Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions
Corresponding Author: Ruguang Ma
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 189
Abstract
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality. However, it is limited by the high overpotential of oxygen evolution reaction (OER) at the anode. To reduce the operating voltage of electrolyzer, herein thermodynamically favorable glycerol oxidation reaction (GOR) is proposed to replace the OER. Moreover, vertical NiO flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution, respectively. Meanwhile, excluding the explosion risk of mixed H2/O2, a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer. Impressively, the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV, and exhibits good long-term stability. This work provides a new paradigm of hydrogen production with low cost and good feasibility.
Highlights:
1 Two types of vertical 3D nanostructures were successfully fabricated using simple hydrothermal and heat treatment processes for hydrogen evolution reaction and glycerol oxidation reaction (GOR).
2 Hydrogen production at a lower potential was achieved by replacing oxygen evolution reaction with GOR, reducing the device potential by approximately 300 mV. Additionally, organic membranes were used as separators, avoiding the use of expensive anion exchange membranes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- Z. Wang, Z. Lin, Y. Wang, S. Shen, Q. Zhang et al., Nontrivial topological surface states in Ru3Sn7 toward wide ph-range hydrogen evolution reaction. Adv. Mater. 35(25), e2302007 (2023). https://doi.org/10.1002/adma.202302007
- X. Wang, J. Zhang, Z. Wang, Z. Lin, S. Shen et al., Fabricating Ru single atoms and clusters on cop for boosted hydrogen evolution reaction. Chin. J. Struct. Chem. 42(4), 100035 (2023). https://doi.org/10.1016/j.cjsc.2023.100035
- S. Li, Z. Li, R. Ma, C. Gao, L. Liu et al., A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 60(7), 3773–3780 (2021). https://doi.org/10.1002/anie.202014210
- Y. Li, X. Wei, L. Chen, J. Shi, Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 60(36), 19550–19571 (2021). https://doi.org/10.1002/anie.202009854
- D. Yan, C. Mebrahtu, S. Wang, R. Palkovits, Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew. Chem. Int. Ed. 62(16), e202214333 (2023). https://doi.org/10.1002/anie.202214333
- H. Liu, N. Agrawal, A. Ganguly, Y. Chen, J. Lee et al., Ultra-low voltage bipolar hydrogen production from biomass-derived aldehydes and water in membrane-less electrolyzers. Energy Environ. Sci. 15(10), 4175–4189 (2022). https://doi.org/10.1039/d2ee01427k
- J. Du, D. Xiang, K. Zhou, L. Wang, J. Yu et al., Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 104, 107875 (2022). https://doi.org/10.1016/j.nanoen.2022.107875
- B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). https://doi.org/10.1126/science.1257443
- B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
- H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), e2007508 (2021). https://doi.org/10.1002/adma.202007508
- F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12(1), 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
- S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
- W. Chen, L. Xu, X. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N-N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
- S. Li, R. Ma, J. Hu, Z. Li, L. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13(1), 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
- B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
- F. Meng, C. Dai, Z. Liu, S. Luo, J. Ge et al., Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2(1), 87–94 (2022). https://doi.org/10.1016/j.esci.2022.02.001
- J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B 281, 119510 (2021). https://doi.org/10.1016/j.apcatb.2020.119510
- Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10(1), 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
- S. Li, P. Ma, C. Gao, L. Liu, X. Wang et al., Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ. Sci. 15(7), 3004–3014 (2022). https://doi.org/10.1039/d2ee00461e
- Y. Lu, C.L. Dong, Y.C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
- N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou et al., Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58(44), 15895–15903 (2019). https://doi.org/10.1002/anie.201908722
- T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2021). https://doi.org/10.1038/s41929-021-00721-y
- W.J. Liu, Z. Xu, D. Zhao, X.Q. Pan, H.C. Li et al., Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 11(1), 265 (2020). https://doi.org/10.1038/s41467-019-14157-3
- Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 33(48), e2104791 (2021). https://doi.org/10.1002/adma.202104791
- J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2(2), 96–105 (2011). https://doi.org/10.1007/s12678-011-0039-0
- D. Liu, L. Cao, Z. Luo, D. Zhong, J. Tan et al., An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J. Mater. Chem. A 6(48), 24920–24927 (2018). https://doi.org/10.1039/c8ta10378j
- P. Yang, L. Li, S. Yu, H. Zheng, W. Peng, The annealing temperature and films thickness effect on the surface morphology, preferential orientation and dielectric property of NiO films. Appl. Surf. Sci. 493, 396–403 (2019). https://doi.org/10.1016/j.apsusc.2019.06.223
- W. Wang, Y. Wang, R. Yang, Q. Wen, Y. Liu et al., Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem. Int. Ed. 59(39), 16974–16981 (2020). https://doi.org/10.1002/anie.202005574
- W. Yang, X. Yang, J. Jia, C. Hou, H. Gao et al., Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B 244, 1096–1102 (2019). https://doi.org/10.1016/j.apcatb.2018.12.038
- J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3d nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
- J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang et al., NiSn bimetallic nanops as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B 234, 10–18 (2018). https://doi.org/10.1016/j.apcatb.2018.04.017
- X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141(18), 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
- Z. Wang, J. Chen, E. Song, N. Wang, J. Dong et al., Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 12(1), 5960 (2021). https://doi.org/10.1038/s41467-021-26256-1
- Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo et al., Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29(39), 1703311 (2017). https://doi.org/10.1002/adma.201703311
- L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10(1), 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
References
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15(1), 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
Z. Wang, Z. Lin, Y. Wang, S. Shen, Q. Zhang et al., Nontrivial topological surface states in Ru3Sn7 toward wide ph-range hydrogen evolution reaction. Adv. Mater. 35(25), e2302007 (2023). https://doi.org/10.1002/adma.202302007
X. Wang, J. Zhang, Z. Wang, Z. Lin, S. Shen et al., Fabricating Ru single atoms and clusters on cop for boosted hydrogen evolution reaction. Chin. J. Struct. Chem. 42(4), 100035 (2023). https://doi.org/10.1016/j.cjsc.2023.100035
S. Li, Z. Li, R. Ma, C. Gao, L. Liu et al., A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem. Int. Ed. 60(7), 3773–3780 (2021). https://doi.org/10.1002/anie.202014210
Y. Li, X. Wei, L. Chen, J. Shi, Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 60(36), 19550–19571 (2021). https://doi.org/10.1002/anie.202009854
D. Yan, C. Mebrahtu, S. Wang, R. Palkovits, Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew. Chem. Int. Ed. 62(16), e202214333 (2023). https://doi.org/10.1002/anie.202214333
H. Liu, N. Agrawal, A. Ganguly, Y. Chen, J. Lee et al., Ultra-low voltage bipolar hydrogen production from biomass-derived aldehydes and water in membrane-less electrolyzers. Energy Environ. Sci. 15(10), 4175–4189 (2022). https://doi.org/10.1039/d2ee01427k
J. Du, D. Xiang, K. Zhou, L. Wang, J. Yu et al., Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 104, 107875 (2022). https://doi.org/10.1016/j.nanoen.2022.107875
B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). https://doi.org/10.1126/science.1257443
B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li et al., Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33(13), e2007508 (2021). https://doi.org/10.1002/adma.202007508
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12(1), 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
W. Chen, L. Xu, X. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N-N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
S. Li, R. Ma, J. Hu, Z. Li, L. Liu et al., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 13(1), 2916 (2022). https://doi.org/10.1038/s41467-022-30670-4
B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui et al., CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 80, 105530 (2021). https://doi.org/10.1016/j.nanoen.2020.105530
F. Meng, C. Dai, Z. Liu, S. Luo, J. Ge et al., Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2(1), 87–94 (2022). https://doi.org/10.1016/j.esci.2022.02.001
J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang et al., In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B 281, 119510 (2021). https://doi.org/10.1016/j.apcatb.2020.119510
Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10(1), 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
S. Li, P. Ma, C. Gao, L. Liu, X. Wang et al., Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ. Sci. 15(7), 3004–3014 (2022). https://doi.org/10.1039/d2ee00461e
Y. Lu, C.L. Dong, Y.C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou et al., Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58(44), 15895–15903 (2019). https://doi.org/10.1002/anie.201908722
T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2021). https://doi.org/10.1038/s41929-021-00721-y
W.J. Liu, Z. Xu, D. Zhao, X.Q. Pan, H.C. Li et al., Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 11(1), 265 (2020). https://doi.org/10.1038/s41467-019-14157-3
Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 33(48), e2104791 (2021). https://doi.org/10.1002/adma.202104791
J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2(2), 96–105 (2011). https://doi.org/10.1007/s12678-011-0039-0
D. Liu, L. Cao, Z. Luo, D. Zhong, J. Tan et al., An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J. Mater. Chem. A 6(48), 24920–24927 (2018). https://doi.org/10.1039/c8ta10378j
P. Yang, L. Li, S. Yu, H. Zheng, W. Peng, The annealing temperature and films thickness effect on the surface morphology, preferential orientation and dielectric property of NiO films. Appl. Surf. Sci. 493, 396–403 (2019). https://doi.org/10.1016/j.apsusc.2019.06.223
W. Wang, Y. Wang, R. Yang, Q. Wen, Y. Liu et al., Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem. Int. Ed. 59(39), 16974–16981 (2020). https://doi.org/10.1002/anie.202005574
W. Yang, X. Yang, J. Jia, C. Hou, H. Gao et al., Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B 244, 1096–1102 (2019). https://doi.org/10.1016/j.apcatb.2018.12.038
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3d nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang et al., NiSn bimetallic nanops as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B 234, 10–18 (2018). https://doi.org/10.1016/j.apcatb.2018.04.017
X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141(18), 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
Z. Wang, J. Chen, E. Song, N. Wang, J. Dong et al., Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 12(1), 5960 (2021). https://doi.org/10.1038/s41467-021-26256-1
Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo et al., Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29(39), 1703311 (2017). https://doi.org/10.1002/adma.201703311
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10(1), 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7