rey-Raap et al., NiFe2O4 hierarchical nanops as electrocatalyst for anion exchange membrane water electrolysis. J. Power Sources 556, 232417 (2023). https://doi.org/10.1016/j.jpowsour.2022.232417
- X. Lin, X. Li, L. Shi, F. Ye, F. Liu et al., In situ electrochemical restructuring B-doped metal-organic frameworks as efficient OER electrocatalysts for stable anion exchange membrane water electrolysis. Small 20, e2308517 (2024). https://doi.org/10.1002/smll.202308517
- S. Li, T. Liu, W. Zhang, M. Wang, H. Zhang et al., Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts. Nat. Commun. 15, 3416 (2024). https://doi.org/10.1038/s41467-024-47736-0
- J. Lee, H. Jung, Y.S. Park, S. Woo, N. Kwon et al., Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 420, 127670 (2021). https://doi.org/10.1016/j.cej.2020.127670
- Y.S. Park, M.J. Jang, J. Jeong, S.M. Park, X. Wang et al., Hierarchical chestnut-burr like structure of copper cobalt oxide electrocatalyst directly grown on Ni foam for anion exchange membrane water electrolysis. ACS Sustain. Chem. Eng. 8, 2344–2349 (2020). https://doi.org/10.1021/acssuschemeng.9b06767
- S. Kang, K. Ham, J. Lee, Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochim. Acta 353, 136521 (2020). https://doi.org/10.1016/j.electacta.2020.136521
- S.S. Jeon, J. Lim, P.W. Kang, J.W. Lee, G. Kang et al., Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 13, 37179–37186 (2021). https://doi.org/10.1021/acsami.1c09606
- S.C. Karthikeyan, S. Ramakrishnan, S. Prabhakaran, M.R. Subramaniam, M. Mamlouk et al., Low-cost self-reconstructed high entropy oxide as an ultra-durable OER electrocatalyst for anion exchange membrane water electrolyzer. Small 20, 2402241 (2024). https://doi.org/10.1002/smll.202402241
- F.-L. Wang, N. Xu, C.-J. Yu, J.-Y. Xie, B. Dong et al., Porous heterojunction of Ni2P/Ni7S6 with high crystalline phase and superior conductivity for industrial anion exchange membrane water electrolysis. Appl. Catal. B Environ. 330, 122633 (2023). https://doi.org/10.1016/j.apcatb.2023.122633
- G. Ding, H. Lee, Z. Li, J. Du, L. Wang et al., Highly efficient and durable anion exchange membrane water electrolyzer enabled by a Fe–Ni3S2 anode catalyst. Adv. Energy Sustain. Res. 4, 2200130 (2023). https://doi.org/10.1002/aesr.202200130
- A. Meena, P. Thangavel, D.S. Jeong, A.N. Singh, A. Jana et al., Crystalline-amorphous interface of mesoporous Ni2P@ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Appl. Catal. B Environ. 306, 121127 (2022). https://doi.org/10.1016/j.apcatb.2022.121127
- Q. Kang, D. Lai, W. Tang, Q. Lu, F. Gao, Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chem. Sci. 12, 3818–3835 (2021). https://doi.org/10.1039/d0sc06716d
- C. Lei, K. Yang, G. Wang, G. Wang, J. Lu et al., Impact of catalyst reconstruction on the durability of anion exchange membrane water electrolysis. ACS Sustain. Chem. Eng. 10, 16725–16733 (2022). https://doi.org/10.1021/acssuschemeng.2c04855
- M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023). https://doi.org/10.1016/j.rineng.2023.101426
References
C. Hu, Y. Wang, Y.M. Lee, Ether-free alkaline polyelectrolytes for water electrolyzers: recent advances and perspectives. Angew. Chem. Int. Ed. 64, e202418324 (2025). https://doi.org/10.1002/anie.202418324
S. Shaik, J. Kundu, Y. Yuan, W. Chung, D. Han et al., Recent progress and perspective in pure water-fed anion exchange membrane water electrolyzers. Adv. Energy Mater. 14, 2470148 (2024). https://doi.org/10.1002/aenm.202470148
Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu et al., Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem 4, 100087 (2022). https://doi.org/10.1016/j.enchem.2022.100087
J. Ding, Z. Peng, Z. Wang, C. Zeng, Y. Feng et al., Phosphorus–tungsten dual-doping boosts acidic overall seawater splitting performance over RuOx nanocrystals. J. Mater. Chem. A 12, 28023–28031 (2024). https://doi.org/10.1039/D4TA05277C
W. Liu, W. Liu, T. Hou, J. Ding, Z. Wang et al., Coupling Co–Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 17, 4797–4806 (2024). https://doi.org/10.1007/s12274-024-6433-8
D. Zha, R. Wang, S. Tian, Z.-J. Jiang, Z. Xu et al., Defect engineering and carbon supporting to achieve Ni-doped CoP3 with high catalytic activities for overall water splitting. Nano-Micro Lett. 16, 250 (2024). https://doi.org/10.1007/s40820-024-01471-9
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16, 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
X. Gao, S. Dai, Y. Teng, Q. Wang, Z. Zhang et al., Ultra-efficient and cost-effective platinum nanomembrane electrocatalyst for sustainable hydrogen production. Nano-Micro Lett. 16, 108 (2024). https://doi.org/10.1007/s40820-024-01324-5
X. Wang, W. Pi, S. Hu, H. Bao, N. Yao et al., Boosting oxygen evolution reaction performance on NiFe-based catalysts through d-orbital hybridization. Nano-Micro Lett. 17, 11 (2024). https://doi.org/10.1007/s40820-024-01528-9
X. Jiang, V. Kyriakou, B. Wang, S. Deng, S. Costil et al., Hierarchical microporous Ni-based electrodes enable “two birds with one stone” in highly efficient and robust anion exchange membrane water electrolysis (AEMWE). Chem. Eng. J. 486, 150180 (2024). https://doi.org/10.1016/j.cej.2024.150180
M.K. Kabiraz, J. Kim, H.J. Lee, S. Park, Y.W. Lee et al., Nickel nanoplates enclosed by (111) facets as durable oxygen evolution catalysts in anion exchange membrane water electrolyzers. Adv. Funct. Mater. 34, 2406175 (2024). https://doi.org/10.1002/adfm.202406175
Z. Liang, D. Shen, Y. Wei, F. Sun, Y. Xie et al., Modulating the electronic structure of cobalt-vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 36, e2408634 (2024). https://doi.org/10.1002/adma.202408634
Y. Shi, L. Song, Y. Liu, T. Wang, C. Li et al., Dual cocatalytic sites synergize NiFe layered double hydroxide to boost oxygen evolution reaction in anion exchange membrane water electrolyzer. Adv. Energy Mater. 14, 2402046 (2024). https://doi.org/10.1002/aenm.202402046
F. Malaj, A. Tampucci, D. Lentini, L. Brogi, E. Berretti et al., One-pot synthesis of FeNi3/FeNiOx nanops for PGM-free anion exchange membrane water electrolysis. Electrochim. Acta 507, 145109 (2024). https://doi.org/10.1016/j.electacta.2024.145109
L. Wu, M. Ning, X. Xing, Y. Wang, F. Zhang et al., Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 35, e2306097 (2023). https://doi.org/10.1002/adma.202306097
G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16, 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D.F. Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005
F. Razmjooei, T. Morawietz, E. Taghizadeh, E. Hadjixenophontos, L. Mues et al., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 5, 1776–1799 (2021). https://doi.org/10.1016/j.joule.2021.05.006
L. Wan, Z. Xu, P. Wang, P.-F. Liu, Q. Xu et al., Dual regulation both intrinsic activity and mass transport for self-supported electrodes using in anion exchange membrane water electrolysis. Chem. Eng. J. 431, 133942 (2022). https://doi.org/10.1016/j.cej.2021.133942
K. Dastafkan, S. Wang, S. Song, Q. Meyer, Q. Zhang et al., operando monitoring of gas bubble evolution in water electrolysis by single high-frequency impedance. EES. Catal. 1, 998–1008 (2023). https://doi.org/10.1039/d3ey00182b
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
M. Bellini, E. Berretti, M. Innocenti, G. Magherini, M.V. Pagliaro et al., 3D titania nanotube array support for water electrolysis palladium catalysts. Electrochim. Acta 383, 138338 (2021). https://doi.org/10.1016/j.electacta.2021.138338
J. Wang, J. Tian, W. Wang, Z. Zhao, L. Li et al., Enhanced photocatalytic activity of graphene/TiO2 nanotubes composites prepared by wet transfer method. Fuller. Nanotub. Carbon Nanostruct. 30, 495–502 (2022). https://doi.org/10.1080/1536383X.2021.1960510
Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu et al., Efficient charge separation in Ag/PCN/UPDI ternary heterojunction for optimized photothermal-photocatalytic performance via tandem electric fields. Small 20, e2306692 (2024). https://doi.org/10.1002/smll.202306692
F. He, Y. Liu, X. Yang, Y. Chen, C.-C. Yang et al., Accelerating oxygen electrocatalysis kinetics on metal-organic frameworks via bond length optimization. Nano-Micro Lett. 16, 175 (2024). https://doi.org/10.1007/s40820-024-01382-9
A. Zabilska, A.H. Clark, B.M. Moskowitz, I.E. Wachs, Y. Kakiuchi et al., Redox dynamics of active VOx sites promoted by TiOx during oxidative dehydrogenation of ethanol detected by operando quick XAS. JACS Au 2, 762–776 (2022). https://doi.org/10.1021/jacsau.2c00027
G. Rossi, M. Calizzi, V. Di Cintio, S. Magkos, L. Amidani et al., Local structure of V dopants in TiO2 nanops: X-ray absorption spectroscopy, including ab-initio and full potential simulations. J. Phys. Chem. C 120, 7457–7466 (2016). https://doi.org/10.1021/acs.jpcc.5b12045
J. He, W. Liu, Z. Hu, X. Wang, J. Liu et al., Well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals from asymmetric to symmetric. Small 20, e2406783 (2024). https://doi.org/10.1002/smll.202406783
S.H. Ahn, A. Manthiram, Single Ni atoms and clusters embedded in N-doped carbon “tubes on fibers” matrix with bifunctional activity for water splitting at high current densities. Small 16, 2002511 (2020). https://doi.org/10.1002/smll.202002511
D. Peng, C. Hu, X. Luo, J. Huang, Y. Ding et al., Electrochemical reconstruction of NiFe/NiFeOOH superparamagnetic core/catalytic shell heterostructure for magnetic heating enhancement of oxygen evolution reaction. Small 19, e2205665 (2023). https://doi.org/10.1002/smll.202205665
R. Li, L. Gao, Z. Dou, L. Cui, Obtaining the high valence of Ni/Fe sites in a heterostructure induced by implanting the NiFe-DTO MOF as a highly active OER catalyst. ACS Sustain. Chem. Eng. 12, 17761–17769 (2024). https://doi.org/10.1021/acssuschemeng.4c06643
M. Bele, P. Jovanovič, Ž Marinko, S. Drev, V.S. Šelih et al., Increasing the oxygen-evolution reaction performance of nanotubular titanium oxynitride-supported Ir nanops by a strong metal–support interaction. ACS Catal. 10, 13688–13700 (2020). https://doi.org/10.1021/acscatal.0c03688
D. Kim, X. Qin, B. Yan, Y. Piao, Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chem. Eng. J. 408, 127331 (2021). https://doi.org/10.1016/j.cej.2020.127331
H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977). https://doi.org/10.1063/1.323539
V. Mansfeldova, M. Zlamalova, H. Tarabkova, P. Janda, M. Vorokhta et al., Work function of TiO2 (anatase, rutile, and brookite) single crystals: effects of the environment. J. Phys. Chem. C 125, 1902–1912 (2021). https://doi.org/10.1021/acs.jpcc.0c10519
E. Hua, S. Choi, S. Ren, S. Kim, G. Ali et al., Negatively charged platinum nanops on dititanium oxide electride for ultra-durable electrocatalytic oxygen reduction. Energy Environ. Sci. 16, 4464–4473 (2023). https://doi.org/10.1039/D3EE01211E
S.H. Baker, A.M. Asaduzzaman, M. Roy, S.J. Gurman, C. Binns et al., Atomic structure and magnetic moments in cluster-assembled nanocomposite Fe/Cu films. Phys. Rev. B 78, 014422 (2008). https://doi.org/10.1103/physrevb.78.014422
Y. Lin, L. Zhao, L. Wang, Y. Gong, Ruthenium-doped NiFe-based metal–organic framework nanops as highly efficient catalysts for the oxygen evolution reaction. Dalton Trans. 50, 4280–4287 (2021). https://doi.org/10.1039/D0DT04133E
B.-A. Mei, J. Lau, T. Lin, S.H. Tolbert, B.S. Dunn et al., Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J. Phys. Chem. C 122, 24499–24511 (2018). https://doi.org/10.1021/acs.jpcc.8b05241
S. Seenivasan, H. Moon, D.-H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
Y. Hu, C. Wang, Electrodeposition of nickel–cobalt alloys from metal chloride-l-serine deep eutectic solvent for the hydrogen evolution reaction. J. Mater. Chem. A 12, 16769–16779 (2024). https://doi.org/10.1039/D4TA02433H
R.K. Dharman, H. Im, M.K. Kabiraz, J. Kim, K.P. Shejale et al., Stable 1T-MoS2 by facile phase transition synthesis for efficient electrocatalytic oxygen evolution reaction. Small Meth. 8, 2301251 (2024). https://doi.org/10.1002/smtd.202301251
Y.J. Park, J. Lee, Y.S. Park, J. Yang, M.J. Jang et al., Electrodeposition of high-surface-area IrO2 films on Ti felt as an efficient catalyst for the oxygen evolution reaction. Front. Chem. 8, 593272 (2020). https://doi.org/10.3389/fchem.2020.593272
S.S. Jeon, P.W. Kang, M. Klingenhof, H. Lee, F. Dionigi et al., Active surface area and intrinsic catalytic oxygen evolution reactivity of NiFe LDH at reactive electrode potentials using capacitances. ACS Catal. 13, 1186–1196 (2023). https://doi.org/10.1021/acscatal.2c04452
B. Kim, M.K. Kabiraz, J. Lee, C. Choi, H. Baik et al., Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 4, 3585–3604 (2021). https://doi.org/10.1016/j.matt.2021.09.003
H. Sun, C.W. Tung, Y. Qiu, W. Zhang, Q. Wang et al., Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 144, 1174–1186 (2022). https://doi.org/10.1021/jacs.1c08890
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
L. Pan, J. Sun, H. Qi, M. Han, Q. Dai et al., Dead-zone-compensated design as general method of flow field optimization for redox flow batteries. Proc. Natl. Acad. Sci. U.S.A. 120, e2305572120 (2023). https://doi.org/10.1073/pnas.2305572120
R. Andaveh, G. Barati Darband, M. Maleki, A. Sabour Rouhaghdam, Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: a comprehensive review. J. Mater. Chem. A 10, 5147–5173 (2022). https://doi.org/10.1039/D1TA10519A
A.R. Zeradjanin, P. Narangoda, I. Spanos, J. Masa, R. Schlögl, How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021). https://doi.org/10.1016/j.coelec.2021.100797
I. Bakonyi, Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Eur. Phys. J. Plus 136, 410 (2021). https://doi.org/10.1140/epjp/s13360-021-01303-4
G.H.A. Wijaya, K.S. Im, S.Y. Nam, Advancements in commercial anion exchange membranes: a review of membrane properties in water electrolysis applications. Desalin. Water Treat. 320, 100605 (2024). https://doi.org/10.1016/j.dwt.2024.100605
G.A. Lindquist, S.Z. Oener, R. Krivina, A.R. Motz, A. Keane et al., Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation. ACS Appl. Mater. Interfaces 13, 51917–51924 (2021). https://doi.org/10.1021/acsami.1c06053
D. Chanda, K. Kannan, J. Gautam, M.M. Meshesha, S.G. Jang et al., Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis. Appl. Catal. B Environ. 321, 122039 (2023). https://doi.org/10.1016/j.apcatb.2022.122039
A. Martinez-Lazaro, A. Caprì, I. Gatto, J. Ledesma-García, N. Rey-Raap et al., NiFe2O4 hierarchical nanops as electrocatalyst for anion exchange membrane water electrolysis. J. Power Sources 556, 232417 (2023). https://doi.org/10.1016/j.jpowsour.2022.232417
X. Lin, X. Li, L. Shi, F. Ye, F. Liu et al., In situ electrochemical restructuring B-doped metal-organic frameworks as efficient OER electrocatalysts for stable anion exchange membrane water electrolysis. Small 20, e2308517 (2024). https://doi.org/10.1002/smll.202308517
S. Li, T. Liu, W. Zhang, M. Wang, H. Zhang et al., Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts. Nat. Commun. 15, 3416 (2024). https://doi.org/10.1038/s41467-024-47736-0
J. Lee, H. Jung, Y.S. Park, S. Woo, N. Kwon et al., Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 420, 127670 (2021). https://doi.org/10.1016/j.cej.2020.127670
Y.S. Park, M.J. Jang, J. Jeong, S.M. Park, X. Wang et al., Hierarchical chestnut-burr like structure of copper cobalt oxide electrocatalyst directly grown on Ni foam for anion exchange membrane water electrolysis. ACS Sustain. Chem. Eng. 8, 2344–2349 (2020). https://doi.org/10.1021/acssuschemeng.9b06767
S. Kang, K. Ham, J. Lee, Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochim. Acta 353, 136521 (2020). https://doi.org/10.1016/j.electacta.2020.136521
S.S. Jeon, J. Lim, P.W. Kang, J.W. Lee, G. Kang et al., Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 13, 37179–37186 (2021). https://doi.org/10.1021/acsami.1c09606
S.C. Karthikeyan, S. Ramakrishnan, S. Prabhakaran, M.R. Subramaniam, M. Mamlouk et al., Low-cost self-reconstructed high entropy oxide as an ultra-durable OER electrocatalyst for anion exchange membrane water electrolyzer. Small 20, 2402241 (2024). https://doi.org/10.1002/smll.202402241
F.-L. Wang, N. Xu, C.-J. Yu, J.-Y. Xie, B. Dong et al., Porous heterojunction of Ni2P/Ni7S6 with high crystalline phase and superior conductivity for industrial anion exchange membrane water electrolysis. Appl. Catal. B Environ. 330, 122633 (2023). https://doi.org/10.1016/j.apcatb.2023.122633
G. Ding, H. Lee, Z. Li, J. Du, L. Wang et al., Highly efficient and durable anion exchange membrane water electrolyzer enabled by a Fe–Ni3S2 anode catalyst. Adv. Energy Sustain. Res. 4, 2200130 (2023). https://doi.org/10.1002/aesr.202200130
A. Meena, P. Thangavel, D.S. Jeong, A.N. Singh, A. Jana et al., Crystalline-amorphous interface of mesoporous Ni2P@ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Appl. Catal. B Environ. 306, 121127 (2022). https://doi.org/10.1016/j.apcatb.2022.121127
Q. Kang, D. Lai, W. Tang, Q. Lu, F. Gao, Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chem. Sci. 12, 3818–3835 (2021). https://doi.org/10.1039/d0sc06716d
C. Lei, K. Yang, G. Wang, G. Wang, J. Lu et al., Impact of catalyst reconstruction on the durability of anion exchange membrane water electrolysis. ACS Sustain. Chem. Eng. 10, 16725–16733 (2022). https://doi.org/10.1021/acssuschemeng.2c04855
M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023). https://doi.org/10.1016/j.rineng.2023.101426