Advances in TENGs for Marine Energy Harvesting and In Situ Electrochemistry
Corresponding Author: Xiuhan Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 124
Abstract
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans. As a burgeoning technological method for electromechanical conversion, triboelectric nanogenerator (TENG) has significant advantages in marine energy for its low weight, cost-effectiveness, and high efficiency in low-frequency range. It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG. This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail. In addition, the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category. Finally, the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized. Importantly, the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.
Highlights:
1 The basic information of triboelectric nanogenerator (TENG), the power conversion process, and key points of the marine energy harvesting TENGs was introduced in detail.
2 An in-depth introduction and analysis of relevant research with the marine energy harvesting were conducted through gradient classification.
3 This review not only provided a deeper summary of the latest research progress, discoveries, and challenges, but also made a rational outlook on solutions to related issues and future development directions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Schlesinger, Are wood pellets a green fuel. Science 359, 1328–1329 (2018). https://doi.org/10.1126/science.aat2305
- Q. Zhu, C. Rooney, H. Shema, C. Zeng, J. Panetier et al., The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat. Catal. 7, 987–999 (2024). https://doi.org/10.1038/s41929-024-01190-9
- V. Bikbaeva, N. Nesterenko, N. García-Moncada, V. Valtchev, Co-promoted Mo-carbide catalytic system for sustainable manufacturing of chemicals via co-processing of CO2 with ethane. Green Carbon 1, 94–103 (2023). https://doi.org/10.1016/j.greenca.2023.09.001
- S. Liu, Y. Guo, F. Wagner, H. Liu, R. Cui et al., Diversifying heat sources in China’s urban district heating systems will reduce risk of carbon lock-in. Nat. Energy 9, 1021–1031 (2024). https://doi.org/10.1038/s41560-024-01560-4
- W.-P. Schill, Electricity storage and the renewable energy transition. Joule 4, 2059–2064 (2024). https://doi.org/10.1016/j.joule.2020.07.022
- C. Zhao, Carbon Neutrality: aiming for a net-zero carbon future. Carbon Neutr. 1, 2 (2022). https://doi.org/10.1007/s43979-022-00013-9
- Z.L. Wang, Catch wave power in floating nets. Nature 542, 159–160 (2017). https://doi.org/10.1038/542159a
- N. Cao, Y. Di, S. Chen, J. Qian, M. Liu et al., Synthesis of Co, Ni-doped MoS2 as durable and pH-universal catalyst for hydrogen evolution. Energy Mater. Devices 1, 9370024 (2023). https://doi.org/10.26599/EMD.2023.9370024
- E. Franklin, S. Amiri, D. Crocker, C. Morris, K. Mayer et al., Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol. Environ. Sci. Technol. 56, 16633–16642 (2022). https://doi.org/10.1021/acs.est.2c04848
- M. Yu, J. Wu, G. Yin, F. Jiao, Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17, 48 (2025). https://doi.org/10.1007/s40820-024-01544-9
- M. Caballero, T. Gunda, Y. McDonald, Energy justice & coastal communities: the case for meaningful marine renewable energy development. Renew. Sust. Energy Rev. 184, 113491 (2023). https://doi.org/10.1016/j.rser.2023.113491
- M. Zhang, W. Cai, Z. Wang, S. Fang, R. Zhang et al., Mechanical energy harvesters with tensile efficiency of 17.4% and torsional efficiency of 22.4% based on homochirally plied carbon nanotube yarns. Nat. Energy 8, 203–213 (2023). https://doi.org/10.1038/s41560-022-01191-7
- T. Wu, Y. Lu, X. Tao, P. Chen, Y. Zhang et al., Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion. Carbon Energy 6, e561 (2024). https://doi.org/10.1002/cey2.561
- Y. Chen, G. Wang, Y. Gao, Dual-phase competitive behavior in N-type Sn-Bi-Te thermoelectric films achieving high thermoelectric performance. Prog. Nat. Sci. Mater. 34, 795–802 (2024). https://doi.org/10.1016/j.pnsc.2024.07.008
- H. Luo, Z. Zhang, L. Yuan, J. Wang, B. Li et al., Improving the light stability of perovskite solar cell with new hole transport material based on spiro[fluorene-9,9’-xanthene]. Carbon Neutr. 2, 21 (2023). https://doi.org/10.1007/s43979-023-00061-9
- J. Li, C. Carlos, H. Zhou, J. Sui, Y. Wang et al., Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14, 6562 (2023). https://doi.org/10.1038/s41467-023-42184-8
- K. Xi, J. Guo, M. Zheng, M. Zhu, Y. Hou, Defect engineering with rational dopants modulation for high-temperature energy harvesting in lead-free piezoceramics. Nano-Micro Lett. 17, 55 (2025). https://doi.org/10.1007/s40820-024-01556-5
- R. Hinchet, H. Yoon, H. Ryu, M. Kim, E. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/science.aan3997
- B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17, 17 (2025). https://doi.org/10.1007/s40820-024-01530-1
- Y. Hao, J. Yang, M. Wang, Z. Niu, H. Liu et al., Flexible and sensitive sensor based on triboelectric nanogenerator and electrospinning. J. Adv. Manuf. Sci. Technol. 4, 2024005 (2024). https://doi.org/10.51393/j.jamst.2024005
- T. Feng, D. Ling, C. Li, W. Zheng, S. Zhang et al., Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 17, 4462–4470 (2024). https://doi.org/10.1007/s12274-023-6365-8
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 29, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 13, 23000387 (2023). https://doi.org/10.1002/aenm.202300387
- C. Zhu, C. Xiang, M. Wu, C. Yu, S. Dai et al., Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications. Int. J. Extreme Manuf. 6, 062009 (2024). https://doi.org/10.1088/2631-7990/ad7b04
- Y. Jiang, X. Liang, T. Jiang, Z.L. Wang, Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring. Engineering 33, 204–224 (2024). https://doi.org/10.1016/j.eng.2023.05.023
- Q. Zhou, B. Wang, A. Gao, W. Xu, K. Zhou et al., Solution-tube-based volume effect triboelectric nanogenerator with salt and pH sensitivity. Adv. Funct. Mater. 32, 2209100 (2022). https://doi.org/10.1002/adfm.202209100
- H. Qiu, H. Wang, L. Xu, M. Zheng, Z.L. Wang, Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves. Energy Environ. Sci. 16, 473–483 (2023). https://doi.org/10.1039/d2ee03395j
- X. Dai, X. Wu, B. Yao, Z. Hong, T. Jiang et al., Triboelectric nanogenerators powered hydrogen production system using MoS2/Ti3C2 as catalysts. Adv. Funct. Mater. 41, 2209100 (2024). https://doi.org/10.1002/adfm.202406188
- C. Xu, Y. Liu, Y. Liu, Y. Zheng, Y. Feng et al., New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl. Mater. Today 20, 100645 (2020). https://doi.org/10.1016/j.apmt.2020.100645
- I. Gonçalves, C. Rodrigues, J. Ventura, Sea state adaptation enhances power output of triboelectric nanogenerators for tailored ocean wave energy harvesting. Adv. Energy Mater. 14, 2302627 (2024). https://doi.org/10.1002/aenm.202302627
- X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8, 1800705 (2018). https://doi.org/10.1002/aenm.201800705
- S. Liu, X. Liang, J. Han, Y. Duan, T. Jiang et al., Charge self-shuttling triboelectric nanogenerator based on wind-driven pump excitation for harvesting water wave energy. Appl. Phys. Rev. 11, 031423 (2024). https://doi.org/10.1063/5.0225737
- Y. Pang, S. Chen, Y. Chu, Z.L. Wang, C. Cao, Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy 66, 104131 (2019). https://doi.org/10.1016/j.nanoen.2019.104131
- X. Du, H. Zhang, H. Cao, Z. Hao, T. Nakashima et al., Double-swing spring origami triboelectric nanogenerators for self-powered ocean monitoring. Energies 17, 2981 (2024). https://doi.org/10.3390/en17122981
- P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
- H. Pang, Y. Feng, J. An, P. Chen, J. Han et al., Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 31, 2106398 (2021). https://doi.org/10.1002/adfm.202106398
- Y. Yang, X. Yu, L. Meng, X. Li, Y. Xu et al., Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 46, 101338 (2021). https://doi.org/10.1016/j.eml.2021.101338
- W. Liu, L. Xu, T. Bu, H. Yang, G. Liu et al., Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 58, 499–507 (2019). https://doi.org/10.1016/j.nanoen.2019.01.088
- Y. Zhao, Z. Fan, C. Bi, H. Wang, J. Mi et al., On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples. Appl. Energy 308, 118323 (2022). https://doi.org/10.1016/j.apenergy.2021.118323
- G. Liu, L. Xiao, C. Chen, W. Liu, X. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
- X. Wang, Y. Shi, P. Yang, X. Tao, S. Li et al., Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small 18, 2107232 (2022). https://doi.org/10.1002/smll.202107232
- X. Wei, Z. Wen, Y. Liu, N. Zhai, A. Wei et al., Hybridized mechanical and solar energy-driven self-powered hydrogen production. Nano-Micro Lett. 12, 1–10 (2020). https://doi.org/10.1007/s40820-020-00422-4
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10232-x
- J. Xiong, G. Thangavel, J. Wang, X. Zhou, P. Lee, Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020). https://doi.org/10.1126/sciadv.abb4246
- Y. Dong, S. Xu, C. Zhang, L. Zhang, D. Wang et al., Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 8, eadd0464 (2023). https://doi.org/10.1126/sciadv.add0464
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and selfpowered sensors-principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
- S. Niu, S. Wang, L. Lin, Y. Liu, Y. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/c3ee42571a
- T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao et al., Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2017). https://doi.org/10.1016/j.nanoen.2016.12.004
- T. Xiao, T. Jiang, J. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10, 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
- L. Xu, T. Jiang, P. Lin, J. Shao, C. He et al., Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12, 1849–1858 (2018). https://doi.org/10.1021/acsnano.7b08674
- H. Chen, J. Wang, A. Ning, Optimization of a rolling triboelectric nanogenerator based on the nano-micro structure for ocean environmental monitoring. ACS Omega 6, 21059–21065 (2021). https://doi.org/10.1021/acsomega.1c02709
- B. Wang, Y. Wu, Y. Liu, Y. Zheng, Y. Liu et al., New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 12, 31351–31359 (2020). https://doi.org/10.1021/acsami.0c03843
- X. Zhao, H. Wang, Z.L. Wang, J. Wang, Nanocomposite electret layer improved long-term stable solid-liquid contact triboelectric nanogenerator for water wave energy harvesting. Small 20, 2310023 (2024). https://doi.org/10.1002/smll.202310023
- G. Chen, L. Xu, P. Zhang, B. Chen, G. Wang et al., Seawater degradable triboelectric nanogenerators for blue energy. Adv. Mater. Technol. 5, 2000455 (2020). https://doi.org/10.1002/admt.202000455
- K. Xia, Z. Xu, Y. Hong, L. Wang, A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 24, 100467 (2023). https://doi.org/10.1016/j.mtsust.2023.100467
- Z. Ding, Z. Tian, X. Ji, D. Wang, X. Ci et al., Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biolo. Macromol. 234, 122903 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.122
- N. Chau, T. Le, T. La, V. Bui, Industrially compatible production of customizable honeycomb-patterned poly (vinyl chloride) using food-wrapping waste for power-boosting triboelectric nanogenerator and ocean wave energy harvester. J. Sci. Adv. Mater. Dev. 8, 100637 (2023). https://doi.org/10.1016/j.jsamd.2023.100637
- X. Liang, Z. Liu, K. Han, S. Liu, Y. Xie et al., Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting. Adv. Funct. Mater. 34, 2409422 (2024). https://doi.org/10.1002/adfm.202409422
- H. Xu, X. Wang, Y. Nan, H. Zhou, Y. Wu et al., Flexible sponge-based nanogenerator for energy harvesting from land and water transportation. Adv. Funct. Mater. 33, 2304723 (2023). https://doi.org/10.1002/adfm.202304723
- W. Gao, J. Shao, K. Sagoe-Crentsil, W. Duan, Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy 80, 105583 (2021). https://doi.org/10.1016/j.nanoen.2020.105583
- J. Gravesen, M. Willatzen, J. Shao, Z.L. Wang, Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy 100, 107491 (2022). https://doi.org/10.1016/j.nanoen.2022.107491
- H. Cestaro, N. ias, N. Gonçalves, T. Morais, TENG estimation model of voltage production for buoys using p swarm optimization. Appl. Ocean Res. 125, 103231 (2022). https://doi.org/10.1016/j.apor.2022.103231
- Y. Wang, A. Pham, X. Han, D. Du, Y. Tang, Design and evaluate the wave driven-triboelectric nanogenerator under external wave parameters: experiment and simulation. Nano Energy 93, 106844 (2022). https://doi.org/10.1016/j.nanoen.2021.106844
- A. Wang, J. Chen, L. Wang, J. Han, W. Su et al., Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Appl. Energy 307, 118174 (2022). https://doi.org/10.1016/j.apenergy.2021.118174
- X. Zhang, Q. Yang, P. Ji, Z. Wu, Q. Li et al., Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 99, 107362 (2022). https://doi.org/10.1016/j.nanoen.2022.107362
- S. Xu, G. Liu, J. Wang, H. Wen, S. Cao et al., Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 12(3), 2103408 (2022). https://doi.org/10.1002/aenm.202103408
- C. Cao, F. Shen, C. Xin, Q. Zhang, Q. Zheng et al., Electro-mechano transduction of stacked triboelectric nanogenerator considering wave force: modeling, validation and applications. Chem. Eng. J. 496, 153738 (2024). https://doi.org/10.1016/j.cej.2024.153738
- S. Xu, J. Zhang, E. Su, C. Li, W. Tang et al., Dynamic behavior and energy flow of floating triboelectric nanogenerators. Appl. Energy 367, 123468 (2024). https://doi.org/10.1016/j.apenergy.2024.123468
- D. Guo, C. Chen, J. Li, L. Zhai, S. Li et al., Structural quality factor of flo-teng under stochastic wave excitation. Adv. Sci. (2024). https://doi.org/10.1002/advs.202405165
- Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
- X. Zhao, S. Kuang, Z.L. Wang, G. Zhu, Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12, 4280–4285 (2018). https://doi.org/10.1021/acsnano.7b08716
- L. Liu, Q. Shi, J.S. Ho, C. Lee, Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 66, 104167 (2019). https://doi.org/10.1016/j.nanoen.2019.104167
- H. Gu, N. Zhang, Z. Zhou, S. Ye, W. Wang et al., A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy 87, 106218 (2021). https://doi.org/10.1016/j.nanoen.2021.106218
- H. Qin, L. Xu, S. Lin, F. Zhan, K. Dong et al., Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet. Adv. Funct. Mater. 32, 2111662 (2022). https://doi.org/10.1002/adfm.202111662
- U. Jurado, H. Pu, N. White, Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy 78, 105204 (2020). https://doi.org/10.1016/j.nanoen.2020.105204
- X. Wei, Z. Zhao, C. Zhang, W. Yuan, Z. Wu et al., All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15(8), 13200–13208 (2021). https://doi.org/10.1021/acsnano.1c02790
- W. Sun, Y. Zheng, T. Li, M. Feng, S. Cui et al., Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217, 119388 (2021). https://doi.org/10.1016/j.energy.2020.119388
- H. Wu, Z. Wang, Y. Zi, Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 11, 2100038 (2021). https://doi.org/10.1002/aenm.202100038
- Q. Zhang, M. He, X. Pan, D. Huang, H. Long et al., High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 103, 107810 (2022). https://doi.org/10.1016/j.nanoen.2022.107810
- Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
- X. Liang, S. Liu, S. Lin, H. Yang, T. Jiang et al., Liquid-solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy. Adv. Energy Mater. 13, 2300571 (2023). https://doi.org/10.1002/aenm.202300571
- W. Li, Y. Liu, W. Sun, H. Wang, W. Wang et al., A high-output tubular triboelectric nanogenerator for wave energy collection and its application in self-powered anti-corrosion applications. J. Mater. Chem. A (2024). https://doi.org/10.1039/D4TA02760D
- F. Xi, Y. Pang, G. Liu, S. Wang, W. Li et al., Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019). https://doi.org/10.1016/j.nanoen.2019.04.026
- X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
- W. Zhang, W. He, S. Dai, F. Ma, P. Lin et al., Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy 111, 108432 (2023). https://doi.org/10.1002/adfm.201807241
- J. An, Z. Wang, T. Jiang, X. Liang, Z.L. Wang, Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 29, 1904867 (2019). https://doi.org/10.1002/adfm.201904867
- X. Wang, C. Ye, P. Chen, H. Pang, C. Wei et al., Achieving high power density and durability of multilayered swing-structured triboelectric nanogenerator toward marine environmental protection. Adv. Funct. Mater. 34, 2311196 (2024). https://doi.org/10.1002/adfm.202311196
- X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10, 2002123 (2020). https://doi.org/10.1002/aenm.202002123
- X. Liang, Z. Liu, Y. Feng, J. Han, L. Li et al., Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 83, 105836 (2021). https://doi.org/10.1016/j.nanoen.2021.105836
- X. Liang, S. Liu, Z. Ren, T. Jiang, Z.L. Wang, Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 32, 2205313 (2022). https://doi.org/10.1002/adfm.202205313
- Y. Li, Z. Guo, Z. Zhao, Y. Gao, P. Yang et al., Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 336, 120792 (2023). https://doi.org/10.1016/j.apenergy.2023.120792
- C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode teng with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33, 2305768 (2023). https://doi.org/10.1002/adfm.202305768
- H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11, 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
- W. Li, L. Wan, Y. Lin, G. Liu, H. Qu et al., Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy 95, 106994 (2022). https://doi.org/10.1016/j.nanoen.2022.106994
- Y. Yu, H. Li, X. Zhang, Q. Gao, B. Yang et al., Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect. Joule 8, 1855–1868 (2024). https://doi.org/10.1016/j.joule.2024.04.013
- X. Wang, S. Niu, Y. Yin, F. Yi, Z. You et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5, 1501467 (2015). https://doi.org/10.1002/aenm.201501467
- M. Xu, T. Zhao, C. Wang, S. Zhang, Z. Li et al., High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13, 1932–1939 (2019). https://doi.org/10.1021/acsnano.8b08274
- X. Yang, L. Xu, P. Lin, W. Zhong, Y. Bai et al., Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404–412 (2019). https://doi.org/10.1016/j.nanoen.2019.03.054
- Z. Yuan, C. Wang, J. Xi, X. Han, J. Li et al., Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 6, 2809–2816 (2021). https://doi.org/10.1021/acsenergylett.1c01092
- L. Liu, X. Yang, L. Zhao, H. Hong, H. Cui et al., Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15, 9412–9421 (2021). https://doi.org/10.1021/acsnano.1c00345
- Y. Yang, J. Wen, F. Chen, Y. Hao, X. Gao et al., Barycenter self-adapting triboelectric nanogenerator for sea water wave high-entropy energy harvesting and self-powered forecasting in marine meteorology. Adv. Funct. Mater. 32, 2200521 (2022). https://doi.org/10.1002/adfm.202200521
- R. Ouyang, Y. Huang, H. Ye, Z. Zhang, H. Xue, Copper ps-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy 102, 107749 (2022). https://doi.org/10.1016/j.nanoen.2022.107749
- H. Hong, T. Chen, J. Yang, Y. Hu, J. Hu et al., Omnidirectional water wave energy harvesting by a spherical triboelectric nanogenerator with sliced-pizza-shaped electrodes. Cell Rep. Phys. Sci. 5, 101933 (2024). https://doi.org/10.1016/j.xcrp.2024.101933
- Y. Duan, H. Xu, S. Liu, P. Chen, X. Wang et al., Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 16, 11646–11652 (2023). https://doi.org/10.1007/s12274-023-6035-x
- C. Zhu, M. Wu, C. Liu, C. Xiang, R. Xu et al., Highly integrated triboelectric-electromagnetic wave energy harvester toward self-powered marine buoy. Adv. Energy Mater. 13, 2301665 (2023). https://doi.org/10.1002/aenm.202301665
- Y. Wang, H. Du, H. Yang, Z. Xi, C. Zhao et al., A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15, 6834 (2024). https://doi.org/10.1038/s41467-024-51245-5
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- D. Zhao, H. Li, Y. Yu, Y. Wang, J. Wang et al., A current-enhanced triboelectric nanogenerator with crossed rollers for harvesting wave energy. Nano Energy 117, 108885 (2023). https://doi.org/10.1016/j.nanoen.2023.108885
- X. Wang, L. Chen, Z. Xu, P. Chen, C. Ye et al., High-durability stacked disc-type rolling triboelectric nanogenerators for environmental monitoring around charging buoys of unmanned ships. Small 20, 2310809 (2024). https://doi.org/10.1002/smll.202310809
- P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin et al., Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019). https://doi.org/10.1016/j.nanoen.2018.12.054
- Y. Pang, Y. Fang, J. Su, H. Wang, Y. Tan et al., Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technolog. 8, 2201246 (2023). https://doi.org/10.1002/admt.202201246
- Y. Wang, A.M. Nazar, J. Wang, K. Xia, D. Wang et al., Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action. J. Mar. Sci. Eng. 10, 5 (2021). https://doi.org/10.3390/jmse10010005
- K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10, 2000426 (2020). https://doi.org/10.1002/aenm.202000426
- N. Wang, J. Zou, Y. Yang, X. Li, Y. Guo et al., Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting. Nano Energy 55, 541–547 (2019). https://doi.org/10.1016/j.nanoen.2018.11.006
- W. Zhong, L. Xu, X. Yang, W. Tang, J. Shao et al., Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale 11, 7199–7208 (2019). https://doi.org/10.1039/c8nr09978b
- R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4, 1800514 (2019). https://doi.org/10.1002/admt.201800514
- Q. Gao, J. Wang, H. Li, Y. Yu, X. Zhang et al., High performance triboelectric nanogenerator for wave energy harvesting through the gas-assisted method. Chem. Eng. J. 493, 152730 (2024). https://doi.org/10.1002/admt.201800514
- T. Xiao, X. Liang, T. Jiang, L. Xu, J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28, 1802634 (2018). https://doi.org/10.1002/adfm.201802634
- C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang et al., Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 11, 2003616 (2021). https://doi.org/10.1002/aenm.202003616
- H. Yang, X. Miao, Z. Li, W. Cui, Y. Zhao et al., Earthworm-inspired triboelectric nanogenerator with O-shaped multilayer structure for marine ranching. Energy Technol. 12, 2300819 (2024). https://doi.org/10.1002/ente.202300819
- W. Liu, X. Wang, L. Yang, Y. Wang, H. Xu et al., Swing origami-structure-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Sci. 11, 2401578 (2024). https://doi.org/10.1002/advs.202401578
- W. Yuan, B. Zhang, C. Zhang, O. Yang, Y. Liu et al., Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting. One Earth 5, 1055–1063 (2022). https://doi.org/10.1016/j.oneear.2022.08.013
- S. Liu, X. Liang, P. Chen, H. Long, T. Jiang et al., Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Methods 7, 2201392 (2023). https://doi.org/10.1002/smtd.202201392
- W. Zhou, L. Tuo, W. Tang, H. Wen, C. Chen et al., Four-helix triboelectric nanogenerator based on wave amplitude amplifier. Adv. Energy Mater. 25, 369 (2024). https://doi.org/10.1002/aenm.202402781
- C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5, 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
- W. Zhong, L. Xu, H. Wang, D. Li, Z.L. Wang, Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 66, 104108 (2019). https://doi.org/10.1016/j.nanoen.2019.104108
- D. Zhang, J. Shi, Y. Si, T. Li, Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 61, 132–140 (2019). https://doi.org/10.1016/j.nanoen.2019.04.046
- P. Qian, B. Feng, H. Wen, X. Jiang, Y. Ying et al., Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy 98, 107249 (2022). https://doi.org/10.1016/j.nanoen.2022.107249
- X. Miao, H. Yang, Z. Li, M. Cheng, Y. Zhao et al., A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 17, 3029–3034 (2024). https://doi.org/10.1007/s12274-023-6100-5
- H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
- Y. Bai, L. Xu, C. He, L. Zhu, X. Yang et al., High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 66, 104117 (2019). https://doi.org/10.1016/j.nanoen.2019.104117
- Y. Hu, H. Qiu, Q. Sun, Z.L. Wang, L. Xu, Wheel-structured triboelectric nanogenerators with hyperelastic networking for high-performance wave energy harvesting. Small Methods 7, 2300582 (2023). https://doi.org/10.1002/smtd.202300582
- W. Jiang, C. Chen, C. Wang, J. Li, M. Zhao et al., Design of triboelectric nanogenerators featuring motion form conversion, motion rectification, and frequency multiplication for low-frequency ocean energy harvesting. Energy Environ. Sci. 16, 6003–6014 (2023). https://doi.org/10.1039/d3ee02688d
- P. Rui, W. Zhang, P. Wang, Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy. ACS Nano 15, 6949–6960 (2021). https://doi.org/10.1021/acsnano.0c10840
- M. Yin, X. Lu, G. Qiao, Y. Xu, Y. Wang et al., Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 10, 2000627 (2020). https://doi.org/10.1002/aenm.202000627
- Z. Lin, B. Zhang, H. Zou, Z. Wu, H. Guo et al., Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 68, 104378 (2020). https://doi.org/10.1016/j.nanoen.2019.104378
- D. Zhao, H. Li, J. Wang, Q. Gao, Y. Yu et al., A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy. Nano Res. 16, 10931–10937 (2023). https://doi.org/10.1007/s12274-023-5796-6
- Q. Gao, Y. Xu, X. Yu, Z. Jing, T. Cheng et al., Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 16, 6781–6788 (2022). https://doi.org/10.1021/acsnano.2c01594
- Z. Lin, B. Zhang, Y. Xie, Z. Wu, J. Yang et al., Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 31, 2105237 (2021). https://doi.org/10.1002/adfm.202105237
- W. Cui, J. Hu, H. Yang, X. Liu, Y. Wang et al., Self-powered wireless sensor node enabled by ultra-high-output swinging hybrid generator toward real-time and in-situ marine meteorological observations. Nano Energy 129, 110051 (2024). https://doi.org/10.1016/j.nanoen.2024.110051
- A. Chandrasekhar, V. Vivekananthan, S. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020). https://doi.org/10.1016/j.nanoen.2019.104439
- F. Xue, L. Chen, C. Li, J. Ren, J. Yu et al., A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Sci. China Technol. Sci. 65, 893–902 (2022). https://doi.org/10.1007/s11431-021-1974-8
- H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric-electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15, 621–632 (2022). https://doi.org/10.1039/d1ee02549j
- Z. Wu, H. Guo, W. Ding, Y. Wang, L. Zhang et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13, 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
- L. Liu, Q. Shi, C. Lee, A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 76, 105052 (2020). https://doi.org/10.1016/j.nanoen.2020.105052
- L. Gao, S. Lu, W. Xie, X. Chen, L. Wu et al., A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy 72, 104684 (2020). https://doi.org/10.1016/j.nanoen.2020.104684
- Y. Wu, Q. Zeng, Q. Tang, W. Liu, G. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
- R. Ouyang, J. Miao, T. Wu, J. Chen, C. Sun et al., Magnets assisted triboelectric nanogenerator for harvesting water wave energy. Adv. Mater. Technol. 7, 2200403 (2022). https://doi.org/10.1002/admt.202200403
- J. Wang, L. Pan, H. Guo, B. Zhang, R. Zhang et al., Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 9, 1802892 (2019). https://doi.org/10.1002/aenm.201802892
- X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
- Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li et al., Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 14, 15187–15194 (2022). https://doi.org/10.1021/acsami.1c25004
- Y. Lou, M. Li, J. Hu, Y. Zhao, W. Cui et al., Maximizing the energy conversion of triboelectric nanogenerator through the synergistic effect of high coupling and dual-track circuit for marine monitoring. Nano Energy 121, 109240 (2024). https://doi.org/10.1016/j.nanoen.2023.109240
- W. Kim, V. Vivekananthan, G. Khandelwal, A. Chandrasekhar, S. Kim, Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. ACS Appl. Electron. Mater. 2, 3100–3108 (2020). https://doi.org/10.1021/acsaelm.0c00302
- C. Han, Z. Cao, Z. Yuan, Z. Zhang, X. Huo et al., Hybrid triboelectric-electromagnetic nanogenerator with a double-sided fluff and double halbach array for wave energy harvesting. Adv. Funct. Mater. 32, 2205011 (2022). https://doi.org/10.1002/adfm.202205011
- F. Zheng, Y. Sun, X. Wei, J. Chen, Z. Yuan et al., A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy 90, 106631 (2021). https://doi.org/10.1016/j.nanoen.2021.106631
- Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
- W. Liu, Y. Li, H. Tang, Z. Zhang, X. Wu et al., The nexus of sustainable fisheries: a hybrid self-powered and self-sensing wave energy harvester. Ocean Eng. 295, 116996 (2024). https://doi.org/10.1016/j.oceaneng.2024.116996
- S. Zhang, Z. Jing, X. Wang, K. Fan, H. Zhao et al., Enhancing low-velocity water flow energy harvesting of triboelectric-electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism. ACS Energy Lett. 7, 4282–4289 (2022). https://doi.org/10.1021/acsenergylett.2c01908
- X. Sun, C. Shang, H. Ma, C. Li, L. Xue et al., A tube-shaped solid-liquid-interfaced triboelectric-electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting. Nano Energy 100, 107540 (2022). https://doi.org/10.1016/j.nanoen.2022.107540
- H. Long, S. Li, M. Jia, D. Huang, P. Zhang et al., A tubular liquid-solid triboelectric-electromagnetic hybrid nanogenerator for enhancing wave energy harvesting. Energy 304, 132119 (2024). https://doi.org/10.1016/j.energy.2024.132119
- U. Jurado, S. Pu, N. White, Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy 72, 104701 (2020). https://doi.org/10.1016/j.nanoen.2020.104701
- E. Wardhana, H. Mutsuda, Y. Tanaka, T. Nakashima, T. Kanehira et al., Characteristics of electric performance and key factors of a hybrid piezo/triboelectric generator for wave energy harvesting. Sustain. Energy Technol. Assess. 50, 101757 (2022). https://doi.org/10.1016/j.seta.2021.101757
- S. Liu, X. Liu, G. Zhou, F. Qin, M. Jing et al., A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat. Commun. 11, 6158 (2020). https://doi.org/10.1038/s41467-020-19987-0
- Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
- C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32, 2111775 (2022). https://doi.org/10.1002/adfm.202111775
- L. Zhai, H. Wen, H. Liu, D. Guo, G. Liu et al., High-sensitivity blue-energy-shuttle and in-situ electrical behaviors in ocean. Nano Energy 125, 109546 (2024). https://doi.org/10.1016/j.nanoen.2024.109546
- C. Wang, H. Chai, G. Li, W. Wang, R. Tian et al., Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators. Appl. Energy 374, 123876 (2024). https://doi.org/10.1016/j.apenergy.2024.123876
- L. Gao, X. Xu, H. Han, W. Yang, R. Zhuo et al., A broadband hybrid blue energy nanogenerator for smart ocean IoT network. Nano Energy 127, 109697 (2024). https://doi.org/10.1016/j.nanoen.2024.109697
- C. Wu, R. Liu, J. Wang, Y. Zi, L. Lin et al., A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32, 287–293 (2017). https://doi.org/10.1016/j.nanoen.2016.12.061
- Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11, 2101116 (2021). https://doi.org/10.1002/aenm.202101116
- Y. Yang, L. Zheng, J. Wen, F. Xing, H. Liu et al., A swing self-regulated triboelectric nanogenerator for high-entropy ocean breaking waves energy harvesting. Adv. Funct. Mater. 33, 2304366 (2023). https://doi.org/10.1002/adfm.202304366
- Y. Du, Q. Tang, S. Fu, C. Shan, Q. Zeng et al., Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy. Nano Res. 16, 11900–11906 (2023). https://doi.org/10.1007/s12274-023-5733-8
- M. Li, Y. Lou, J. Hu, W. Cui, L. Chen et al., High-coupled magnetic-levitation hybrid nanogenerator with frequency multiplication effect for wireless water level alarm. Small (2024). https://doi.org/10.1002/smll.202402009
- Y. Yang, H. Zhang, R. Liu, X. Wen, T. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3, 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
- Y. Luo, B. Li, L. Mo, Z. Ye, H. Shen et al., Nanofiber-enhanced “lucky-bag” triboelectric nanogenerator for efficient wave energy harvesting by soft-contact structure. Nanomaterials 12, 2792 (2022). https://doi.org/10.3390/nano12162792
- B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399
- X. Zhang, Y. Su, X. Dong, J. Wu, X. Su et al., Solid-liquid elastic pendulum triboelectric nanogenerator design for application to omnidirectional blue energy harvesting. Adv. Mater. Technol. (2024). https://doi.org/10.1002/admt.202400531
- J. Cheng, X. Zhang, T. Jia, Q. Wu, Y. Dong et al., Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy. Nano Energy 102, 107622 (2022). https://doi.org/10.1016/j.nanoen.2022.107622
- M. Ding, J. Wang, D. Zhao, H. Li, X. Cheng et al., Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy. Nano Res. 17, 7144 (2024). https://doi.org/10.1007/s12274-024-6680-8
- T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10, 2000064 (2020). https://doi.org/10.1002/aenm.202000064
- Y. Feng, T. Jiang, X. Liang, J. An, Z.L. Wang, Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 7, 021401 (2020). https://doi.org/10.1063/1.5135734
- B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12, 2202627 (2022). https://doi.org/10.1002/aenm.202202627
- B. Zhao, Z. Li, X. Liao, L. Qiao, Y. Li et al., A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 89, 106381 (2021). https://doi.org/10.1016/j.nanoen.2021.106381
- H. Yang, X. Liang, J. Kan, Z.L. Wang, T. Jiang et al., Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting. Nano Res. 17, 7582 (2024). https://doi.org/10.1007/s12274-024-6679-1
- J. Han, Y. Liu, Y. Feng, T. Jiang, Z.L. Wang, Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 13, 2203219 (2023). https://doi.org/10.1002/aenm.202203219
- L. Meng, Y. Yang, S. Liu, S. Wang, T. Zhang et al., Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 8, 1362–1368 (2022). https://doi.org/10.1021/acsomega.2c06783
- Y. Ren, Z. Wang, J. Chen, F. Wu, H. Guo, Octave boxes inspired energy regularization triboelectric nanogenerator for high-efficient wave energy harvesting. Energy Environ. Sci. 17, 8829–8837 (2024). https://doi.org/10.1039/D4EE02969K
- C. Zhang, W. Yuan, B. Zhang, J. Yang, Y. Hu et al., A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 19, 2304412 (2023). https://doi.org/10.1002/smll.202304412
- Z. Wang, L. Hou, D. Yang, M. Zhang, S. Liu et al., A self-powered underwater glider using bidirectional swing-rotation hybrid nanogenerator. Nano Energy 125, 109526 (2024). https://doi.org/10.1016/j.nanoen.2024.109526
- J. Wang, Z. Wang, D. Zhao, Y. Yu, X. Cheng et al., Power improvement of triboelectric nanogenerator by morphological transformation strategy for harvesting irregular wave energy. Chem. Eng. J. 490, 151897 (2024). https://doi.org/10.1016/j.cej.2024.151897
- G. He, Y. Luo, Y. Zhai, Y. Wu, J. You et al., Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output-an approach for efficient usage of high entropy energy. Nano Energy 87, 106195 (2021). https://doi.org/10.1016/j.nanoen.2021.106195
- L. Zhao, H. Zou, X. Xie, D. Guo, Q. Gao et al., Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023). https://doi.org/10.1016/j.nanoen.2023.108222
- H. Jung, J. Martinez, H. Ouro-Koura, A. Salalila, A. Garza et al., Self-powered ocean buoy using a disk-type triboelectric nanogenerator with a mechanical frequency regulator. Nano Energy 121, 109216 (2024). https://doi.org/10.1016/j.nanoen.2023.109216
- S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14, 2304184 (2024). https://doi.org/10.1002/aenm.202304184
- C. Zhang, S. Yang, X. Dai, Y. Tu, Z. Du et al., Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy. Nano Energy 128, 109929 (2024). https://doi.org/10.1016/j.nanoen.2024.109929
- T. Li, X. Wang, K. Wang, Y. Liu, C. Li et al., Bidirectional rotating turbine hybrid triboelectric-electromagnetic wave energy harvester for marine environment monitoring. Adv. Energy Mater. 14, 2400313 (2024). https://doi.org/10.1002/aenm.202400313
- J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
- L. Zhang, C. Han, T. Jiang, T. Zhou, X. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
- G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9, 1900801 (2019). https://doi.org/10.1002/aenm.201900801
- S. Wu, J. Yang, Y. Wang, B. Liu, Y. Xiong et al., UFO-Shaped integrated triboelectric nanogenerator for water wave energy harvesting. Adv. Sustain. Syst. 7, 2300135 (2023). https://doi.org/10.1002/adsu.202300135
- C. Wang, F. Meng, Q. Fu, C. Fan, L. Cui, Research on wave energy harvesting technology of annular triboelectric nanogenerator based on multi-electrode structure. Micromachines 13, 1619 (2022). https://doi.org/10.3390/mi13101619
- X. Zhang, Q. Yang, D. Ren, H. Yang, X. Li et al., Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: an advanced hardware solution to long-distance target detection. Nano Energy 114, 108614 (2023). https://doi.org/10.1016/j.nanoen.2023.108614
- X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020). https://doi.org/10.1039/c9ee03258d
- K. Tao, H. Yi, Y. Yang, H. Chang, J. Wu et al., Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 67, 104197 (2020). https://doi.org/10.1016/j.nanoen.2019.104197
- H. Wen, P. Yang, G. Liu, S. Xu, H. Yao et al., Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 93, 106796 (2022). https://doi.org/10.1016/j.nanoen.2021.106796
- H. Li, C. Liang, H. Ning, J. Liu, C. Zheng et al., O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas. Nano Energy 103, 107812 (2022). https://doi.org/10.1016/j.nanoen.2022.107812
- Z. Qu, M. Huang, C. Chen, Y. An, H. Liu et al., Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 32, 2202048 (2022). https://doi.org/10.1002/adfm.202202048
- B. Zhu, H. Wu, H. Wang, Z. Quan, H. Luo et al., Spherical 3D fractal structured dual-mode triboelectric nanogenerator for multidirectional low-frequency wave energy harvesting. Nano Energy 124, 109446 (2024). https://doi.org/10.1016/j.nanoen.2024.109446
- H. Zhang, Y. Chen, Z. Deng, L. Deng, J. Xing et al., A high-output performance disc-shaped liquid-solid triboelectric nanogenerator for harvesting omnidirectional ultra-low-frequency natural vibration energy. Nano Energy 121, 109243 (2024). https://doi.org/10.1016/j.nanoen.2023.109243
- Q. Xu, C. Shang, H. Ma, Q. Hong, C. Li et al., A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting. Nano Energy 109, 108240 (2023). https://doi.org/10.1016/j.nanoen.2023.108240
- H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang et al., Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 84, 105920 (2021). https://doi.org/10.1016/j.nanoen.2021.105920
- J. Feng, H. Zhou, Z. Cao, E. Zhang, S. Xu et al., 05 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 9, 2204407 (2022). https://doi.org/10.1002/advs.202204407
- C. Chen, D. Guo, L. Tuo, Y. Wen, J. Li et al., One meter triboelectric nanogenerator for efficient harvesting of meter-scale wave energy. Adv. Funct. Mater. 34, 2406775 (2024). https://doi.org/10.1002/adfm.202406775
- Y. Zheng, Y. Ni, Y. Zi, H. Cui, X. Li, Enhanced triboelectric nanogenerators in saline environments and their applications in the ocean. Nano Energy 126, 109636 (2024). https://doi.org/10.1016/j.nanoen.2024.109636
- Z. Wu, H. Guo, G. Liu, A. Garg, H. Wen et al., Exploration on wave-structure interaction laws and output performance of coaxial hybrid energy harvester based on a large-scale wave-current flume. Adv. Sustain. Syst. 8, 2400152 (2024). https://doi.org/10.1002/adsu.202400152
- L. Xu, Y. Pang, C. Zhang, T. Jiang, X. Chen et al., Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 31, 351–358 (2017). https://doi.org/10.1016/j.nanoen.2016.11.037
- P. Cheng, Y. Liu, Z. Wen, H. Shao, A. We et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
- B. Chen, W. Tang, C. He, C. Deng, L. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21, 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
- W. Liu, L. Xu, G. Liu, H. Yang, T. Bu et al., Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. iScience 23, 101848 (2020). https://doi.org/10.1016/j.isci.2020.101848
- X. Li, L. Xu, P. Lin, X. Yang, H. Wang et al., Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure. Energy Environ. Sci. 16, 3040–3052 (2023). https://doi.org/10.1039/d3ee01035j
- Y. Xi, J. Wang, Y. Zi, X. Li, C. Han et al., High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
- Y. Wang, X. Liu, T. Chen, H. Wang, C. Zhu et al., An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 90, 106503 (2021). https://doi.org/10.1016/j.nanoen.2021.106503
- Y. Wang, X. Liu, Y. Wang, H. Wang, H. Wang et al., Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15, 15700–15709 (2021). https://doi.org/10.1021/acsnano.1c05127
- Z. Deng, L. Xu, H. Qin, X. Li, J. Duan et al., Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing. Adv. Mater. 34, 2205064 (2022). https://doi.org/10.1002/adma.202205064
- R. Li, H. Zhang, L. Wan, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21, 1514 (2021). https://doi.org/10.3390/s21041514
- C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou et al., Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Adv. Mater. Technol. 5, 2000531 (2020). https://doi.org/10.1002/admt.202000531
- S. Zhang, Z. Jing, X. Wang, M. Zhu, X. Yu et al., Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 16, 466–472 (2023). https://doi.org/10.1007/s12274-022-4715-6
- Y. Zhang, X. Cao, Z.L. Wang, The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems. Nano Energy 108, 108210 (2023). https://doi.org/10.1016/j.nanoen.2023.108210
- X. Wang, Q. Gao, M. Zhu, J. Wang, J. Zhua et al., Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 323, 119648 (2022). https://doi.org/10.1016/j.apenergy.2022.119648
- A. Ahmed, Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents. J. Mater. Chem. A 10, 1992–1998 (2022). https://doi.org/10.1039/d1ta04861a
- Y. Wang, Z. Qian, C. Zhao, Y. Wang, K. Jiang et al., Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing. Adv. Mater. Technol. 8, 2201245 (2023). https://doi.org/10.1002/admt.202201245
- A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan et al., Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12, 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
- Y. Hu, L. Chen, Z. Chai, J. Zhu, Z.L. Wang et al., Autogenic electrolysis of water powered by solar and mechanical energy. Nano Energy 91, 106648 (2022). https://doi.org/10.1016/j.nanoen.2021.106648
- N. Zhai, Z. Wen, X. Chen, A. Wei, M. Sha et al., Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 10, 2001041 (2020). https://doi.org/10.1002/aenm.202001041
- S. Kim, J. Kim, H. Kim, C. Tian, N. Oh et al., Output signals control of triboelectric nanogenerator with metal-dielectric-metal configuration through high resistance grounded systems. Nano Energy 95, 107023 (2022). https://doi.org/10.1016/j.nanoen.2022.107023
- Z. Zhu, H. Xiang, Y. Zeng, J. Zhu, X. Ca et al., Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy 93, 106776 (2022). https://doi.org/10.1016/j.nanoen.2021.106776
- S. Li, J. Jiang, N. Zhai, J. Liu, K. Feng et al., A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy 93, 106870 (2022). https://doi.org/10.1016/j.nanoen.2021.106870
- N. Zaw, J. Yun, T. Goh, I. Kim, Y. Kim et al., All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy 247, 123422 (2022). https://doi.org/10.1016/j.energy.2022.123422
- Y. Feng, J. Han, M. Xu, X. Liang, T. Jiang et al., Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Adv. Energy Mater. 12, 2103143 (2022). https://doi.org/10.1002/aenm.202103143
- S. Elah, S. Seddighi, Renewable energy storage using hydrogen produced from seawater membrane-less electrolysis powered by triboelectric nanogenerators. J. Power. Sources 609, 234682 (2024). https://doi.org/10.1016/j.jpowsour.2024.234682
- H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616–624 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
- J. Ren, L. Fang, H. Qu, T. Zhou, C. Chen et al., A wave-powered capacitive deionization system with in-situ blue energy harvester. Chem. Eng. J. 498, 155530 (2024). https://doi.org/10.1016/j.cej.2024.155530
- S. Leung, H. Fu, M. Zhang, A. Hassan, T. Jiang et al., Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 13, 1300–1308 (2020). https://doi.org/10.1039/c9ee03566d
- L. Zhou, L. Liu, W. Qiao, Y. Gao, Z. Zhao et al., Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system. ACS Nano 15, 19684–19691 (2022). https://doi.org/10.1021/acsnano.1c06988
- V. Sivtsev, E. Lapushkina, I. Kovalev, R. Guskov, M. Popov et al., Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode. Green Carbon 1, 154–159 (2023). https://doi.org/10.1016/j.greenca.2023.11.002
- J. Hu, M. Iwamotom, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 12, 7 (2024). https://doi.org/10.1007/s40820-023-01238-8
References
W. Schlesinger, Are wood pellets a green fuel. Science 359, 1328–1329 (2018). https://doi.org/10.1126/science.aat2305
Q. Zhu, C. Rooney, H. Shema, C. Zeng, J. Panetier et al., The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat. Catal. 7, 987–999 (2024). https://doi.org/10.1038/s41929-024-01190-9
V. Bikbaeva, N. Nesterenko, N. García-Moncada, V. Valtchev, Co-promoted Mo-carbide catalytic system for sustainable manufacturing of chemicals via co-processing of CO2 with ethane. Green Carbon 1, 94–103 (2023). https://doi.org/10.1016/j.greenca.2023.09.001
S. Liu, Y. Guo, F. Wagner, H. Liu, R. Cui et al., Diversifying heat sources in China’s urban district heating systems will reduce risk of carbon lock-in. Nat. Energy 9, 1021–1031 (2024). https://doi.org/10.1038/s41560-024-01560-4
W.-P. Schill, Electricity storage and the renewable energy transition. Joule 4, 2059–2064 (2024). https://doi.org/10.1016/j.joule.2020.07.022
C. Zhao, Carbon Neutrality: aiming for a net-zero carbon future. Carbon Neutr. 1, 2 (2022). https://doi.org/10.1007/s43979-022-00013-9
Z.L. Wang, Catch wave power in floating nets. Nature 542, 159–160 (2017). https://doi.org/10.1038/542159a
N. Cao, Y. Di, S. Chen, J. Qian, M. Liu et al., Synthesis of Co, Ni-doped MoS2 as durable and pH-universal catalyst for hydrogen evolution. Energy Mater. Devices 1, 9370024 (2023). https://doi.org/10.26599/EMD.2023.9370024
E. Franklin, S. Amiri, D. Crocker, C. Morris, K. Mayer et al., Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol. Environ. Sci. Technol. 56, 16633–16642 (2022). https://doi.org/10.1021/acs.est.2c04848
M. Yu, J. Wu, G. Yin, F. Jiao, Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17, 48 (2025). https://doi.org/10.1007/s40820-024-01544-9
M. Caballero, T. Gunda, Y. McDonald, Energy justice & coastal communities: the case for meaningful marine renewable energy development. Renew. Sust. Energy Rev. 184, 113491 (2023). https://doi.org/10.1016/j.rser.2023.113491
M. Zhang, W. Cai, Z. Wang, S. Fang, R. Zhang et al., Mechanical energy harvesters with tensile efficiency of 17.4% and torsional efficiency of 22.4% based on homochirally plied carbon nanotube yarns. Nat. Energy 8, 203–213 (2023). https://doi.org/10.1038/s41560-022-01191-7
T. Wu, Y. Lu, X. Tao, P. Chen, Y. Zhang et al., Superelastic wood-based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion. Carbon Energy 6, e561 (2024). https://doi.org/10.1002/cey2.561
Y. Chen, G. Wang, Y. Gao, Dual-phase competitive behavior in N-type Sn-Bi-Te thermoelectric films achieving high thermoelectric performance. Prog. Nat. Sci. Mater. 34, 795–802 (2024). https://doi.org/10.1016/j.pnsc.2024.07.008
H. Luo, Z. Zhang, L. Yuan, J. Wang, B. Li et al., Improving the light stability of perovskite solar cell with new hole transport material based on spiro[fluorene-9,9’-xanthene]. Carbon Neutr. 2, 21 (2023). https://doi.org/10.1007/s43979-023-00061-9
J. Li, C. Carlos, H. Zhou, J. Sui, Y. Wang et al., Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14, 6562 (2023). https://doi.org/10.1038/s41467-023-42184-8
K. Xi, J. Guo, M. Zheng, M. Zhu, Y. Hou, Defect engineering with rational dopants modulation for high-temperature energy harvesting in lead-free piezoceramics. Nano-Micro Lett. 17, 55 (2025). https://doi.org/10.1007/s40820-024-01556-5
R. Hinchet, H. Yoon, H. Ryu, M. Kim, E. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/science.aan3997
B. Xie, Y. Guo, Y. Chen, H. Zhang, J. Xiao et al., Advances in graphene-based electrode for triboelectric nanogenerator. Nano-Micro Lett. 17, 17 (2025). https://doi.org/10.1007/s40820-024-01530-1
Y. Hao, J. Yang, M. Wang, Z. Niu, H. Liu et al., Flexible and sensitive sensor based on triboelectric nanogenerator and electrospinning. J. Adv. Manuf. Sci. Technol. 4, 2024005 (2024). https://doi.org/10.51393/j.jamst.2024005
T. Feng, D. Ling, C. Li, W. Zheng, S. Zhang et al., Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 17, 4462–4470 (2024). https://doi.org/10.1007/s12274-023-6365-8
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 29, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
C. Zhang, Y. Hao, J. Yang, W. Su, H. Zhang et al., Recent advances in triboelectric nanogenerators for marine exploitation. Adv. Energy Mater. 13, 23000387 (2023). https://doi.org/10.1002/aenm.202300387
C. Zhu, C. Xiang, M. Wu, C. Yu, S. Dai et al., Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications. Int. J. Extreme Manuf. 6, 062009 (2024). https://doi.org/10.1088/2631-7990/ad7b04
Y. Jiang, X. Liang, T. Jiang, Z.L. Wang, Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring. Engineering 33, 204–224 (2024). https://doi.org/10.1016/j.eng.2023.05.023
Q. Zhou, B. Wang, A. Gao, W. Xu, K. Zhou et al., Solution-tube-based volume effect triboelectric nanogenerator with salt and pH sensitivity. Adv. Funct. Mater. 32, 2209100 (2022). https://doi.org/10.1002/adfm.202209100
H. Qiu, H. Wang, L. Xu, M. Zheng, Z.L. Wang, Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves. Energy Environ. Sci. 16, 473–483 (2023). https://doi.org/10.1039/d2ee03395j
X. Dai, X. Wu, B. Yao, Z. Hong, T. Jiang et al., Triboelectric nanogenerators powered hydrogen production system using MoS2/Ti3C2 as catalysts. Adv. Funct. Mater. 41, 2209100 (2024). https://doi.org/10.1002/adfm.202406188
C. Xu, Y. Liu, Y. Liu, Y. Zheng, Y. Feng et al., New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl. Mater. Today 20, 100645 (2020). https://doi.org/10.1016/j.apmt.2020.100645
I. Gonçalves, C. Rodrigues, J. Ventura, Sea state adaptation enhances power output of triboelectric nanogenerators for tailored ocean wave energy harvesting. Adv. Energy Mater. 14, 2302627 (2024). https://doi.org/10.1002/aenm.202302627
X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8, 1800705 (2018). https://doi.org/10.1002/aenm.201800705
S. Liu, X. Liang, J. Han, Y. Duan, T. Jiang et al., Charge self-shuttling triboelectric nanogenerator based on wind-driven pump excitation for harvesting water wave energy. Appl. Phys. Rev. 11, 031423 (2024). https://doi.org/10.1063/5.0225737
Y. Pang, S. Chen, Y. Chu, Z.L. Wang, C. Cao, Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy 66, 104131 (2019). https://doi.org/10.1016/j.nanoen.2019.104131
X. Du, H. Zhang, H. Cao, Z. Hao, T. Nakashima et al., Double-swing spring origami triboelectric nanogenerators for self-powered ocean monitoring. Energies 17, 2981 (2024). https://doi.org/10.3390/en17122981
P. Rui, W. Zhang, Y. Zhong, X. Wei, Y. Guo et al., High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74, 104937 (2020). https://doi.org/10.1016/j.nanoen.2020.104937
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu et al., Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223 (2018). https://doi.org/10.1016/j.nanoen.2018.02.042
H. Pang, Y. Feng, J. An, P. Chen, J. Han et al., Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 31, 2106398 (2021). https://doi.org/10.1002/adfm.202106398
Y. Yang, X. Yu, L. Meng, X. Li, Y. Xu et al., Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 46, 101338 (2021). https://doi.org/10.1016/j.eml.2021.101338
W. Liu, L. Xu, T. Bu, H. Yang, G. Liu et al., Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 58, 499–507 (2019). https://doi.org/10.1016/j.nanoen.2019.01.088
Y. Zhao, Z. Fan, C. Bi, H. Wang, J. Mi et al., On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples. Appl. Energy 308, 118323 (2022). https://doi.org/10.1016/j.apenergy.2021.118323
G. Liu, L. Xiao, C. Chen, W. Liu, X. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
X. Wang, Y. Shi, P. Yang, X. Tao, S. Li et al., Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small 18, 2107232 (2022). https://doi.org/10.1002/smll.202107232
X. Wei, Z. Wen, Y. Liu, N. Zhai, A. Wei et al., Hybridized mechanical and solar energy-driven self-powered hydrogen production. Nano-Micro Lett. 12, 1–10 (2020). https://doi.org/10.1007/s40820-020-00422-4
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
J. Nie, Z. Wang, Z. Ren, S. Li, X. Chen et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10232-x
J. Xiong, G. Thangavel, J. Wang, X. Zhou, P. Lee, Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6, eabb4246 (2020). https://doi.org/10.1126/sciadv.abb4246
Y. Dong, S. Xu, C. Zhang, L. Zhang, D. Wang et al., Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 8, eadd0464 (2023). https://doi.org/10.1126/sciadv.add0464
Z.L. Wang, Triboelectric nanogenerators as new energy technology and selfpowered sensors-principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
S. Niu, S. Wang, L. Lin, Y. Liu, Y. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/c3ee42571a
T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao et al., Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31, 560–567 (2017). https://doi.org/10.1016/j.nanoen.2016.12.004
T. Xiao, T. Jiang, J. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10, 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
L. Xu, T. Jiang, P. Lin, J. Shao, C. He et al., Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12, 1849–1858 (2018). https://doi.org/10.1021/acsnano.7b08674
H. Chen, J. Wang, A. Ning, Optimization of a rolling triboelectric nanogenerator based on the nano-micro structure for ocean environmental monitoring. ACS Omega 6, 21059–21065 (2021). https://doi.org/10.1021/acsomega.1c02709
B. Wang, Y. Wu, Y. Liu, Y. Zheng, Y. Liu et al., New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 12, 31351–31359 (2020). https://doi.org/10.1021/acsami.0c03843
X. Zhao, H. Wang, Z.L. Wang, J. Wang, Nanocomposite electret layer improved long-term stable solid-liquid contact triboelectric nanogenerator for water wave energy harvesting. Small 20, 2310023 (2024). https://doi.org/10.1002/smll.202310023
G. Chen, L. Xu, P. Zhang, B. Chen, G. Wang et al., Seawater degradable triboelectric nanogenerators for blue energy. Adv. Mater. Technol. 5, 2000455 (2020). https://doi.org/10.1002/admt.202000455
K. Xia, Z. Xu, Y. Hong, L. Wang, A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 24, 100467 (2023). https://doi.org/10.1016/j.mtsust.2023.100467
Z. Ding, Z. Tian, X. Ji, D. Wang, X. Ci et al., Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biolo. Macromol. 234, 122903 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.122
N. Chau, T. Le, T. La, V. Bui, Industrially compatible production of customizable honeycomb-patterned poly (vinyl chloride) using food-wrapping waste for power-boosting triboelectric nanogenerator and ocean wave energy harvester. J. Sci. Adv. Mater. Dev. 8, 100637 (2023). https://doi.org/10.1016/j.jsamd.2023.100637
X. Liang, Z. Liu, K. Han, S. Liu, Y. Xie et al., Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting. Adv. Funct. Mater. 34, 2409422 (2024). https://doi.org/10.1002/adfm.202409422
H. Xu, X. Wang, Y. Nan, H. Zhou, Y. Wu et al., Flexible sponge-based nanogenerator for energy harvesting from land and water transportation. Adv. Funct. Mater. 33, 2304723 (2023). https://doi.org/10.1002/adfm.202304723
W. Gao, J. Shao, K. Sagoe-Crentsil, W. Duan, Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy 80, 105583 (2021). https://doi.org/10.1016/j.nanoen.2020.105583
J. Gravesen, M. Willatzen, J. Shao, Z.L. Wang, Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy 100, 107491 (2022). https://doi.org/10.1016/j.nanoen.2022.107491
H. Cestaro, N. ias, N. Gonçalves, T. Morais, TENG estimation model of voltage production for buoys using p swarm optimization. Appl. Ocean Res. 125, 103231 (2022). https://doi.org/10.1016/j.apor.2022.103231
Y. Wang, A. Pham, X. Han, D. Du, Y. Tang, Design and evaluate the wave driven-triboelectric nanogenerator under external wave parameters: experiment and simulation. Nano Energy 93, 106844 (2022). https://doi.org/10.1016/j.nanoen.2021.106844
A. Wang, J. Chen, L. Wang, J. Han, W. Su et al., Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator. Appl. Energy 307, 118174 (2022). https://doi.org/10.1016/j.apenergy.2021.118174
X. Zhang, Q. Yang, P. Ji, Z. Wu, Q. Li et al., Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 99, 107362 (2022). https://doi.org/10.1016/j.nanoen.2022.107362
S. Xu, G. Liu, J. Wang, H. Wen, S. Cao et al., Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 12(3), 2103408 (2022). https://doi.org/10.1002/aenm.202103408
C. Cao, F. Shen, C. Xin, Q. Zhang, Q. Zheng et al., Electro-mechano transduction of stacked triboelectric nanogenerator considering wave force: modeling, validation and applications. Chem. Eng. J. 496, 153738 (2024). https://doi.org/10.1016/j.cej.2024.153738
S. Xu, J. Zhang, E. Su, C. Li, W. Tang et al., Dynamic behavior and energy flow of floating triboelectric nanogenerators. Appl. Energy 367, 123468 (2024). https://doi.org/10.1016/j.apenergy.2024.123468
D. Guo, C. Chen, J. Li, L. Zhai, S. Li et al., Structural quality factor of flo-teng under stochastic wave excitation. Adv. Sci. (2024). https://doi.org/10.1002/advs.202405165
Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
X. Zhao, S. Kuang, Z.L. Wang, G. Zhu, Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12, 4280–4285 (2018). https://doi.org/10.1021/acsnano.7b08716
L. Liu, Q. Shi, J.S. Ho, C. Lee, Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 66, 104167 (2019). https://doi.org/10.1016/j.nanoen.2019.104167
H. Gu, N. Zhang, Z. Zhou, S. Ye, W. Wang et al., A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy 87, 106218 (2021). https://doi.org/10.1016/j.nanoen.2021.106218
H. Qin, L. Xu, S. Lin, F. Zhan, K. Dong et al., Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet. Adv. Funct. Mater. 32, 2111662 (2022). https://doi.org/10.1002/adfm.202111662
U. Jurado, H. Pu, N. White, Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy 78, 105204 (2020). https://doi.org/10.1016/j.nanoen.2020.105204
X. Wei, Z. Zhao, C. Zhang, W. Yuan, Z. Wu et al., All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15(8), 13200–13208 (2021). https://doi.org/10.1021/acsnano.1c02790
W. Sun, Y. Zheng, T. Li, M. Feng, S. Cui et al., Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217, 119388 (2021). https://doi.org/10.1016/j.energy.2020.119388
H. Wu, Z. Wang, Y. Zi, Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 11, 2100038 (2021). https://doi.org/10.1002/aenm.202100038
Q. Zhang, M. He, X. Pan, D. Huang, H. Long et al., High performance liquid-solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 103, 107810 (2022). https://doi.org/10.1016/j.nanoen.2022.107810
Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
X. Liang, S. Liu, S. Lin, H. Yang, T. Jiang et al., Liquid-solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy. Adv. Energy Mater. 13, 2300571 (2023). https://doi.org/10.1002/aenm.202300571
W. Li, Y. Liu, W. Sun, H. Wang, W. Wang et al., A high-output tubular triboelectric nanogenerator for wave energy collection and its application in self-powered anti-corrosion applications. J. Mater. Chem. A (2024). https://doi.org/10.1039/D4TA02760D
F. Xi, Y. Pang, G. Liu, S. Wang, W. Li et al., Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019). https://doi.org/10.1016/j.nanoen.2019.04.026
X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
W. Zhang, W. He, S. Dai, F. Ma, P. Lin et al., Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy 111, 108432 (2023). https://doi.org/10.1002/adfm.201807241
J. An, Z. Wang, T. Jiang, X. Liang, Z.L. Wang, Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 29, 1904867 (2019). https://doi.org/10.1002/adfm.201904867
X. Wang, C. Ye, P. Chen, H. Pang, C. Wei et al., Achieving high power density and durability of multilayered swing-structured triboelectric nanogenerator toward marine environmental protection. Adv. Funct. Mater. 34, 2311196 (2024). https://doi.org/10.1002/adfm.202311196
X. Liang, T. Jiang, Y. Feng, P. Lu, J. An et al., Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 10, 2002123 (2020). https://doi.org/10.1002/aenm.202002123
X. Liang, Z. Liu, Y. Feng, J. Han, L. Li et al., Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 83, 105836 (2021). https://doi.org/10.1016/j.nanoen.2021.105836
X. Liang, S. Liu, Z. Ren, T. Jiang, Z.L. Wang, Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 32, 2205313 (2022). https://doi.org/10.1002/adfm.202205313
Y. Li, Z. Guo, Z. Zhao, Y. Gao, P. Yang et al., Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 336, 120792 (2023). https://doi.org/10.1016/j.apenergy.2023.120792
C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode teng with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33, 2305768 (2023). https://doi.org/10.1002/adfm.202305768
H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11, 4203 (2020). https://doi.org/10.1038/s41467-020-17891-1
W. Li, L. Wan, Y. Lin, G. Liu, H. Qu et al., Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy 95, 106994 (2022). https://doi.org/10.1016/j.nanoen.2022.106994
Y. Yu, H. Li, X. Zhang, Q. Gao, B. Yang et al., Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect. Joule 8, 1855–1868 (2024). https://doi.org/10.1016/j.joule.2024.04.013
X. Wang, S. Niu, Y. Yin, F. Yi, Z. You et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5, 1501467 (2015). https://doi.org/10.1002/aenm.201501467
M. Xu, T. Zhao, C. Wang, S. Zhang, Z. Li et al., High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13, 1932–1939 (2019). https://doi.org/10.1021/acsnano.8b08274
X. Yang, L. Xu, P. Lin, W. Zhong, Y. Bai et al., Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404–412 (2019). https://doi.org/10.1016/j.nanoen.2019.03.054
Z. Yuan, C. Wang, J. Xi, X. Han, J. Li et al., Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 6, 2809–2816 (2021). https://doi.org/10.1021/acsenergylett.1c01092
L. Liu, X. Yang, L. Zhao, H. Hong, H. Cui et al., Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15, 9412–9421 (2021). https://doi.org/10.1021/acsnano.1c00345
Y. Yang, J. Wen, F. Chen, Y. Hao, X. Gao et al., Barycenter self-adapting triboelectric nanogenerator for sea water wave high-entropy energy harvesting and self-powered forecasting in marine meteorology. Adv. Funct. Mater. 32, 2200521 (2022). https://doi.org/10.1002/adfm.202200521
R. Ouyang, Y. Huang, H. Ye, Z. Zhang, H. Xue, Copper ps-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy 102, 107749 (2022). https://doi.org/10.1016/j.nanoen.2022.107749
H. Hong, T. Chen, J. Yang, Y. Hu, J. Hu et al., Omnidirectional water wave energy harvesting by a spherical triboelectric nanogenerator with sliced-pizza-shaped electrodes. Cell Rep. Phys. Sci. 5, 101933 (2024). https://doi.org/10.1016/j.xcrp.2024.101933
Y. Duan, H. Xu, S. Liu, P. Chen, X. Wang et al., Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring. Nano Res. 16, 11646–11652 (2023). https://doi.org/10.1007/s12274-023-6035-x
C. Zhu, M. Wu, C. Liu, C. Xiang, R. Xu et al., Highly integrated triboelectric-electromagnetic wave energy harvester toward self-powered marine buoy. Adv. Energy Mater. 13, 2301665 (2023). https://doi.org/10.1002/aenm.202301665
Y. Wang, H. Du, H. Yang, Z. Xi, C. Zhao et al., A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15, 6834 (2024). https://doi.org/10.1038/s41467-024-51245-5
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
D. Zhao, H. Li, Y. Yu, Y. Wang, J. Wang et al., A current-enhanced triboelectric nanogenerator with crossed rollers for harvesting wave energy. Nano Energy 117, 108885 (2023). https://doi.org/10.1016/j.nanoen.2023.108885
X. Wang, L. Chen, Z. Xu, P. Chen, C. Ye et al., High-durability stacked disc-type rolling triboelectric nanogenerators for environmental monitoring around charging buoys of unmanned ships. Small 20, 2310809 (2024). https://doi.org/10.1002/smll.202310809
P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin et al., Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 57, 432–439 (2019). https://doi.org/10.1016/j.nanoen.2018.12.054
Y. Pang, Y. Fang, J. Su, H. Wang, Y. Tan et al., Soft ball-based triboelectric-electromagnetic hybrid nanogenerators for wave energy harvesting. Adv. Mater. Technolog. 8, 2201246 (2023). https://doi.org/10.1002/admt.202201246
Y. Wang, A.M. Nazar, J. Wang, K. Xia, D. Wang et al., Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action. J. Mar. Sci. Eng. 10, 5 (2021). https://doi.org/10.3390/jmse10010005
K. Xia, J. Fu, Z. Xu, Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 10, 2000426 (2020). https://doi.org/10.1002/aenm.202000426
N. Wang, J. Zou, Y. Yang, X. Li, Y. Guo et al., Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting. Nano Energy 55, 541–547 (2019). https://doi.org/10.1016/j.nanoen.2018.11.006
W. Zhong, L. Xu, X. Yang, W. Tang, J. Shao et al., Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale 11, 7199–7208 (2019). https://doi.org/10.1039/c8nr09978b
R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4, 1800514 (2019). https://doi.org/10.1002/admt.201800514
Q. Gao, J. Wang, H. Li, Y. Yu, X. Zhang et al., High performance triboelectric nanogenerator for wave energy harvesting through the gas-assisted method. Chem. Eng. J. 493, 152730 (2024). https://doi.org/10.1002/admt.201800514
T. Xiao, X. Liang, T. Jiang, L. Xu, J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28, 1802634 (2018). https://doi.org/10.1002/adfm.201802634
C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang et al., Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 11, 2003616 (2021). https://doi.org/10.1002/aenm.202003616
H. Yang, X. Miao, Z. Li, W. Cui, Y. Zhao et al., Earthworm-inspired triboelectric nanogenerator with O-shaped multilayer structure for marine ranching. Energy Technol. 12, 2300819 (2024). https://doi.org/10.1002/ente.202300819
W. Liu, X. Wang, L. Yang, Y. Wang, H. Xu et al., Swing origami-structure-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Sci. 11, 2401578 (2024). https://doi.org/10.1002/advs.202401578
W. Yuan, B. Zhang, C. Zhang, O. Yang, Y. Liu et al., Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting. One Earth 5, 1055–1063 (2022). https://doi.org/10.1016/j.oneear.2022.08.013
S. Liu, X. Liang, P. Chen, H. Long, T. Jiang et al., Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Methods 7, 2201392 (2023). https://doi.org/10.1002/smtd.202201392
W. Zhou, L. Tuo, W. Tang, H. Wen, C. Chen et al., Four-helix triboelectric nanogenerator based on wave amplitude amplifier. Adv. Energy Mater. 25, 369 (2024). https://doi.org/10.1002/aenm.202402781
C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5, 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
W. Zhong, L. Xu, H. Wang, D. Li, Z.L. Wang, Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 66, 104108 (2019). https://doi.org/10.1016/j.nanoen.2019.104108
D. Zhang, J. Shi, Y. Si, T. Li, Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 61, 132–140 (2019). https://doi.org/10.1016/j.nanoen.2019.04.046
P. Qian, B. Feng, H. Wen, X. Jiang, Y. Ying et al., Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy 98, 107249 (2022). https://doi.org/10.1016/j.nanoen.2022.107249
X. Miao, H. Yang, Z. Li, M. Cheng, Y. Zhao et al., A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 17, 3029–3034 (2024). https://doi.org/10.1007/s12274-023-6100-5
H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
Y. Bai, L. Xu, C. He, L. Zhu, X. Yang et al., High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 66, 104117 (2019). https://doi.org/10.1016/j.nanoen.2019.104117
Y. Hu, H. Qiu, Q. Sun, Z.L. Wang, L. Xu, Wheel-structured triboelectric nanogenerators with hyperelastic networking for high-performance wave energy harvesting. Small Methods 7, 2300582 (2023). https://doi.org/10.1002/smtd.202300582
W. Jiang, C. Chen, C. Wang, J. Li, M. Zhao et al., Design of triboelectric nanogenerators featuring motion form conversion, motion rectification, and frequency multiplication for low-frequency ocean energy harvesting. Energy Environ. Sci. 16, 6003–6014 (2023). https://doi.org/10.1039/d3ee02688d
P. Rui, W. Zhang, P. Wang, Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy. ACS Nano 15, 6949–6960 (2021). https://doi.org/10.1021/acsnano.0c10840
M. Yin, X. Lu, G. Qiao, Y. Xu, Y. Wang et al., Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 10, 2000627 (2020). https://doi.org/10.1002/aenm.202000627
Z. Lin, B. Zhang, H. Zou, Z. Wu, H. Guo et al., Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 68, 104378 (2020). https://doi.org/10.1016/j.nanoen.2019.104378
D. Zhao, H. Li, J. Wang, Q. Gao, Y. Yu et al., A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy. Nano Res. 16, 10931–10937 (2023). https://doi.org/10.1007/s12274-023-5796-6
Q. Gao, Y. Xu, X. Yu, Z. Jing, T. Cheng et al., Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 16, 6781–6788 (2022). https://doi.org/10.1021/acsnano.2c01594
Z. Lin, B. Zhang, Y. Xie, Z. Wu, J. Yang et al., Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 31, 2105237 (2021). https://doi.org/10.1002/adfm.202105237
W. Cui, J. Hu, H. Yang, X. Liu, Y. Wang et al., Self-powered wireless sensor node enabled by ultra-high-output swinging hybrid generator toward real-time and in-situ marine meteorological observations. Nano Energy 129, 110051 (2024). https://doi.org/10.1016/j.nanoen.2024.110051
A. Chandrasekhar, V. Vivekananthan, S. Kim, A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69, 104439 (2020). https://doi.org/10.1016/j.nanoen.2019.104439
F. Xue, L. Chen, C. Li, J. Ren, J. Yu et al., A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Sci. China Technol. Sci. 65, 893–902 (2022). https://doi.org/10.1007/s11431-021-1974-8
H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric-electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15, 621–632 (2022). https://doi.org/10.1039/d1ee02549j
Z. Wu, H. Guo, W. Ding, Y. Wang, L. Zhang et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13, 2349–2356 (2019). https://doi.org/10.1021/acsnano.8b09088
L. Liu, Q. Shi, C. Lee, A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 76, 105052 (2020). https://doi.org/10.1016/j.nanoen.2020.105052
L. Gao, S. Lu, W. Xie, X. Chen, L. Wu et al., A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy 72, 104684 (2020). https://doi.org/10.1016/j.nanoen.2020.104684
Y. Wu, Q. Zeng, Q. Tang, W. Liu, G. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
R. Ouyang, J. Miao, T. Wu, J. Chen, C. Sun et al., Magnets assisted triboelectric nanogenerator for harvesting water wave energy. Adv. Mater. Technol. 7, 2200403 (2022). https://doi.org/10.1002/admt.202200403
J. Wang, L. Pan, H. Guo, B. Zhang, R. Zhang et al., Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv. Energy Mater. 9, 1802892 (2019). https://doi.org/10.1002/aenm.201802892
X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou et al., A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020). https://doi.org/10.1016/j.nanoen.2019.104440
Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li et al., Pendular-translational hybrid nanogenerator harvesting water wave energy. ACS Appl. Mater. Interfaces 14, 15187–15194 (2022). https://doi.org/10.1021/acsami.1c25004
Y. Lou, M. Li, J. Hu, Y. Zhao, W. Cui et al., Maximizing the energy conversion of triboelectric nanogenerator through the synergistic effect of high coupling and dual-track circuit for marine monitoring. Nano Energy 121, 109240 (2024). https://doi.org/10.1016/j.nanoen.2023.109240
W. Kim, V. Vivekananthan, G. Khandelwal, A. Chandrasekhar, S. Kim, Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. ACS Appl. Electron. Mater. 2, 3100–3108 (2020). https://doi.org/10.1021/acsaelm.0c00302
C. Han, Z. Cao, Z. Yuan, Z. Zhang, X. Huo et al., Hybrid triboelectric-electromagnetic nanogenerator with a double-sided fluff and double halbach array for wave energy harvesting. Adv. Funct. Mater. 32, 2205011 (2022). https://doi.org/10.1002/adfm.202205011
F. Zheng, Y. Sun, X. Wei, J. Chen, Z. Yuan et al., A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy 90, 106631 (2021). https://doi.org/10.1016/j.nanoen.2021.106631
Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang, Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81, 105625 (2021). https://doi.org/10.1016/j.nanoen.2020.105625
W. Liu, Y. Li, H. Tang, Z. Zhang, X. Wu et al., The nexus of sustainable fisheries: a hybrid self-powered and self-sensing wave energy harvester. Ocean Eng. 295, 116996 (2024). https://doi.org/10.1016/j.oceaneng.2024.116996
S. Zhang, Z. Jing, X. Wang, K. Fan, H. Zhao et al., Enhancing low-velocity water flow energy harvesting of triboelectric-electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism. ACS Energy Lett. 7, 4282–4289 (2022). https://doi.org/10.1021/acsenergylett.2c01908
X. Sun, C. Shang, H. Ma, C. Li, L. Xue et al., A tube-shaped solid-liquid-interfaced triboelectric-electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting. Nano Energy 100, 107540 (2022). https://doi.org/10.1016/j.nanoen.2022.107540
H. Long, S. Li, M. Jia, D. Huang, P. Zhang et al., A tubular liquid-solid triboelectric-electromagnetic hybrid nanogenerator for enhancing wave energy harvesting. Energy 304, 132119 (2024). https://doi.org/10.1016/j.energy.2024.132119
U. Jurado, S. Pu, N. White, Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy 72, 104701 (2020). https://doi.org/10.1016/j.nanoen.2020.104701
E. Wardhana, H. Mutsuda, Y. Tanaka, T. Nakashima, T. Kanehira et al., Characteristics of electric performance and key factors of a hybrid piezo/triboelectric generator for wave energy harvesting. Sustain. Energy Technol. Assess. 50, 101757 (2022). https://doi.org/10.1016/j.seta.2021.101757
S. Liu, X. Liu, G. Zhou, F. Qin, M. Jing et al., A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat. Commun. 11, 6158 (2020). https://doi.org/10.1038/s41467-020-19987-0
Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi et al., Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021). https://doi.org/10.1038/s41467-021-20919-9
C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32, 2111775 (2022). https://doi.org/10.1002/adfm.202111775
L. Zhai, H. Wen, H. Liu, D. Guo, G. Liu et al., High-sensitivity blue-energy-shuttle and in-situ electrical behaviors in ocean. Nano Energy 125, 109546 (2024). https://doi.org/10.1016/j.nanoen.2024.109546
C. Wang, H. Chai, G. Li, W. Wang, R. Tian et al., Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators. Appl. Energy 374, 123876 (2024). https://doi.org/10.1016/j.apenergy.2024.123876
L. Gao, X. Xu, H. Han, W. Yang, R. Zhuo et al., A broadband hybrid blue energy nanogenerator for smart ocean IoT network. Nano Energy 127, 109697 (2024). https://doi.org/10.1016/j.nanoen.2024.109697
C. Wu, R. Liu, J. Wang, Y. Zi, L. Lin et al., A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32, 287–293 (2017). https://doi.org/10.1016/j.nanoen.2016.12.061
Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11, 2101116 (2021). https://doi.org/10.1002/aenm.202101116
Y. Yang, L. Zheng, J. Wen, F. Xing, H. Liu et al., A swing self-regulated triboelectric nanogenerator for high-entropy ocean breaking waves energy harvesting. Adv. Funct. Mater. 33, 2304366 (2023). https://doi.org/10.1002/adfm.202304366
Y. Du, Q. Tang, S. Fu, C. Shan, Q. Zeng et al., Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy. Nano Res. 16, 11900–11906 (2023). https://doi.org/10.1007/s12274-023-5733-8
M. Li, Y. Lou, J. Hu, W. Cui, L. Chen et al., High-coupled magnetic-levitation hybrid nanogenerator with frequency multiplication effect for wireless water level alarm. Small (2024). https://doi.org/10.1002/smll.202402009
Y. Yang, H. Zhang, R. Liu, X. Wen, T. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3, 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
Y. Luo, B. Li, L. Mo, Z. Ye, H. Shen et al., Nanofiber-enhanced “lucky-bag” triboelectric nanogenerator for efficient wave energy harvesting by soft-contact structure. Nanomaterials 12, 2792 (2022). https://doi.org/10.3390/nano12162792
B. Zhao, Y. Long, T. Huang, J. Niu, Y. Liu et al., Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy. Chem. Eng. J. 489, 151399 (2024). https://doi.org/10.1016/j.cej.2024.151399
X. Zhang, Y. Su, X. Dong, J. Wu, X. Su et al., Solid-liquid elastic pendulum triboelectric nanogenerator design for application to omnidirectional blue energy harvesting. Adv. Mater. Technol. (2024). https://doi.org/10.1002/admt.202400531
J. Cheng, X. Zhang, T. Jia, Q. Wu, Y. Dong et al., Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy. Nano Energy 102, 107622 (2022). https://doi.org/10.1016/j.nanoen.2022.107622
M. Ding, J. Wang, D. Zhao, H. Li, X. Cheng et al., Magnetic-field-assisted triboelectric nanogenerator for harvesting multi-directional wave energy. Nano Res. 17, 7144 (2024). https://doi.org/10.1007/s12274-024-6680-8
T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10, 2000064 (2020). https://doi.org/10.1002/aenm.202000064
Y. Feng, T. Jiang, X. Liang, J. An, Z.L. Wang, Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 7, 021401 (2020). https://doi.org/10.1063/1.5135734
B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12, 2202627 (2022). https://doi.org/10.1002/aenm.202202627
B. Zhao, Z. Li, X. Liao, L. Qiao, Y. Li et al., A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 89, 106381 (2021). https://doi.org/10.1016/j.nanoen.2021.106381
H. Yang, X. Liang, J. Kan, Z.L. Wang, T. Jiang et al., Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting. Nano Res. 17, 7582 (2024). https://doi.org/10.1007/s12274-024-6679-1
J. Han, Y. Liu, Y. Feng, T. Jiang, Z.L. Wang, Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 13, 2203219 (2023). https://doi.org/10.1002/aenm.202203219
L. Meng, Y. Yang, S. Liu, S. Wang, T. Zhang et al., Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 8, 1362–1368 (2022). https://doi.org/10.1021/acsomega.2c06783
Y. Ren, Z. Wang, J. Chen, F. Wu, H. Guo, Octave boxes inspired energy regularization triboelectric nanogenerator for high-efficient wave energy harvesting. Energy Environ. Sci. 17, 8829–8837 (2024). https://doi.org/10.1039/D4EE02969K
C. Zhang, W. Yuan, B. Zhang, J. Yang, Y. Hu et al., A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting. Small 19, 2304412 (2023). https://doi.org/10.1002/smll.202304412
Z. Wang, L. Hou, D. Yang, M. Zhang, S. Liu et al., A self-powered underwater glider using bidirectional swing-rotation hybrid nanogenerator. Nano Energy 125, 109526 (2024). https://doi.org/10.1016/j.nanoen.2024.109526
J. Wang, Z. Wang, D. Zhao, Y. Yu, X. Cheng et al., Power improvement of triboelectric nanogenerator by morphological transformation strategy for harvesting irregular wave energy. Chem. Eng. J. 490, 151897 (2024). https://doi.org/10.1016/j.cej.2024.151897
G. He, Y. Luo, Y. Zhai, Y. Wu, J. You et al., Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output-an approach for efficient usage of high entropy energy. Nano Energy 87, 106195 (2021). https://doi.org/10.1016/j.nanoen.2021.106195
L. Zhao, H. Zou, X. Xie, D. Guo, Q. Gao et al., Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 108, 108222 (2023). https://doi.org/10.1016/j.nanoen.2023.108222
H. Jung, J. Martinez, H. Ouro-Koura, A. Salalila, A. Garza et al., Self-powered ocean buoy using a disk-type triboelectric nanogenerator with a mechanical frequency regulator. Nano Energy 121, 109216 (2024). https://doi.org/10.1016/j.nanoen.2023.109216
S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14, 2304184 (2024). https://doi.org/10.1002/aenm.202304184
C. Zhang, S. Yang, X. Dai, Y. Tu, Z. Du et al., Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy. Nano Energy 128, 109929 (2024). https://doi.org/10.1016/j.nanoen.2024.109929
T. Li, X. Wang, K. Wang, Y. Liu, C. Li et al., Bidirectional rotating turbine hybrid triboelectric-electromagnetic wave energy harvester for marine environment monitoring. Adv. Energy Mater. 14, 2400313 (2024). https://doi.org/10.1002/aenm.202400313
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
L. Zhang, C. Han, T. Jiang, T. Zhou, X. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9, 1900801 (2019). https://doi.org/10.1002/aenm.201900801
S. Wu, J. Yang, Y. Wang, B. Liu, Y. Xiong et al., UFO-Shaped integrated triboelectric nanogenerator for water wave energy harvesting. Adv. Sustain. Syst. 7, 2300135 (2023). https://doi.org/10.1002/adsu.202300135
C. Wang, F. Meng, Q. Fu, C. Fan, L. Cui, Research on wave energy harvesting technology of annular triboelectric nanogenerator based on multi-electrode structure. Micromachines 13, 1619 (2022). https://doi.org/10.3390/mi13101619
X. Zhang, Q. Yang, D. Ren, H. Yang, X. Li et al., Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: an advanced hardware solution to long-distance target detection. Nano Energy 114, 108614 (2023). https://doi.org/10.1016/j.nanoen.2023.108614
X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020). https://doi.org/10.1039/c9ee03258d
K. Tao, H. Yi, Y. Yang, H. Chang, J. Wu et al., Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 67, 104197 (2020). https://doi.org/10.1016/j.nanoen.2019.104197
H. Wen, P. Yang, G. Liu, S. Xu, H. Yao et al., Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 93, 106796 (2022). https://doi.org/10.1016/j.nanoen.2021.106796
H. Li, C. Liang, H. Ning, J. Liu, C. Zheng et al., O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas. Nano Energy 103, 107812 (2022). https://doi.org/10.1016/j.nanoen.2022.107812
Z. Qu, M. Huang, C. Chen, Y. An, H. Liu et al., Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 32, 2202048 (2022). https://doi.org/10.1002/adfm.202202048
B. Zhu, H. Wu, H. Wang, Z. Quan, H. Luo et al., Spherical 3D fractal structured dual-mode triboelectric nanogenerator for multidirectional low-frequency wave energy harvesting. Nano Energy 124, 109446 (2024). https://doi.org/10.1016/j.nanoen.2024.109446
H. Zhang, Y. Chen, Z. Deng, L. Deng, J. Xing et al., A high-output performance disc-shaped liquid-solid triboelectric nanogenerator for harvesting omnidirectional ultra-low-frequency natural vibration energy. Nano Energy 121, 109243 (2024). https://doi.org/10.1016/j.nanoen.2023.109243
Q. Xu, C. Shang, H. Ma, Q. Hong, C. Li et al., A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting. Nano Energy 109, 108240 (2023). https://doi.org/10.1016/j.nanoen.2023.108240
H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang et al., Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 84, 105920 (2021). https://doi.org/10.1016/j.nanoen.2021.105920
J. Feng, H. Zhou, Z. Cao, E. Zhang, S. Xu et al., 05 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv. Sci. 9, 2204407 (2022). https://doi.org/10.1002/advs.202204407
C. Chen, D. Guo, L. Tuo, Y. Wen, J. Li et al., One meter triboelectric nanogenerator for efficient harvesting of meter-scale wave energy. Adv. Funct. Mater. 34, 2406775 (2024). https://doi.org/10.1002/adfm.202406775
Y. Zheng, Y. Ni, Y. Zi, H. Cui, X. Li, Enhanced triboelectric nanogenerators in saline environments and their applications in the ocean. Nano Energy 126, 109636 (2024). https://doi.org/10.1016/j.nanoen.2024.109636
Z. Wu, H. Guo, G. Liu, A. Garg, H. Wen et al., Exploration on wave-structure interaction laws and output performance of coaxial hybrid energy harvester based on a large-scale wave-current flume. Adv. Sustain. Syst. 8, 2400152 (2024). https://doi.org/10.1002/adsu.202400152
L. Xu, Y. Pang, C. Zhang, T. Jiang, X. Chen et al., Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 31, 351–358 (2017). https://doi.org/10.1016/j.nanoen.2016.11.037
P. Cheng, Y. Liu, Z. Wen, H. Shao, A. We et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
B. Chen, W. Tang, C. He, C. Deng, L. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21, 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
W. Liu, L. Xu, G. Liu, H. Yang, T. Bu et al., Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. iScience 23, 101848 (2020). https://doi.org/10.1016/j.isci.2020.101848
X. Li, L. Xu, P. Lin, X. Yang, H. Wang et al., Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure. Energy Environ. Sci. 16, 3040–3052 (2023). https://doi.org/10.1039/d3ee01035j
Y. Xi, J. Wang, Y. Zi, X. Li, C. Han et al., High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
Y. Wang, X. Liu, T. Chen, H. Wang, C. Zhu et al., An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 90, 106503 (2021). https://doi.org/10.1016/j.nanoen.2021.106503
Y. Wang, X. Liu, Y. Wang, H. Wang, H. Wang et al., Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15, 15700–15709 (2021). https://doi.org/10.1021/acsnano.1c05127
Z. Deng, L. Xu, H. Qin, X. Li, J. Duan et al., Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing. Adv. Mater. 34, 2205064 (2022). https://doi.org/10.1002/adma.202205064
R. Li, H. Zhang, L. Wan, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21, 1514 (2021). https://doi.org/10.3390/s21041514
C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou et al., Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Adv. Mater. Technol. 5, 2000531 (2020). https://doi.org/10.1002/admt.202000531
S. Zhang, Z. Jing, X. Wang, M. Zhu, X. Yu et al., Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 16, 466–472 (2023). https://doi.org/10.1007/s12274-022-4715-6
Y. Zhang, X. Cao, Z.L. Wang, The sealed bionic fishtail-structured TENG based on anticorrosive paint for ocean sensor systems. Nano Energy 108, 108210 (2023). https://doi.org/10.1016/j.nanoen.2023.108210
X. Wang, Q. Gao, M. Zhu, J. Wang, J. Zhua et al., Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 323, 119648 (2022). https://doi.org/10.1016/j.apenergy.2022.119648
A. Ahmed, Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents. J. Mater. Chem. A 10, 1992–1998 (2022). https://doi.org/10.1039/d1ta04861a
Y. Wang, Z. Qian, C. Zhao, Y. Wang, K. Jiang et al., Highly adaptive triboelectric-electromagnetic hybrid nanogenerator for scavenging flow energy and self-powered marine wireless sensing. Adv. Mater. Technol. 8, 2201245 (2023). https://doi.org/10.1002/admt.202201245
A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan et al., Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12, 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
Y. Hu, L. Chen, Z. Chai, J. Zhu, Z.L. Wang et al., Autogenic electrolysis of water powered by solar and mechanical energy. Nano Energy 91, 106648 (2022). https://doi.org/10.1016/j.nanoen.2021.106648
N. Zhai, Z. Wen, X. Chen, A. Wei, M. Sha et al., Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 10, 2001041 (2020). https://doi.org/10.1002/aenm.202001041
S. Kim, J. Kim, H. Kim, C. Tian, N. Oh et al., Output signals control of triboelectric nanogenerator with metal-dielectric-metal configuration through high resistance grounded systems. Nano Energy 95, 107023 (2022). https://doi.org/10.1016/j.nanoen.2022.107023
Z. Zhu, H. Xiang, Y. Zeng, J. Zhu, X. Ca et al., Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy 93, 106776 (2022). https://doi.org/10.1016/j.nanoen.2021.106776
S. Li, J. Jiang, N. Zhai, J. Liu, K. Feng et al., A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy 93, 106870 (2022). https://doi.org/10.1016/j.nanoen.2021.106870
N. Zaw, J. Yun, T. Goh, I. Kim, Y. Kim et al., All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy 247, 123422 (2022). https://doi.org/10.1016/j.energy.2022.123422
Y. Feng, J. Han, M. Xu, X. Liang, T. Jiang et al., Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Adv. Energy Mater. 12, 2103143 (2022). https://doi.org/10.1002/aenm.202103143
S. Elah, S. Seddighi, Renewable energy storage using hydrogen produced from seawater membrane-less electrolysis powered by triboelectric nanogenerators. J. Power. Sources 609, 234682 (2024). https://doi.org/10.1016/j.jpowsour.2024.234682
H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng et al., A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57, 616–624 (2019). https://doi.org/10.1016/j.nanoen.2018.12.078
J. Ren, L. Fang, H. Qu, T. Zhou, C. Chen et al., A wave-powered capacitive deionization system with in-situ blue energy harvester. Chem. Eng. J. 498, 155530 (2024). https://doi.org/10.1016/j.cej.2024.155530
S. Leung, H. Fu, M. Zhang, A. Hassan, T. Jiang et al., Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 13, 1300–1308 (2020). https://doi.org/10.1039/c9ee03566d
L. Zhou, L. Liu, W. Qiao, Y. Gao, Z. Zhao et al., Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system. ACS Nano 15, 19684–19691 (2022). https://doi.org/10.1021/acsnano.1c06988
V. Sivtsev, E. Lapushkina, I. Kovalev, R. Guskov, M. Popov et al., Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode. Green Carbon 1, 154–159 (2023). https://doi.org/10.1016/j.greenca.2023.11.002
J. Hu, M. Iwamotom, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 12, 7 (2024). https://doi.org/10.1007/s40820-023-01238-8