Quasi-Solid Electrolyte Interphase Boosting Charge and Mass Transfer for Dendrite-Free Zinc Battery
Corresponding Author: Changdong Gu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 56
Abstract
The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase. To enhance the reversibility of Zn metal, a quasi-solid interphase composed by defective metal–organic framework (MOF) nanoparticles (D-UiO-66) and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir. Particularly, anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels. With the synergistic effect between the MOF channels and the anchored anions, Zn2+ transport is prompted significantly. Simultaneously, such quasi-solid interphase boost charge and mass transfer of Zn2+, leading to a high zinc transference number, good ionic conductivity, and high Zn2+ concentration near the anode, which mitigates Zn dendrite growth obviously. Encouragingly, unprecedented average coulombic efficiency of 99.8% is achieved in the Zn||Cu cell with the proposed quasi-solid interphase. The cycling performance of D-UiO-66@Zn||MnO2 (~ 92.9% capacity retention after 2000 cycles) and D-UiO-66@Zn||NH4V4O10 (~ 84.0% capacity retention after 800 cycles) prove the feasibility of the quasi-solid interphase.
Highlights:
1 Defect engineering for constructing Zn2+ reservoir to anchor anions.
2 The quasi-solid electrolyte interphase as Zn2+ reservoir boosting charge and mass transfer for dendrite-free zinc battery.
3 A Coulombic efficiency of 99.8% was achieved in Zn||Cu cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- X. Ge, S. Cao, Z. Lv, Z. Zhu, Y. Tang et al., Mechano-graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium-ion batteries. Adv. Mater. 34, e2206797 (2022). https://doi.org/10.1002/adma.202206797
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2021). https://doi.org/10.1038/s41893-021-00800-9
- S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a pi-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. e2207115 (2022). https://doi.org/10.1002/adma.202207115
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14, 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14, 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
- H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma et al., Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13, 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- Y. Zhang, C. Wei, M.-X. Wu, Y. Wang, H. Jiang et al., A high-performance COF-based aqueous zinc-bromine battery. Chem. Eng. J. 451, 138915 (2023). https://doi.org/10.1016/j.cej.2022.138915
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- D.E. Ciurduc, C.d.l. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Storage Mater. 53, 532–543 (2022). https://doi.org/10.1016/j.ensm.2022.09.036
- S. Lv, T. Fang, Z. Ding, Y. Wang, H. Jiang et al., A high-performance quasi-solid-state aqueous zinc-dual halogen battery. ACS Nano 16, 20389–20399 (2022). https://doi.org/10.1021/acsnano.2c06362
- Y. Wang, Y. Liu, H. Wang, S. Dou, W. Gan et al., MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 10, 4366–4375 (2022). https://doi.org/10.1039/d1ta10245a
- R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- N. Becknell, P.P. Lopes, T. Hatsukade, X. Zhou, Y. Liu et al., Employing the dynamics of the electrochemical interface in aqueous zinc-ion battery cathodes. Adv. Funct. Mater. 31, 2102135 (2021). https://doi.org/10.1002/adfm.202102135
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+ conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
- P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/c6ee01674j
- K. Wang, C. Li, Y. Liang, T. Han, H. Huang et al., Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chem. Eng. J. 289, 486–493 (2016). https://doi.org/10.1016/j.cej.2016.01.019
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
- W. Xiang, J. Ren, S. Chen, C. Shen, Y. Chen et al., The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 277, 115560 (2020). https://doi.org/10.1016/j.apenergy.2020.115560
- G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye et al., Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016). https://doi.org/10.1021/acs.chemmater.6b00602
- Y. Xu, L. Gao, L. Shen, Q. Liu, Y. Zhu et al., Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3, 1685–1700 (2020). https://doi.org/10.1016/j.matt.2020.08.011
- L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G. Shen et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 30, e1707476 (2018). https://doi.org/10.1002/adma.201707476
- Z. Pei, Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res. Energy 1, 9120023 (2022). https://doi.org/10.26599/nre.2022.9120023
- L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60, 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
- J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
- K. Užarević, T.C. Wang, S.Y. Moon, A.M. Fidelli, J.T. Hupp et al., Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chem. Commun. 52, 2133–2136 (2016). https://doi.org/10.1039/c5cc08972g
- C.L. Luu, T.T.V. Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 025004 (2015). https://doi.org/10.1088/2043-6262/6/2/025004
- G.Y. Zhang, D. Peak, Studies of Cd(II)–sulfate interactions at the goethite–water interface by ATR-FTIR spectroscopy. Geochim. Cosmochim. Acta 71, 2158–2169 (2007). https://doi.org/10.1016/j.gca.2006.12.020
- A.M. Petrosyan, V.V. Ghazaryan, G. Giester, M. Fleck, Sulfamates and methanesulfonates of l -arginine and l -histidine. J. Mol. Struct. 1163, 114–127 (2018). https://doi.org/10.1016/j.molstruc.2018.02.112
- X. Xu, H. Su, J. Zhang, Y. Zhong, Y. Xu et al., Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 4459–4468 (2022). https://doi.org/10.1021/acsenergylett.2c02236
- H. Qiu, R. Hu, X. Du, Z. Chen, J. Zhao et al., Eutectic Crystallization Activates Solid-State Zinc-Ion Conduction. Angew. Chem. Int. Ed. 61, e202113086 (2021). https://doi.org/10.1002/anie.202113086
- Atzori C, Shearer GC, Maschio L, Civalleri B, Bonino F et al., Effect of benzoic acid as a modulator in the structure of UiO-66. J. Phys. Chem. C 121, 9312–9324 (2017). https://doi.org/10.1021/acs.jpcc.7b00483
- F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035 (2020). https://doi.org/10.1002/aenm.202000035
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- F. Sagane, K.-I. Ikeda, K. Okita, H. Sano, H. Sakaebe et al., Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 233, 34–42 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.051
- M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, e1903778 (2019). https://doi.org/10.1002/adma.201903778
- M. He, C. Shu, A. Hu, R. Zheng, M. Li et al., Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Mater. 44, 452–460 (2022). https://doi.org/10.1016/j.ensm.2021.11.010
- A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001
- X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16, 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
- X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2TXMXene as a lattice-match electrons/ions redistributor. ACS Nano 15, 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
- F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+ battery with high power density and a long cycle-life. Energy Environ. Sci. 11, 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Mater. 29, 52–59 (2020). https://doi.org/10.1016/j.ensm.2020.04.003
- X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou et al., Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31, 2106114 (2021). https://doi.org/10.1002/adfm.202106114
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
- X. Li, P. Xu, Y. Tian, A. Fortini, S.H. Choi et al., Electrolyte modulators toward polarization-mitigated lithium-ion batteries for sustainable electric transportation. Adv. Mater. 34, e2107787 (2022). https://doi.org/10.1002/adma.202107787
- D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A Self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. 12, 2102982 (2022). https://doi.org/10.1002/aenm.202102982
References
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
X. Ge, S. Cao, Z. Lv, Z. Zhu, Y. Tang et al., Mechano-graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium-ion batteries. Adv. Mater. 34, e2206797 (2022). https://doi.org/10.1002/adma.202206797
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2021). https://doi.org/10.1038/s41893-021-00800-9
S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a pi-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. e2207115 (2022). https://doi.org/10.1002/adma.202207115
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14, 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14, 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma et al., Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13, 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
Y. Zhang, C. Wei, M.-X. Wu, Y. Wang, H. Jiang et al., A high-performance COF-based aqueous zinc-bromine battery. Chem. Eng. J. 451, 138915 (2023). https://doi.org/10.1016/j.cej.2022.138915
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
D.E. Ciurduc, C.d.l. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Storage Mater. 53, 532–543 (2022). https://doi.org/10.1016/j.ensm.2022.09.036
S. Lv, T. Fang, Z. Ding, Y. Wang, H. Jiang et al., A high-performance quasi-solid-state aqueous zinc-dual halogen battery. ACS Nano 16, 20389–20399 (2022). https://doi.org/10.1021/acsnano.2c06362
Y. Wang, Y. Liu, H. Wang, S. Dou, W. Gan et al., MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 10, 4366–4375 (2022). https://doi.org/10.1039/d1ta10245a
R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
N. Becknell, P.P. Lopes, T. Hatsukade, X. Zhou, Y. Liu et al., Employing the dynamics of the electrochemical interface in aqueous zinc-ion battery cathodes. Adv. Funct. Mater. 31, 2102135 (2021). https://doi.org/10.1002/adfm.202102135
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+ conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016). https://doi.org/10.1039/c6ee01674j
K. Wang, C. Li, Y. Liang, T. Han, H. Huang et al., Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chem. Eng. J. 289, 486–493 (2016). https://doi.org/10.1016/j.cej.2016.01.019
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
W. Xiang, J. Ren, S. Chen, C. Shen, Y. Chen et al., The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 277, 115560 (2020). https://doi.org/10.1016/j.apenergy.2020.115560
G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye et al., Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016). https://doi.org/10.1021/acs.chemmater.6b00602
Y. Xu, L. Gao, L. Shen, Q. Liu, Y. Zhu et al., Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3, 1685–1700 (2020). https://doi.org/10.1016/j.matt.2020.08.011
L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G. Shen et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 30, e1707476 (2018). https://doi.org/10.1002/adma.201707476
Z. Pei, Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res. Energy 1, 9120023 (2022). https://doi.org/10.26599/nre.2022.9120023
L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60, 3791–3798 (2021). https://doi.org/10.1002/anie.202014447
J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
K. Užarević, T.C. Wang, S.Y. Moon, A.M. Fidelli, J.T. Hupp et al., Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chem. Commun. 52, 2133–2136 (2016). https://doi.org/10.1039/c5cc08972g
C.L. Luu, T.T.V. Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 025004 (2015). https://doi.org/10.1088/2043-6262/6/2/025004
G.Y. Zhang, D. Peak, Studies of Cd(II)–sulfate interactions at the goethite–water interface by ATR-FTIR spectroscopy. Geochim. Cosmochim. Acta 71, 2158–2169 (2007). https://doi.org/10.1016/j.gca.2006.12.020
A.M. Petrosyan, V.V. Ghazaryan, G. Giester, M. Fleck, Sulfamates and methanesulfonates of l -arginine and l -histidine. J. Mol. Struct. 1163, 114–127 (2018). https://doi.org/10.1016/j.molstruc.2018.02.112
X. Xu, H. Su, J. Zhang, Y. Zhong, Y. Xu et al., Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 4459–4468 (2022). https://doi.org/10.1021/acsenergylett.2c02236
H. Qiu, R. Hu, X. Du, Z. Chen, J. Zhao et al., Eutectic Crystallization Activates Solid-State Zinc-Ion Conduction. Angew. Chem. Int. Ed. 61, e202113086 (2021). https://doi.org/10.1002/anie.202113086
Atzori C, Shearer GC, Maschio L, Civalleri B, Bonino F et al., Effect of benzoic acid as a modulator in the structure of UiO-66. J. Phys. Chem. C 121, 9312–9324 (2017). https://doi.org/10.1021/acs.jpcc.7b00483
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035 (2020). https://doi.org/10.1002/aenm.202000035
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
F. Sagane, K.-I. Ikeda, K. Okita, H. Sano, H. Sakaebe et al., Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 233, 34–42 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.051
M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, e1903778 (2019). https://doi.org/10.1002/adma.201903778
M. He, C. Shu, A. Hu, R. Zheng, M. Li et al., Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Mater. 44, 452–460 (2022). https://doi.org/10.1016/j.ensm.2021.11.010
A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001
X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16, 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2TXMXene as a lattice-match electrons/ions redistributor. ACS Nano 15, 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+ battery with high power density and a long cycle-life. Energy Environ. Sci. 11, 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Mater. 29, 52–59 (2020). https://doi.org/10.1016/j.ensm.2020.04.003
X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou et al., Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31, 2106114 (2021). https://doi.org/10.1002/adfm.202106114
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
X. Li, P. Xu, Y. Tian, A. Fortini, S.H. Choi et al., Electrolyte modulators toward polarization-mitigated lithium-ion batteries for sustainable electric transportation. Adv. Mater. 34, e2107787 (2022). https://doi.org/10.1002/adma.202107787
D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A Self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. 12, 2102982 (2022). https://doi.org/10.1002/aenm.202102982