Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products
Corresponding Author: Hao Bin Wu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 134
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to multi-carbon products would simultaneously reduce CO2 emission and produce high-value chemicals. Herein, we report Cu electrodes modified by metal–organic framework (MOF) exhibiting enhanced electrocatalytic performance to convert CO2 into ethylene and ethanol. The Zr-based MOF, UiO-66 would in situ transform into amorphous ZrOx nanoparticles (a-ZrOx), constructing a-ZrOx/Cu hetero-interface as a dual-site catalyst. The Faradaic efficiency of multi-carbon (C2+) products for optimal UiO-66-coated Cu (0.5-UiO/Cu) electrode reaches a high value of 74% at − 1.05 V versus RHE. The intrinsic activity for C2+ products on 0.5-UiO/Cu electrode is about two times higher than that of Cu foil. In situ surface-enhanced Raman spectra demonstrate that UiO-66-derived a-ZrOx coating can promote the stabilization of atop-bound CO* intermediates on Cu surface during CO2 electrolysis, leading to increased CO* coverage and facilitating the C–C coupling process. The present study gives new insights into tailoring the adsorption configurations of CO2RR intermediate by designing dual-site electrocatalysts with hetero-interfaces.
Highlights:
1 Dual-site electrocatalysts with in situ formed metal-oxide interfaces are proposed and demonstrated to enhance the formation of multi-carbon products from electrochemical CO2 reduction.
2 The 0.5-UiO/Cu delivers a high C2+ Faradaic efficiency of over 74% with notably boosted formation rate and durability, surpassing most reported electrocatalysts.
3 A unique mechanism of UiO-66 to induce in situ reconstruction of Cu surface and formation of UiO-66-derived amorphous ZrOx/Cu interface is uncovered, which improves the selectivity and productivity toward C2+ products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
- Y.X. Duan, Y.T. Zhou, Z. Yu, D.X. Liu, Z. Wen et al., Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem. Int. Ed. 60(16), 8798–8802 (2021). https://doi.org/10.1002/anie.202015713
- Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106(1), 15–17 (2002). https://doi.org/10.1021/jp013478d
- Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85(8), 2309–2326 (1989). https://doi.org/10.1039/f19898502309
- X. Zhang, C. Liu, Y. Zhao, L. Li, Y. Chen et al., Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Appl. Catal. B Environ. 291, 120030 (2021). https://doi.org/10.1016/j.apcatb.2021.120030
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 335, 258–263 (1995). https://doi.org/10.1016/0039-6028(95)00441-6
- M.T. Tang, H. Peng, P.S. Lamoureux, M. Bajdich, F. Abild-Pedersen, From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction. Appl. Catal. B Environ. 279, 119384 (2020). https://doi.org/10.1016/j.apcatb.2020.119384
- J. Wang, H. Yang, Q. Liu, Q. Liu, X. Li et al., Fastening Br– ions at copper–molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 6, 437–444 (2021). https://doi.org/10.1021/acsenergylett.0c02364
- H.Q. Liang, S. Zhao, X.M. Hu, M. Ceccato, T. Skrydstrup et al., Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 11(2), 958–966 (2021). https://doi.org/10.1021/acscatal.0c03766
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a
- S. Ahn, K. Klyukin, R.J. Wakeham, J. Rudd, A.R. Lewis et al., Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8(5), 4132–4142 (2018). https://doi.org/10.1021/acscatal.7b04347
- X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong et al., Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10(7), 4103–4111 (2020). https://doi.org/10.1021/acscatal.0c00049
- X. Chen, J. Chen, N.M. Alghoraibi, D.A. Henckel, R. Zhang et al., Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0
- M. Perfecto-Irigaray, J. Albo, G. Beobide, O. Castillo, A. Irabien et al., Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO2 reduction. RSC Adv. 8(38), 21092–21099 (2018). https://doi.org/10.1039/c8ra02676a
- J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. J. CO2 Util. 33, 157–165 (2019). https://doi.org/10.1016/j.jcou.2019.05.025
- I. Merino-Garcia, J. Albo, P. Krzywda, G. Mul, A. Irabien, Bimetallic Cu-based hollow fibre electrodes for CO2 electroreduction. Catal. Today 346, 34–39 (2020). https://doi.org/10.1016/j.cattod.2019.03.025
- S. Sultan, H. Lee, S. Park, M.M. Kim, A. Yoon et al., Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. (2022). https://doi.org/10.1039/d1ee03861c
- J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl. Catal. B Environ. 176–177, 709–717 (2015). https://doi.org/10.1016/j.apcatb.2015.04.055
- J. Albo, A. Irabien, Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 343, 232–239 (2016). https://doi.org/10.1016/j.jcat.2015.11.014
- J. Albo, G. Beobide, P. Castaño, A. Irabien, Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. J. CO2 Util. 18, 164–172 (2017). https://doi.org/10.1016/j.jcou.2017.02.003
- I. Merino-Garcia, J. Albo, J. Solla-Gullón, V. Montiel, A. Irabien, Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J. CO2 Util. 31, 135–142 (2019). https://doi.org/10.1016/j.jcou.2019.03.002
- Z. Zhao, X. Li, J. Wang, X. Lv, H.B. Wu, CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products. J. CO2 Util. 54, 101741 (2021). https://doi.org/10.1016/j.jcou.2021.101741
- X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen et al., Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem. Sci. 12(19), 6638–6645 (2021). https://doi.org/10.1039/d1sc01117k
- S. Chu, X. Yan, C. Choi, S. Hong, A.W. Robertson et al., Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22(19), 6540–6546 (2020). https://doi.org/10.1039/d0gc02279a
- Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- S. Chen, B. Wang, J. Zhu, L. Wang, H. Ou et al., Lewis acid site-promoted single-atomic cu catalyzes electrochemical CO2 methanation. Nano Lett. 21(17), 7325–7331 (2021). https://doi.org/10.1021/acs.nanolett.1c02502
- X. Li, Q. Liu, J. Wang, D. Meng, Y. Shu et al., Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 8, 1–15 (2022). https://doi.org/10.1016/j.chempr.2022.04.004
- J. Li, A. Ozden, M. Wan, Y. Hu, F. Li et al., Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12, 2808 (2021). https://doi.org/10.1038/s41467-021-23023-0
- X. Li, X. Wu, X. Lv, J. Wang, H.B. Wu, Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction. Chem. Catal. 2(2), 262–291 (2022). https://doi.org/10.1016/j.checat.2021.10.015
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- J. Wang, T. Cheng, A.Q. Fenwick, T.N. Baroud, A. Rosas-Hernandez et al., Selective CO2 electrochemical reduction enabled by a tricomponent copolymer modifier on a copper surface. J. Am. Chem. Soc. 143(7), 2857–2865 (2021). https://doi.org/10.1021/jacs.0c12478
- P. Shao, L. Yi, S. Chen, T. Zhou, J. Zhang, Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers. J. Energy Chem. 40, 156–170 (2020). https://doi.org/10.1016/j.jechem.2019.04.013
- J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano et al., Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10(6), 1100–1109 (2017). https://doi.org/10.1002/cssc.201600693
- J. Santos-Lorenzo, R.S. José-Velado, J. Albo, G. Beobide, P. Castaño et al., A straightforward route to obtain zirconium based metal-organic gels. Micropor. Mesopor. Mater. 284, 128–132 (2019). https://doi.org/10.1016/j.micromeso.2019.04.008
- G. Noh, E. Lam, D.T. Bregante, J. Meyet, P. Sot et al., Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu-based CO2 hydrogenation catalysts. Angew. Chem. Int. Ed. 60(17), 9650–9659 (2021). https://doi.org/10.1002/anie.202100672
- K.K. Ghuman, L.B. Hoch, T.E. Wood, C. Mims, C.V. Singh et al., Surface analogues of molecular frustrated lewis pairs in heterogeneous CO2 hydrogenation catalysis. ACS Catal. 6(9), 5764–5770 (2016). https://doi.org/10.1021/acscatal.6b01015
- Y. Xu, L. Gao, L. Shen, Q. Liu, Y. Zhu et al., Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3(5), 1685–1700 (2020). https://doi.org/10.1016/j.matt.2020.08.011
- A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz et al., Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J. 17(24), 6643–6651 (2011). https://doi.org/10.1002/chem.201003211
- X. Jiang, S. Li, S. He, Y. Bai, L. Shao, Interface manipulation of CO2–philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A 6, 15064–15073 (2018). https://doi.org/10.1039/c8ta03872d
- C. Chen, G. Levitin, D.W. Hess, T.F. Fuller, XPS investigation of Nafion® membrane degradation. J. Power Sources 169, 288–295 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.037
- X. Min, X. Wu, P. Shao, Z. Ren, L. Ding et al., Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number. Chem. Eng. J. 358, 321–330 (2019). https://doi.org/10.1016/j.cej.2018.10.043
- X. Zhu, J. Gu, Y. Wang, B. Li, Y. Li et al., Inherent anchorages in UiO-66 nanops for efficient capture of alendronate and its mediated release. Chem. Commun. 50(63), 8779–8782 (2014). https://doi.org/10.1039/c4cc02570a
- N. Zhang, X. Zhang, C. Gan, J. Zhang, Y. Liu et al., Heterostructural Ag3PO4/UiO-66 composite for highly efficient visible-light photocatalysts with long-term stability. J. Photochem. Photobiol. A Chem. 376, 305–315 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.025
- H. Yin, Z. Chen, S. Xiong, J. Chen, C. Wang et al., Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem. Catal. 1(5), 1088–1103 (2021). https://doi.org/10.1016/j.checat.2021.08.014
- Y. Zhang, K. Li, M. Chen, J. Wang, J. Liu et al., Cu/Cu2O nanops supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl. Nano Mater. 3(1), 257–263 (2019). https://doi.org/10.1021/acsanm.9b01935
- M. Ebaid, K. Jiang, Z. Zhang, W.S. Drisdell, A.T. Bell et al., Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2. Chem. Mater. 32(7), 3304–3311 (2020). https://doi.org/10.1021/acs.chemmater.0c00761
- Z. Gu, H. Shen, Z. Chen, Y. Yang, C. Yang et al., Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5(2), 429–440 (2021). https://doi.org/10.1016/j.joule.2020.12.011
- C. He, D. Duan, J. Low, Y. Bai, Y. Jiang et al., Cu2-xS derived copper nanops: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3532-7
- A. Herzog, A. Bergmann, H.S. Jeon, J. Timoshenko, S. Kuhl et al., Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem. Int. Ed. 60(13), 7426–7435 (2021). https://doi.org/10.1002/anie.202017070
- Z. Li, Y. Yang, Z. Yin, X. Wei, H. Peng et al., Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 11(5), 2473–2482 (2021). https://doi.org/10.1021/acscatal.0c03846
- B. Liu, C. Cai, B. Yang, K. Chen, Y. Long et al., Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels. Electrochim. Acta 388, 138552 (2021). https://doi.org/10.1016/j.electacta.2021.138552
- X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. 60(28), 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
- S. Zhang, S. Zhao, D. Qu, X. Liu, Y. Wu et al., Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small 17(37), e2102293 (2021). https://doi.org/10.1002/smll.202102293
- D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5(5), 2814–2821 (2015). https://doi.org/10.1021/cs502128q
- D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev et al., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11(5), 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257
- H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
- C. Chen, D. Chen, S. Xie, H. Quan, X. Luo et al., Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl. Mater. Interfaces 9(46), 41043–41054 (2017). https://doi.org/10.1021/acsami.7b13443
- Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou et al., FT-IR study of the microstructure of Nafion® membrane. J. Membr. Sci. 233, 39–44 (2004). https://doi.org/10.1016/j.memsci.2003.12.008
- C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
- C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
- J. Gao, H. Zhang, X. Guo, J. Luo, S.M. Zakeeruddin et al., Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando raman spectroscopy. J. Am. Chem. Soc. 141(47), 18704–18714 (2019). https://doi.org/10.1021/jacs.9b07415
- C. Lu, Z. Li, L. Ren, N. Su, D. Lu et al., In situ oxidation of Cu2O crystal for electrochemical detection of glucose. Sensors 19(13), 2926 (2019). https://doi.org/10.3390/s19132926
- Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6(4), 2473–2481 (2016). https://doi.org/10.1021/acscatal.6b00205
- M. Moradzaman, G. Mul, In situ raman study of potential-dependent surface adsorbed carbonate, CO, OH, and C species on Cu electrodes during electrochemical reduction of CO2. ChemElectroChem 8(8), 1478–1485 (2021). https://doi.org/10.1002/celc.202001598
- F. Li, A. Thevenon, A. Rosas-Hernandez, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2
References
B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
Y.X. Duan, Y.T. Zhou, Z. Yu, D.X. Liu, Z. Wen et al., Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem. Int. Ed. 60(16), 8798–8802 (2021). https://doi.org/10.1002/anie.202015713
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106(1), 15–17 (2002). https://doi.org/10.1021/jp013478d
Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85(8), 2309–2326 (1989). https://doi.org/10.1039/f19898502309
X. Zhang, C. Liu, Y. Zhao, L. Li, Y. Chen et al., Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Appl. Catal. B Environ. 291, 120030 (2021). https://doi.org/10.1016/j.apcatb.2021.120030
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 335, 258–263 (1995). https://doi.org/10.1016/0039-6028(95)00441-6
M.T. Tang, H. Peng, P.S. Lamoureux, M. Bajdich, F. Abild-Pedersen, From electricity to fuels: descriptors for C1 selectivity in electrochemical CO2 reduction. Appl. Catal. B Environ. 279, 119384 (2020). https://doi.org/10.1016/j.apcatb.2020.119384
J. Wang, H. Yang, Q. Liu, Q. Liu, X. Li et al., Fastening Br– ions at copper–molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 6, 437–444 (2021). https://doi.org/10.1021/acsenergylett.0c02364
H.Q. Liang, S. Zhao, X.M. Hu, M. Ceccato, T. Skrydstrup et al., Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 11(2), 958–966 (2021). https://doi.org/10.1021/acscatal.0c03766
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a
S. Ahn, K. Klyukin, R.J. Wakeham, J. Rudd, A.R. Lewis et al., Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8(5), 4132–4142 (2018). https://doi.org/10.1021/acscatal.7b04347
X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong et al., Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10(7), 4103–4111 (2020). https://doi.org/10.1021/acscatal.0c00049
X. Chen, J. Chen, N.M. Alghoraibi, D.A. Henckel, R. Zhang et al., Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0
M. Perfecto-Irigaray, J. Albo, G. Beobide, O. Castillo, A. Irabien et al., Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO2 reduction. RSC Adv. 8(38), 21092–21099 (2018). https://doi.org/10.1039/c8ra02676a
J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. J. CO2 Util. 33, 157–165 (2019). https://doi.org/10.1016/j.jcou.2019.05.025
I. Merino-Garcia, J. Albo, P. Krzywda, G. Mul, A. Irabien, Bimetallic Cu-based hollow fibre electrodes for CO2 electroreduction. Catal. Today 346, 34–39 (2020). https://doi.org/10.1016/j.cattod.2019.03.025
S. Sultan, H. Lee, S. Park, M.M. Kim, A. Yoon et al., Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. (2022). https://doi.org/10.1039/d1ee03861c
J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl. Catal. B Environ. 176–177, 709–717 (2015). https://doi.org/10.1016/j.apcatb.2015.04.055
J. Albo, A. Irabien, Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 343, 232–239 (2016). https://doi.org/10.1016/j.jcat.2015.11.014
J. Albo, G. Beobide, P. Castaño, A. Irabien, Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. J. CO2 Util. 18, 164–172 (2017). https://doi.org/10.1016/j.jcou.2017.02.003
I. Merino-Garcia, J. Albo, J. Solla-Gullón, V. Montiel, A. Irabien, Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J. CO2 Util. 31, 135–142 (2019). https://doi.org/10.1016/j.jcou.2019.03.002
Z. Zhao, X. Li, J. Wang, X. Lv, H.B. Wu, CeO2-modified Cu electrode for efficient CO2 electroreduction to multi-carbon products. J. CO2 Util. 54, 101741 (2021). https://doi.org/10.1016/j.jcou.2021.101741
X. Yan, C. Chen, Y. Wu, S. Liu, Y. Chen et al., Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem. Sci. 12(19), 6638–6645 (2021). https://doi.org/10.1039/d1sc01117k
S. Chu, X. Yan, C. Choi, S. Hong, A.W. Robertson et al., Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22(19), 6540–6546 (2020). https://doi.org/10.1039/d0gc02279a
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a P-N heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12, 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
S. Chen, B. Wang, J. Zhu, L. Wang, H. Ou et al., Lewis acid site-promoted single-atomic cu catalyzes electrochemical CO2 methanation. Nano Lett. 21(17), 7325–7331 (2021). https://doi.org/10.1021/acs.nanolett.1c02502
X. Li, Q. Liu, J. Wang, D. Meng, Y. Shu et al., Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 8, 1–15 (2022). https://doi.org/10.1016/j.chempr.2022.04.004
J. Li, A. Ozden, M. Wan, Y. Hu, F. Li et al., Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12, 2808 (2021). https://doi.org/10.1038/s41467-021-23023-0
X. Li, X. Wu, X. Lv, J. Wang, H.B. Wu, Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction. Chem. Catal. 2(2), 262–291 (2022). https://doi.org/10.1016/j.checat.2021.10.015
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
J. Wang, T. Cheng, A.Q. Fenwick, T.N. Baroud, A. Rosas-Hernandez et al., Selective CO2 electrochemical reduction enabled by a tricomponent copolymer modifier on a copper surface. J. Am. Chem. Soc. 143(7), 2857–2865 (2021). https://doi.org/10.1021/jacs.0c12478
P. Shao, L. Yi, S. Chen, T. Zhou, J. Zhang, Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers. J. Energy Chem. 40, 156–170 (2020). https://doi.org/10.1016/j.jechem.2019.04.013
J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano et al., Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10(6), 1100–1109 (2017). https://doi.org/10.1002/cssc.201600693
J. Santos-Lorenzo, R.S. José-Velado, J. Albo, G. Beobide, P. Castaño et al., A straightforward route to obtain zirconium based metal-organic gels. Micropor. Mesopor. Mater. 284, 128–132 (2019). https://doi.org/10.1016/j.micromeso.2019.04.008
G. Noh, E. Lam, D.T. Bregante, J. Meyet, P. Sot et al., Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu-based CO2 hydrogenation catalysts. Angew. Chem. Int. Ed. 60(17), 9650–9659 (2021). https://doi.org/10.1002/anie.202100672
K.K. Ghuman, L.B. Hoch, T.E. Wood, C. Mims, C.V. Singh et al., Surface analogues of molecular frustrated lewis pairs in heterogeneous CO2 hydrogenation catalysis. ACS Catal. 6(9), 5764–5770 (2016). https://doi.org/10.1021/acscatal.6b01015
Y. Xu, L. Gao, L. Shen, Q. Liu, Y. Zhu et al., Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 3(5), 1685–1700 (2020). https://doi.org/10.1016/j.matt.2020.08.011
A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz et al., Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J. 17(24), 6643–6651 (2011). https://doi.org/10.1002/chem.201003211
X. Jiang, S. Li, S. He, Y. Bai, L. Shao, Interface manipulation of CO2–philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A 6, 15064–15073 (2018). https://doi.org/10.1039/c8ta03872d
C. Chen, G. Levitin, D.W. Hess, T.F. Fuller, XPS investigation of Nafion® membrane degradation. J. Power Sources 169, 288–295 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.037
X. Min, X. Wu, P. Shao, Z. Ren, L. Ding et al., Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number. Chem. Eng. J. 358, 321–330 (2019). https://doi.org/10.1016/j.cej.2018.10.043
X. Zhu, J. Gu, Y. Wang, B. Li, Y. Li et al., Inherent anchorages in UiO-66 nanops for efficient capture of alendronate and its mediated release. Chem. Commun. 50(63), 8779–8782 (2014). https://doi.org/10.1039/c4cc02570a
N. Zhang, X. Zhang, C. Gan, J. Zhang, Y. Liu et al., Heterostructural Ag3PO4/UiO-66 composite for highly efficient visible-light photocatalysts with long-term stability. J. Photochem. Photobiol. A Chem. 376, 305–315 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.025
H. Yin, Z. Chen, S. Xiong, J. Chen, C. Wang et al., Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem. Catal. 1(5), 1088–1103 (2021). https://doi.org/10.1016/j.checat.2021.08.014
Y. Zhang, K. Li, M. Chen, J. Wang, J. Liu et al., Cu/Cu2O nanops supported on vertically ZIF-L-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl. Nano Mater. 3(1), 257–263 (2019). https://doi.org/10.1021/acsanm.9b01935
M. Ebaid, K. Jiang, Z. Zhang, W.S. Drisdell, A.T. Bell et al., Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2. Chem. Mater. 32(7), 3304–3311 (2020). https://doi.org/10.1021/acs.chemmater.0c00761
Z. Gu, H. Shen, Z. Chen, Y. Yang, C. Yang et al., Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5(2), 429–440 (2021). https://doi.org/10.1016/j.joule.2020.12.011
C. He, D. Duan, J. Low, Y. Bai, Y. Jiang et al., Cu2-xS derived copper nanops: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3532-7
A. Herzog, A. Bergmann, H.S. Jeon, J. Timoshenko, S. Kuhl et al., Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem. Int. Ed. 60(13), 7426–7435 (2021). https://doi.org/10.1002/anie.202017070
Z. Li, Y. Yang, Z. Yin, X. Wei, H. Peng et al., Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 11(5), 2473–2482 (2021). https://doi.org/10.1021/acscatal.0c03846
B. Liu, C. Cai, B. Yang, K. Chen, Y. Long et al., Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels. Electrochim. Acta 388, 138552 (2021). https://doi.org/10.1016/j.electacta.2021.138552
X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. 60(28), 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
S. Zhang, S. Zhao, D. Qu, X. Liu, Y. Wu et al., Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small 17(37), e2102293 (2021). https://doi.org/10.1002/smll.202102293
D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5(5), 2814–2821 (2015). https://doi.org/10.1021/cs502128q
D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev et al., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11(5), 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257
H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
C. Chen, D. Chen, S. Xie, H. Quan, X. Luo et al., Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl. Mater. Interfaces 9(46), 41043–41054 (2017). https://doi.org/10.1021/acsami.7b13443
Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou et al., FT-IR study of the microstructure of Nafion® membrane. J. Membr. Sci. 233, 39–44 (2004). https://doi.org/10.1016/j.memsci.2003.12.008
C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
J. Gao, H. Zhang, X. Guo, J. Luo, S.M. Zakeeruddin et al., Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando raman spectroscopy. J. Am. Chem. Soc. 141(47), 18704–18714 (2019). https://doi.org/10.1021/jacs.9b07415
C. Lu, Z. Li, L. Ren, N. Su, D. Lu et al., In situ oxidation of Cu2O crystal for electrochemical detection of glucose. Sensors 19(13), 2926 (2019). https://doi.org/10.3390/s19132926
Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6(4), 2473–2481 (2016). https://doi.org/10.1021/acscatal.6b00205
M. Moradzaman, G. Mul, In situ raman study of potential-dependent surface adsorbed carbonate, CO, OH, and C species on Cu electrodes during electrochemical reduction of CO2. ChemElectroChem 8(8), 1478–1485 (2021). https://doi.org/10.1002/celc.202001598
F. Li, A. Thevenon, A. Rosas-Hernandez, Z. Wang, Y. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2