Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction
Corresponding Author: Jiacheng Wang
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 29
Abstract
A series of N-doped carbon materials (NCs) were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile one-step pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C3N4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6, show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries.
Highlights:
1 N-doped carbon nanoflakes (NCs) were synthesized via facile one-pot pyrolysis of citric acid and dicyanamide.
2 The as-synthesized NCs have a stacked, few-layered graphene-like structure enriched with pyridinic and graphitic N groups.
3 The optimized NCs show better long-term stability and highly active in electrocatalytic oxygen reduction with a close four-electron reaction pathway.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Park, Y. Shao, J. Liu, Y. Wang, Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ. Sci. 5(11), 9331–9344 (2012). https://doi.org/10.1039/c2ee22554a
- X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5(8), 4643–4667 (2015). https://doi.org/10.1021/acscatal.5b00524
- L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
- X.-L. Cai, C.-H. Liu, J. Liu, Y. Lu, Y.-N. Zhong et al., Synergistic effects in CNTs-PdAu/Pt trimetallic nanops with high electrocatalytic activity and stability. Nano Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
- W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112(11), 5780–5817 (2012). https://doi.org/10.1021/cr300096b
- A. Song, W. Yang, W. Yang, G. Sun, X. Yin, L. Gao, Y. Wang, X. Qin, G. Shao, Facile synthesis of cobalt nanops entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain. Chem. Eng. 5(5), 3973–3981 (2017). https://doi.org/10.1021/acssuschemeng.6b03173
- C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
- J. Guo, Y. Cheng, Z. Xiang, Confined-space-assisted preparation of Fe3O4-nanop-modified Fe–N–C catalysts derived from a covalent organic polymer for oxygen reduction. ACS Sustain. Chem. Eng. 5(9), 7871–7877 (2017). https://doi.org/10.1021/acssuschemeng.7b01367
- Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
- H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J. Mater. Chem. A 2(38), 15704–15716 (2014). https://doi.org/10.1039/C4TA02790F
- C. Shang, M. Li, Z. Wang, S. Wu, Z. Lu, Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanops as efficient oxygen reduction reaction catalysts. Chemelectrochem 3(9), 1437–1445 (2016). https://doi.org/10.1002/celc.201600275
- Y. Chen, Q. Liu, J. Wang, Highly porous nitrogen-doped carbon nanofibers as efficient metal-free catalysts toward the electrocatalytic oxygen reduction reaction. Nano Adv. 1(2), 79–89 (2016). https://doi.org/10.22180/na174
- Q. Shi, Y.-P. Lei, Y.-D. Wang, Z.-M. Wang, In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. J. Inorg. Mater. 31(4), 351–357 (2016). https://doi.org/10.15541/jim20150400
- Y. Zhou, J. Wang, Direct observation of Fe-N4 species as active sites for the electrocatalytic oxygen reduction. Nano Adv. 2(3), 45–46 (2017). https://doi.org/10.22180/na212
- J. Li, J. Chen, H. Wang, Y. Ren, K. Liu, Y. Tang, M. Shao, Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al–air batteries. Nano Adv. 8(Supplement C), 49–58 (2017). https://doi.org/10.1016/j.ensm.2017.03.007
- H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2(5), 781–794 (2012). https://doi.org/10.1021/cs200652y
- J. Wu, L. Ma, R.M. Yadav, Y. Yang, X. Zhang, R. Vajtai, J. Lou, P.M. Ajayan, Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 7(27), 14763–14769 (2015). https://doi.org/10.1021/acsami.5b02902
- J.H. Yu, L.L. Xu, Q.Q. Zhu, X.X. Wang, M.J. Yun, L.F. Dong, Superior electrochemical performance of graphene via carboxyl functionalization and surfactant intercalation. J. Inorg. Mater. 31(2), 220–224 (2016). https://doi.org/10.15541/jim20150378
- Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang et al., Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133(50), 20116–20119 (2011). https://doi.org/10.1021/ja209206c
- G. Tuci, C. Zafferoni, A. Rossin, A. Milella, L. Luconi et al., Chemically functionalized carbon nanotubes with pyridine groups as easily tunable N-decorated nanomaterials for the oxygen reduction reaction in alkaline medium. Chem. Mater. 26(11), 3460–3470 (2014). https://doi.org/10.1021/cm500805c
- T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53(28), 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
- R.J. White, N. Yoshizawa, M. Antonietti, M. Titirici, A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem. 13(9), 2428–2434 (2011). https://doi.org/10.1039/c1gc15349h
- Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-P. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2(2), 241–248 (2013). https://doi.org/10.1016/j.nanoen.2012.09.002
- M. Zhou, H.-L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45(5), 1273–1307 (2016). https://doi.org/10.1039/C5CS00414D
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped grapheme. Nat. Energy 1, 16130 (2016). https://doi.org/10.1038/nenergy.2016.130
- X.Q. Wang, J.S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22(7), 2178–2180 (2010). https://doi.org/10.1021/cm100139d
- L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). https://doi.org/10.1021/nn901850u
- H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
- D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang et al., Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23(5), 1188–1193 (2011). https://doi.org/10.1021/cm102666r
- R. Ma, Y. Zhou, P. Li, Y. Chen, J. Wang, Q. Liu, Self-assembly of nitrogen-doped graphene-wrapped carbon nanops as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 216, 347–354 (2016). https://doi.org/10.1016/j.electacta.2016.09.027
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
- F.Z. Su, S.C. ew, G. Lipner, X.Z. Fu, M. Antonietti, S. Blechert, X.C. Wang, mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132(46), 16299–16301 (2010). https://doi.org/10.1021/ja102866p
- M. Beckert, M. Menzel, F.J. Tölle, B. Bruchmann, R. Mülhaupt, Nitrogenated graphene and carbon nanomaterials by carbonization of polyfurfuryl alcohol in the presence of urea and dicyandiamide. Green Chem. 17(2), 1032–1037 (2015). https://doi.org/10.1039/C4GC01676A
- P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge et al., Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). https://doi.org/10.1039/C4EE02531H
- M. Zhang, C. Hou, A. Halder, H. Wang, Q. Chi, Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Mater. Chem. Front. 1(1), 37–60 (2017). https://doi.org/10.1039/C6QM00145A
- H.Q. Sun, Y.X. Wang, S.Z. Liu, L. Ge, L. Wang, Z.H. Zhu, S.B. Wang, Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chem. Commun. 49(85), 9914–9916 (2013). https://doi.org/10.1039/c3cc43401j
- Y. Gogotsi, J.A. Libera, N. Kalashnikov, M. Yoshimura, Graphite polyhedral crystals. Science 290(5490), 317–320 (2000). https://doi.org/10.1126/science.290.5490.317
- R. Ma, B.Y. Xia, Y. Zhou, P. Li, Y. Chen, Q. Liu, J. Wang, Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102, 58–65 (2016). https://doi.org/10.1016/j.carbon.2016.02.034
- R. Ma, E. Song, Y. Zhou, Z. Zhou, G. Liu, Q. Liu, J. Liu, Y. Zhu, J. Wang, Ultrafine WC nanops anchored on Co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. Energy Storage Mater. 6, 104–111 (2016). https://doi.org/10.1016/j.ensm.2016.10.006
- L. Wang, C. Yang, S. Dou, S. Wang, X. Gao, J. Ma, Y. Yu, Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc–air battery. Electrochim. Acta 219, 592–603 (2016). https://doi.org/10.1016/j.electacta.2016.10.050
- J.C. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, Imine-linked polymer derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 5(8), 3160–3167 (2013). https://doi.org/10.1021/am400059t
- F.-X. Hu, L. Li, K. Lin, L. Cui, C.-J. Shi, A.S. Sayyar, S. Cui, Preparation of N-doped hollow carbon spheres and investigation of their optical properties. J. Inorg. Mater. 31(8), 827–833 (2016). https://doi.org/10.15541/jim20150648
- R. Ma, X. Ren, B.Y. Xia, Y. Zhou, C. Sun, Q. Liu, J. Liu, J. Wang, Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 9(3), 808–819 (2016). https://doi.org/10.1007/s12274-015-0960-2
- J. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture. J. Mater. Chem. A 1(36), 10951–10961 (2013). https://doi.org/10.1039/c3ta11995e
- D. Wei, Y.L. Liu, Y. Wang, H. Zhang, L.H. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009). https://doi.org/10.1021/nl803279t
- G.-Z. Xu, W.-W. Jin, X.-R. Zeng, J.-Z. Zou, X.-B. Xiong, L. Huang, Z.-N. Zhao, Tailoring of pore structure of coal-based carbon foam. J. Inorg. Mater. 31(9), 961–968 (2016). https://doi.org/10.15541/jim20150628
- X.H. Zhao, X.P. Gao, H.B. Zhao, X.X. Zhang, Z.X. Hao, Highly efficient synthesis of LTA-type aluminophosphate molecular sieve by improved ionothermal method with low dosage of structure-directing agent. J. Inorg. Mater. 31(11), 1212–1218 (2016). https://doi.org/10.15541/jim20160062
- L.L. Sun, K. Yan, W. Luo, J. Zhou, Hollow ZSM-5 zeolite microspheres with improved adsorption and catalytic properties. J. Inorg. Mater. 31(8), 834–840 (2016). https://doi.org/10.15541/jim20150611
- W. He, C. Jiang, J. Wang, L. Lu, High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem. Int. Ed. 53(36), 9503–9507 (2014). https://doi.org/10.1002/anie.201404333
- J.C. Wang, R.G. Ma, Z.Z. Zhou, G.H. Liu, Q. Liu, Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Sci. Rep. 5, 9304 (2015). https://doi.org/10.1038/srep09304
- H. Cui, H. Yu, J. Zheng, Z.J. Wang, Y. Zhu, S.P. Jia, J. Jia, Z. Zhu, N-doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction. Nanoscale 8(5), 2795–2803 (2016). https://doi.org/10.1039/C5NR06319A
- L.F. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012). https://doi.org/10.1039/c2ee21802j
- Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 3, 2771 (2013). https://doi.org/10.1038/srep02771
- A. Aijaz, N. Fujiwara, Q. Xu, From metal-organic framework to nitrogen-decorated nanoporous carbons: superior CO2 uptake and highly efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136(19), 6790–6793 (2014). https://doi.org/10.1021/ja5003907
- H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- T. Iwazaki, H. Yang, R. Obinata, W. Sugimoto, Y. Takasu, Oxygen-reduction activity of silk-derived carbons. J. Power Sources 195(18), 5840–5847 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.135
- Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
- F.D.K. Gong, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
- H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 13(39), 17505–17510 (2011). https://doi.org/10.1039/c1cp21665a
- F.A. De Bruijn, V.A.T. Dam, G.J.M. Janssen, Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8(1), 3–22 (2008). https://doi.org/10.1002/fuce.200700053
References
S. Park, Y. Shao, J. Liu, Y. Wang, Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ. Sci. 5(11), 9331–9344 (2012). https://doi.org/10.1039/c2ee22554a
X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5(8), 4643–4667 (2015). https://doi.org/10.1021/acscatal.5b00524
L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
X.-L. Cai, C.-H. Liu, J. Liu, Y. Lu, Y.-N. Zhong et al., Synergistic effects in CNTs-PdAu/Pt trimetallic nanops with high electrocatalytic activity and stability. Nano Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112(11), 5780–5817 (2012). https://doi.org/10.1021/cr300096b
A. Song, W. Yang, W. Yang, G. Sun, X. Yin, L. Gao, Y. Wang, X. Qin, G. Shao, Facile synthesis of cobalt nanops entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain. Chem. Eng. 5(5), 3973–3981 (2017). https://doi.org/10.1021/acssuschemeng.6b03173
C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
J. Guo, Y. Cheng, Z. Xiang, Confined-space-assisted preparation of Fe3O4-nanop-modified Fe–N–C catalysts derived from a covalent organic polymer for oxygen reduction. ACS Sustain. Chem. Eng. 5(9), 7871–7877 (2017). https://doi.org/10.1021/acssuschemeng.7b01367
Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J. Mater. Chem. A 2(38), 15704–15716 (2014). https://doi.org/10.1039/C4TA02790F
C. Shang, M. Li, Z. Wang, S. Wu, Z. Lu, Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanops as efficient oxygen reduction reaction catalysts. Chemelectrochem 3(9), 1437–1445 (2016). https://doi.org/10.1002/celc.201600275
Y. Chen, Q. Liu, J. Wang, Highly porous nitrogen-doped carbon nanofibers as efficient metal-free catalysts toward the electrocatalytic oxygen reduction reaction. Nano Adv. 1(2), 79–89 (2016). https://doi.org/10.22180/na174
Q. Shi, Y.-P. Lei, Y.-D. Wang, Z.-M. Wang, In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. J. Inorg. Mater. 31(4), 351–357 (2016). https://doi.org/10.15541/jim20150400
Y. Zhou, J. Wang, Direct observation of Fe-N4 species as active sites for the electrocatalytic oxygen reduction. Nano Adv. 2(3), 45–46 (2017). https://doi.org/10.22180/na212
J. Li, J. Chen, H. Wang, Y. Ren, K. Liu, Y. Tang, M. Shao, Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al–air batteries. Nano Adv. 8(Supplement C), 49–58 (2017). https://doi.org/10.1016/j.ensm.2017.03.007
H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2(5), 781–794 (2012). https://doi.org/10.1021/cs200652y
J. Wu, L. Ma, R.M. Yadav, Y. Yang, X. Zhang, R. Vajtai, J. Lou, P.M. Ajayan, Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 7(27), 14763–14769 (2015). https://doi.org/10.1021/acsami.5b02902
J.H. Yu, L.L. Xu, Q.Q. Zhu, X.X. Wang, M.J. Yun, L.F. Dong, Superior electrochemical performance of graphene via carboxyl functionalization and surfactant intercalation. J. Inorg. Mater. 31(2), 220–224 (2016). https://doi.org/10.15541/jim20150378
Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang et al., Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133(50), 20116–20119 (2011). https://doi.org/10.1021/ja209206c
G. Tuci, C. Zafferoni, A. Rossin, A. Milella, L. Luconi et al., Chemically functionalized carbon nanotubes with pyridine groups as easily tunable N-decorated nanomaterials for the oxygen reduction reaction in alkaline medium. Chem. Mater. 26(11), 3460–3470 (2014). https://doi.org/10.1021/cm500805c
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53(28), 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
R.J. White, N. Yoshizawa, M. Antonietti, M. Titirici, A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem. 13(9), 2428–2434 (2011). https://doi.org/10.1039/c1gc15349h
Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-P. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2(2), 241–248 (2013). https://doi.org/10.1016/j.nanoen.2012.09.002
M. Zhou, H.-L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45(5), 1273–1307 (2016). https://doi.org/10.1039/C5CS00414D
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped grapheme. Nat. Energy 1, 16130 (2016). https://doi.org/10.1038/nenergy.2016.130
X.Q. Wang, J.S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22(7), 2178–2180 (2010). https://doi.org/10.1021/cm100139d
L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). https://doi.org/10.1021/nn901850u
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang et al., Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23(5), 1188–1193 (2011). https://doi.org/10.1021/cm102666r
R. Ma, Y. Zhou, P. Li, Y. Chen, J. Wang, Q. Liu, Self-assembly of nitrogen-doped graphene-wrapped carbon nanops as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 216, 347–354 (2016). https://doi.org/10.1016/j.electacta.2016.09.027
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317
F.Z. Su, S.C. ew, G. Lipner, X.Z. Fu, M. Antonietti, S. Blechert, X.C. Wang, mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132(46), 16299–16301 (2010). https://doi.org/10.1021/ja102866p
M. Beckert, M. Menzel, F.J. Tölle, B. Bruchmann, R. Mülhaupt, Nitrogenated graphene and carbon nanomaterials by carbonization of polyfurfuryl alcohol in the presence of urea and dicyandiamide. Green Chem. 17(2), 1032–1037 (2015). https://doi.org/10.1039/C4GC01676A
P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge et al., Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). https://doi.org/10.1039/C4EE02531H
M. Zhang, C. Hou, A. Halder, H. Wang, Q. Chi, Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Mater. Chem. Front. 1(1), 37–60 (2017). https://doi.org/10.1039/C6QM00145A
H.Q. Sun, Y.X. Wang, S.Z. Liu, L. Ge, L. Wang, Z.H. Zhu, S.B. Wang, Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chem. Commun. 49(85), 9914–9916 (2013). https://doi.org/10.1039/c3cc43401j
Y. Gogotsi, J.A. Libera, N. Kalashnikov, M. Yoshimura, Graphite polyhedral crystals. Science 290(5490), 317–320 (2000). https://doi.org/10.1126/science.290.5490.317
R. Ma, B.Y. Xia, Y. Zhou, P. Li, Y. Chen, Q. Liu, J. Wang, Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102, 58–65 (2016). https://doi.org/10.1016/j.carbon.2016.02.034
R. Ma, E. Song, Y. Zhou, Z. Zhou, G. Liu, Q. Liu, J. Liu, Y. Zhu, J. Wang, Ultrafine WC nanops anchored on Co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. Energy Storage Mater. 6, 104–111 (2016). https://doi.org/10.1016/j.ensm.2016.10.006
L. Wang, C. Yang, S. Dou, S. Wang, X. Gao, J. Ma, Y. Yu, Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc–air battery. Electrochim. Acta 219, 592–603 (2016). https://doi.org/10.1016/j.electacta.2016.10.050
J.C. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, Imine-linked polymer derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 5(8), 3160–3167 (2013). https://doi.org/10.1021/am400059t
F.-X. Hu, L. Li, K. Lin, L. Cui, C.-J. Shi, A.S. Sayyar, S. Cui, Preparation of N-doped hollow carbon spheres and investigation of their optical properties. J. Inorg. Mater. 31(8), 827–833 (2016). https://doi.org/10.15541/jim20150648
R. Ma, X. Ren, B.Y. Xia, Y. Zhou, C. Sun, Q. Liu, J. Liu, J. Wang, Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 9(3), 808–819 (2016). https://doi.org/10.1007/s12274-015-0960-2
J. Wang, I. Senkovska, M. Oschatz, M.R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture. J. Mater. Chem. A 1(36), 10951–10961 (2013). https://doi.org/10.1039/c3ta11995e
D. Wei, Y.L. Liu, Y. Wang, H. Zhang, L.H. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009). https://doi.org/10.1021/nl803279t
G.-Z. Xu, W.-W. Jin, X.-R. Zeng, J.-Z. Zou, X.-B. Xiong, L. Huang, Z.-N. Zhao, Tailoring of pore structure of coal-based carbon foam. J. Inorg. Mater. 31(9), 961–968 (2016). https://doi.org/10.15541/jim20150628
X.H. Zhao, X.P. Gao, H.B. Zhao, X.X. Zhang, Z.X. Hao, Highly efficient synthesis of LTA-type aluminophosphate molecular sieve by improved ionothermal method with low dosage of structure-directing agent. J. Inorg. Mater. 31(11), 1212–1218 (2016). https://doi.org/10.15541/jim20160062
L.L. Sun, K. Yan, W. Luo, J. Zhou, Hollow ZSM-5 zeolite microspheres with improved adsorption and catalytic properties. J. Inorg. Mater. 31(8), 834–840 (2016). https://doi.org/10.15541/jim20150611
W. He, C. Jiang, J. Wang, L. Lu, High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem. Int. Ed. 53(36), 9503–9507 (2014). https://doi.org/10.1002/anie.201404333
J.C. Wang, R.G. Ma, Z.Z. Zhou, G.H. Liu, Q. Liu, Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Sci. Rep. 5, 9304 (2015). https://doi.org/10.1038/srep09304
H. Cui, H. Yu, J. Zheng, Z.J. Wang, Y. Zhu, S.P. Jia, J. Jia, Z. Zhu, N-doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction. Nanoscale 8(5), 2795–2803 (2016). https://doi.org/10.1039/C5NR06319A
L.F. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012). https://doi.org/10.1039/c2ee21802j
Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 3, 2771 (2013). https://doi.org/10.1038/srep02771
A. Aijaz, N. Fujiwara, Q. Xu, From metal-organic framework to nitrogen-decorated nanoporous carbons: superior CO2 uptake and highly efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136(19), 6790–6793 (2014). https://doi.org/10.1021/ja5003907
H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
T. Iwazaki, H. Yang, R. Obinata, W. Sugimoto, Y. Takasu, Oxygen-reduction activity of silk-derived carbons. J. Power Sources 195(18), 5840–5847 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.135
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
F.D.K. Gong, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 13(39), 17505–17510 (2011). https://doi.org/10.1039/c1cp21665a
F.A. De Bruijn, V.A.T. Dam, G.J.M. Janssen, Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8(1), 3–22 (2008). https://doi.org/10.1002/fuce.200700053