Metal–Organic Framework-Assisted Synthesis of Compact Fe2O3 Nanotubes in Co3O4 Host with Enhanced Lithium Storage Properties
Corresponding Author: Xiong Wen David Lou
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 44
Abstract
Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries. The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal–organic framework (MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe2O3 nanotubes assembled in Co3O4 host. Starting from MOF composite precursors (Fe-based MOF encapsulated in a Co-based host matrix), a complex structure of Co3O4 host and engulfed Fe2O3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries.
Highlights:
1 A metal–organic framework (MOF)-assisted approach is developed for the synthesis of hierarchical composite particles composed of Fe2O3 nanotubes encapsulated in a Co3O4 host matrix.
2 The hierarchical Fe2O3 nanotubes@Co3O4 composite particles exhibit excellent electrochemical performance when evaluated as an anode material for lithium-ion batteries (LIBs).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- B. Dunn, H. Ka, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k
- P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires. Energy Environ. Sci. 4(5), 1695–1699 (2011). https://doi.org/10.1039/C1EE01041G
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- L. Lin, X. Xu, C. Chu, M.K. Majeed, J. Yang, Mesoporous amorphous silicon: a simple synthesis of a high-rate and long-life anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 55(45), 14063–14066 (2016). https://doi.org/10.1002/anie.201608146
- X.W. Lou, L.A. Archer, Z. Yang, Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20(21), 3987–4019 (2008). https://doi.org/10.1002/adma.200800854
- B.Y. Guan, L. Yu, J. Li, X.W. Lou, A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci. Adv. 2(3), e1501554 (2016). https://doi.org/10.1126/sciadv.1501554
- H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 14(11), 6679–6684 (2014). https://doi.org/10.1021/nl503378a
- B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
- L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). https://doi.org/10.1021/ja307475c
- J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52(25), 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
- F.-X. Ma, H. Hu, H.B. Wu, C.-Y. Xu, Z. Xu, L. Zhen, X.W. Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27(27), 4097–4101 (2015). https://doi.org/10.1002/adma.201501130
- Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8(1), 265–270 (2008). https://doi.org/10.1021/nl0725906
- Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanops and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
- C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-encapsulated Fe3O4 nanops as a high-rate lithium ion battery anode material. ACS Nano 7(5), 4459–4469 (2013). https://doi.org/10.1021/nn401059h
- W.Y. Li, L.N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15(5), 851–857 (2005). https://doi.org/10.1002/adfm.200400429
- C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Fabrication and shell optimization of synergistic TiO2–MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 25(23), 3524–3533 (2015). https://doi.org/10.1002/adfm.201500634
- L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
- S. Wang, B.Y. Guan, L. Yu, X.W. Lou, Rational design of three-layered TiO2@carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 29(37), 1702724 (2017). https://doi.org/10.1002/adma.201702724
- I. Sultana, M.M. Rahman, T. Ramireddy, N. Sharma, D. Poddar, A. Khalid, H. Zhang, Y. Chen, A.M. Glushenkov, Understanding structure–function relationship in hybrid Co3O4–Fe2O3/C lithium-ion battery electrodes. ACS Appl. Mater. Interfaces. 7(37), 20736–20744 (2015). https://doi.org/10.1021/acsami.5b05658
- Q.Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries. J. Power Sour. 240(15), 344–350 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.042
- Y. Luo, D. Kong, J. Luo, Y. Wang, D. Zhang, K. Qiu, C. Cheng, C.M. Li, T. Yu, Seed-assisted synthesis of Co3O4@Fe2O3 core-shell nanoneedle arrays for lithium-ion battery anode with high capacity. RSC Adv. 4(26), 13241–13249 (2014). https://doi.org/10.1039/C3RA47189F
- B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide ps for hybrid supercapacitors. Adv. Mater. 29(17), 1605902 (2017). https://doi.org/10.1002/adma.201605902
- L. Yu, J.F. Yang, X.W. Lou, Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem. Int. Ed. 55(43), 13422–13426 (2016). https://doi.org/10.1002/anie.201606776
- H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium–sulfur batteries. Chem.: Eur. J. 19(33), 10804–10808 (2013). https://doi.org/10.1002/chem.201301689
- K. Xi, S. Cao, X. Peng, C. Ducati, R. Vasant Kumar, A.K. Cheetham, Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chem. Commun. 49(22), 2192–2194 (2013). https://doi.org/10.1039/C3CC38009B
- Y. Wang, X. Guo, Z. Wang, M. Lu, B. Wu, Y. Wang, C. Yan, A. Yuan, H. Yang, Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J. Mater. Chem. A 5(48), 25562–25573 (2017). https://doi.org/10.1039/C7TA08314A
- K. Zhang, H. Yang, M. Lü, C. Yan, H. Wu, A. Yuan, S. Lin, Porous MoO2-Cu/C/graphene nano-octahedrons quadruple nanocomposites as an advanced anode for lithium ion batteries with enhanced rate capability. J. Alloys Compd. 731, 646–654 (2018). https://doi.org/10.1016/j.jallcom.2017.10.091
- Y. Chen, Y. Wang, H. Yang, H. Gan, X. Cai, X. Guo, B. Xu, M. Lü, A. Yuan, Facile synthesis of porous hollow Co3O4 microfibers derived-from metal–organic frameworks as an advanced anode for lithium ion batteries. Ceram. Int. 43(13), 9945–9950 (2017). https://doi.org/10.1016/j.ceramint.2017.05.004
- M. Sun, M. Sun, H. Yang, W. Song, Y. Nie, S. Sun, Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries. Ceram. Int. 43(1), 363–367 (2017). https://doi.org/10.1016/j.ceramint.2016.09.166
- B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide ps with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Edit. 56(9), 2386–2389 (2017). https://doi.org/10.1002/anie.201611804
- B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 ps via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2017). https://doi.org/10.1002/adma.201605051
- B.Y. Guan, L. Yu, X.W. Lou, A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9(10), 3092–3096 (2016). https://doi.org/10.1039/C6EE02171A
- B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W. Lou, Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28(10), 1706738 (2018). https://doi.org/10.1002/adfm.201706738
- B.Y. Guan, L. Yu, X.W. Lou, Formation of single-holed cobalt/N-doped carbon hollow ps with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 4(10), 1700247 (2017). https://doi.org/10.1002/advs.201700247
- S. Zhao, H. Yin, L. Du, L. He, K. Zhao et al., Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 12660–12668 (2014). https://doi.org/10.1021/nn505582e
- H.B. Wu, X.W. Lou, Metal–organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3(12), eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252
- H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
- B.Y. Guan, X.W. Lou, Complex cobalt sulfide nanobubble cages with enhanced electrochemical properties. Small Methods 1(7), 1700158 (2017). https://doi.org/10.1002/smtd.201700158
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
- Z. Li, B.Y. Guan, J. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
- F. Wu, C. Yu, W. Liu, T. Wang, J. Feng, S. Xiong, Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 3(32), 16728–16736 (2015). https://doi.org/10.1039/C5TA03106K
- N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J. Phys. Chem. C 116(12), 7227–7235 (2012). https://doi.org/10.1021/jp2126009
- L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
- Y. Jiang, Z.-J. Jiang, L. Yang, S. Cheng, M. Liu, A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 3(22), 11847–11856 (2015). https://doi.org/10.1039/C5TA01848J
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
B. Dunn, H. Ka, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k
P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires. Energy Environ. Sci. 4(5), 1695–1699 (2011). https://doi.org/10.1039/C1EE01041G
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
L. Lin, X. Xu, C. Chu, M.K. Majeed, J. Yang, Mesoporous amorphous silicon: a simple synthesis of a high-rate and long-life anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 55(45), 14063–14066 (2016). https://doi.org/10.1002/anie.201608146
X.W. Lou, L.A. Archer, Z. Yang, Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20(21), 3987–4019 (2008). https://doi.org/10.1002/adma.200800854
B.Y. Guan, L. Yu, J. Li, X.W. Lou, A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci. Adv. 2(3), e1501554 (2016). https://doi.org/10.1126/sciadv.1501554
H. Ren, R. Yu, J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 14(11), 6679–6684 (2014). https://doi.org/10.1021/nl503378a
B.Y. Guan, X.Y. Yu, H.B. Wu, X.W. Lou, Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). https://doi.org/10.1021/ja307475c
J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52(25), 6417–6420 (2013). https://doi.org/10.1002/anie.201301622
F.-X. Ma, H. Hu, H.B. Wu, C.-Y. Xu, Z. Xu, L. Zhen, X.W. Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27(27), 4097–4101 (2015). https://doi.org/10.1002/adma.201501130
Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8(1), 265–270 (2008). https://doi.org/10.1021/nl0725906
Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanops and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-encapsulated Fe3O4 nanops as a high-rate lithium ion battery anode material. ACS Nano 7(5), 4459–4469 (2013). https://doi.org/10.1021/nn401059h
W.Y. Li, L.N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15(5), 851–857 (2005). https://doi.org/10.1002/adfm.200400429
C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li, J. Liu, Fabrication and shell optimization of synergistic TiO2–MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 25(23), 3524–3533 (2015). https://doi.org/10.1002/adfm.201500634
L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
S. Wang, B.Y. Guan, L. Yu, X.W. Lou, Rational design of three-layered TiO2@carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 29(37), 1702724 (2017). https://doi.org/10.1002/adma.201702724
I. Sultana, M.M. Rahman, T. Ramireddy, N. Sharma, D. Poddar, A. Khalid, H. Zhang, Y. Chen, A.M. Glushenkov, Understanding structure–function relationship in hybrid Co3O4–Fe2O3/C lithium-ion battery electrodes. ACS Appl. Mater. Interfaces. 7(37), 20736–20744 (2015). https://doi.org/10.1021/acsami.5b05658
Q.Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries. J. Power Sour. 240(15), 344–350 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.042
Y. Luo, D. Kong, J. Luo, Y. Wang, D. Zhang, K. Qiu, C. Cheng, C.M. Li, T. Yu, Seed-assisted synthesis of Co3O4@Fe2O3 core-shell nanoneedle arrays for lithium-ion battery anode with high capacity. RSC Adv. 4(26), 13241–13249 (2014). https://doi.org/10.1039/C3RA47189F
B.Y. Guan, A. Kushima, L. Yu, S. Li, J. Li, X.W. Lou, Coordination polymers derived general synthesis of multishelled mixed metal-oxide ps for hybrid supercapacitors. Adv. Mater. 29(17), 1605902 (2017). https://doi.org/10.1002/adma.201605902
L. Yu, J.F. Yang, X.W. Lou, Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem. Int. Ed. 55(43), 13422–13426 (2016). https://doi.org/10.1002/anie.201606776
H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium–sulfur batteries. Chem.: Eur. J. 19(33), 10804–10808 (2013). https://doi.org/10.1002/chem.201301689
K. Xi, S. Cao, X. Peng, C. Ducati, R. Vasant Kumar, A.K. Cheetham, Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chem. Commun. 49(22), 2192–2194 (2013). https://doi.org/10.1039/C3CC38009B
Y. Wang, X. Guo, Z. Wang, M. Lu, B. Wu, Y. Wang, C. Yan, A. Yuan, H. Yang, Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J. Mater. Chem. A 5(48), 25562–25573 (2017). https://doi.org/10.1039/C7TA08314A
K. Zhang, H. Yang, M. Lü, C. Yan, H. Wu, A. Yuan, S. Lin, Porous MoO2-Cu/C/graphene nano-octahedrons quadruple nanocomposites as an advanced anode for lithium ion batteries with enhanced rate capability. J. Alloys Compd. 731, 646–654 (2018). https://doi.org/10.1016/j.jallcom.2017.10.091
Y. Chen, Y. Wang, H. Yang, H. Gan, X. Cai, X. Guo, B. Xu, M. Lü, A. Yuan, Facile synthesis of porous hollow Co3O4 microfibers derived-from metal–organic frameworks as an advanced anode for lithium ion batteries. Ceram. Int. 43(13), 9945–9950 (2017). https://doi.org/10.1016/j.ceramint.2017.05.004
M. Sun, M. Sun, H. Yang, W. Song, Y. Nie, S. Sun, Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries. Ceram. Int. 43(1), 363–367 (2017). https://doi.org/10.1016/j.ceramint.2016.09.166
B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide ps with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Edit. 56(9), 2386–2389 (2017). https://doi.org/10.1002/anie.201611804
B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 ps via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2017). https://doi.org/10.1002/adma.201605051
B.Y. Guan, L. Yu, X.W. Lou, A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9(10), 3092–3096 (2016). https://doi.org/10.1039/C6EE02171A
B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W. Lou, Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28(10), 1706738 (2018). https://doi.org/10.1002/adfm.201706738
B.Y. Guan, L. Yu, X.W. Lou, Formation of single-holed cobalt/N-doped carbon hollow ps with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 4(10), 1700247 (2017). https://doi.org/10.1002/advs.201700247
S. Zhao, H. Yin, L. Du, L. He, K. Zhao et al., Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 12660–12668 (2014). https://doi.org/10.1021/nn505582e
H.B. Wu, X.W. Lou, Metal–organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3(12), eaap9252 (2017). https://doi.org/10.1126/sciadv.aap9252
H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
B.Y. Guan, X.W. Lou, Complex cobalt sulfide nanobubble cages with enhanced electrochemical properties. Small Methods 1(7), 1700158 (2017). https://doi.org/10.1002/smtd.201700158
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
Z. Li, B.Y. Guan, J. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
F. Wu, C. Yu, W. Liu, T. Wang, J. Feng, S. Xiong, Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 3(32), 16728–16736 (2015). https://doi.org/10.1039/C5TA03106K
N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J. Phys. Chem. C 116(12), 7227–7235 (2012). https://doi.org/10.1021/jp2126009
L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
Y. Jiang, Z.-J. Jiang, L. Yang, S. Cheng, M. Liu, A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 3(22), 11847–11856 (2015). https://doi.org/10.1039/C5TA01848J