Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction
Corresponding Author: Jiacheng Wang
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 3
Abstract
A series of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores have been successfully prepared via etching N-doped hollow carbon spheres with CO2 at high temperatures. The surface areas, total pore volumes and micropore percentages of the CO2-activated samples evidently increase with increasing activation temperature from 800 to 950 °C, while the N contents show a contrary trend from 7.6 to 3.8 at%. The pyridinic and graphitic nitrogen groups are dominant among various N-containing groups in the samples. The 950 °C-activated sample (CANHCS-950) has the largest surface area (2072 m2 g−1), pore volume (1.96 cm3 g−1), hierarchical micro-mesopore distributions (1.2, 2.6 and 6.2 nm), hollow macropore cores (~91 nm) and highest relative content of pyridinic and graphitic N groups. This triple micro-meso-macropore system could synergistically enhance the activity because macropores could store up the reactant, mesopores could reduce the transport resistance of the reactants to the active sites, and micropores could be in favor of the accumulation of ions. Therefore, the CANHCS-950 with optimized structure shows the optimal and comparable oxygen reduction reaction (ORR) activity but superior methanol tolerance and long-term durability to commercial Pt/C with a 4e−-dominant transfer pathway in alkaline media. These excellent properties in combination with good stability and recyclability make CANHCSs among the most promising metal-free ORR electrocatalysts reported so far in practical applications.
Highlights:
1 A series of triple hierarchical micro-meso-macroporous N-doped carbon shells have been successfully prepared via etching N-doped hollow carbon spheres with CO2 at high temperatures.
2 The activated sample has the large surface area and pore volume, hierarchical micro-mesopore distributions, hollow macropore cores and controllable nitrogen contents.
3 The optimized sample shows the comparable oxygen reduction reaction activity but superior methanol tolerance and long-term durability to commercial Pt/C with a 4e−-dominant transfer pathway in alkaline media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Basu, Recent trends in fuel cell science and technology (Springer, New York, 2007)
- R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127(1), 112–126 (2004). doi:10.1016/j.jpowsour.2003.09.032
- H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155(2), 95–110 (2006). doi:10.1016/j.jpowsour.2006.01.030
- F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1(14), 2204–2219 (2010). doi:10.1021/jz100553m
- W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112(11), 5780–5817 (2012). doi:10.1021/cr300096b
- C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45(3), 517–531 (2016). doi:10.1039/C5CS00670H
- B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152(1), 1–15 (2005). doi:10.1016/j.jpowsour.2005.05.098
- MathSciNet
- L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). doi:10.1021/cr5003563
- X. Li, Y. Chen, X.L. Chi, Y.C. Xu, Q. Yang, H.Y. Zhang, J.L. Zhang, D.R. Xiao, Three octamolybdate-templated inorganic-organic hybrid frameworks based on dinuclear/tetranuclear metal-tetrazole clusters. Inorg. Chim. Acta 437, 159–166 (2015). doi:10.1016/j.ica.2015.08.021
- Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). doi:10.1039/C4CS00484A
- L. Wang, M. Yao, X. Hu, G. Hu, J. Lu, M. Luo, M. Fan, Amine-modified ordered mesoporous silica: the effect of pore size on CO2 capture performance. Appl. Surf. Sci. 324, 286–292 (2015). doi:10.1016/j.apsusc.2014.10.135
- C. Shang, M. Li, Z. Wang, S. Wu, Z. Lu, Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. Chemelectrochem 3(9), 1437–1445 (2016). doi:10.1002/celc.201600275
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). doi:10.1038/nmat3087
- L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). doi:10.1021/nn901850u
- R. Lv, T. Cui, M.S. Jun, Q. Zhang, A. Cao et al., Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 21(5), 999–1006 (2015). doi:10.1002/adfm.201001602
- Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5(3), 1677–1684 (2011). doi:10.1021/nn1030127
- J. Sanetuntikul, T. Hang, S. Shanmugam, Hollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction. Chem. Commun. 50(67), 9473–9476 (2014). doi:10.1039/C4CC03437F
- Y. Lu, M. Liu, H. Nie, C. Gu, M. Liu, Z. Yang, K. Yang, X.A. Chen, S. Huang, Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell. J. Nanopart. Res. 18(6), 1–9 (2016). doi:10.1007/s11051-016-3457-3
- Z. Wu, R. Liu, J. Wang, J. Zhu, W. Xiao, C. Xuan, W. Lei, D. Wang, Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 8(45), 19086–19092 (2016). doi:10.1039/C6NR06817K
- Y. Xia, A. Zhuxian Yang, R. Mokaya, Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J. Phys. Chem. B 108(50), 19293–19298 (2009). doi:10.1021/jp046142n
- S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015). doi:10.1039/C4CS00269E
- G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem. Phys. Lett. 404(1), 53–58 (2005). doi:10.1016/j.cplett.2005.01.074
- W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 9(4), 569–573 (2007). doi:10.1016/j.elecom.2006.10.027
- Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang, D. Feng, J. Yang, A. Yu, D. Zhao, Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4), 1248–1257 (2011). doi:10.1016/j.carbon.2010.11.043
- S.M. Mahurin, J.S. Lee, G.A. Baker, H. Luo, S. Dai, Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. J. Membr. Sci. 353(1), 177–183 (2010). doi:10.1016/j.memsci.2010.02.045
- G.H. Wang, J. Hilgert, F.H. Richter, F. Wang, H.J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schuth, Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 13(3), 293–300 (2014). doi:10.1038/nmat3872
- D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour. Technol. 99(14), 6017–6027 (2008). doi:10.1016/j.biortech.2007.11.064
- S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). doi:10.1002/anie.201300519
- R.A. Nistor, D.M. Newns, G.J. Martyna, The role of chemistry in graphene doping for carbon-based electronics. ACS Nano 5(4), 3096–3103 (2011). doi:10.1021/nn200225f
- D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, Metal-free heterogeneous catalysis for sustainable chemistry. Chemsuschem 3(2), 169–180 (2010). doi:10.1002/cssc.200900180
- L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim et al., Visualizing individual nitrogen dopants in monolayer grapheme. Science 333(6045), 999–1003 (2011). doi:10.1126/science.1208759
- K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). doi:10.1039/C3EE44078H
- L. Chen, X. Cui, Y. Wang, M. Wang, R. Qiu et al., One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions. Dalton Trans. 43(9), 3420–3423 (2014). doi:10.1039/c3dt52253a
- Y.C. Lin, C.Y. Lin, P.W. Chiu, Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96(13), 133110 (2010). doi:10.1063/1.3368697
- C. Shen, G. Huang, Y. Cheng, R. Cao, F. Ding, U. Schwingenschlögl, Y. Mei, Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Res. Lett. 7(1), 1–8 (2012). doi:10.1186/1556-276X-7-268
- G. Tao, L. Zhang, L. Chen, X. Cui, Z. Hua, M. Wang, J. Wang, Y. Chen, J. Shi, N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86, 108–117 (2015). doi:10.1016/j.carbon.2014.12.102
- D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped grapheme. Energy Environ. Sci. 4(3), 760–764 (2011). doi:10.1039/c0ee00326c
- R. Ma, X. Ren, B.Y. Xia, Y. Zhou, C. Sun, Q. Liu, J. Liu, J. Wang, Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 9(3), 808–819 (2016). doi:10.1007/s12274-015-0960-2
- R. Ma, B.Y. Xia, Y. Zhou, P. Li, Y. Chen, Q. Liu, J. Wang, Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102, 58–65 (2016). doi:10.1016/j.carbon.2016.02.034
- H.J. Cui, H.M. Yu, J.F. Zheng, Z.J. Wang, Y.Y. Zhu, S.P. Jia, J. Jia, Z.P. Zhu, N-doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction. Nanoscale 8(5), 2795–2803 (2016). doi:10.1039/C5NR06319A
- Z. Chen, D. Higgins, H. Tao, R.S. Hsu, Z. Chen, Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J. Phys. Chem. C 113(113), 21008–21013 (2009). doi:10.1021/jp908067v
- W. Xiong, F. Du, Y. Liu, J. Albert Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). doi:10.1021/ja104425h
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). doi:10.1126/science.1168049
- Y.T. Lee, N.S. Kim, S.Y. Bae, J. Park, S.C. Yu, H. Ryu, H.J. Lee, Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 °C. J. Phys. Chem. B 107(47), 12958–12963 (2003). doi:10.1021/jp0274536
- H. Li, H. Liu, Z. Jong, Q. Wei, D. Geng, X. Sun, H. Wang, Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int. J. Hydrog Energy 36(3), 2258–2265 (2011). doi:10.1016/j.ijhydene.2010.11.025
- Y. Chen, Q. Liu, J. Wang, Carbon dioxide activated carbon nanofibers with hierarchical micro-/mesoporosity towards electrocatalytic oxygen reduction. J. Mater. Chem. A 4(15), 5553–5560 (2016). doi:10.1039/C6TA00136J
- P. Chen, L.K. Wang, G. Wang, M.R. Gao, J. Ge, W.J. Yuan, Y. Shen, A. Xie, S.H. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). doi:10.1039/C4EE02531H
- G. Panomsuwan, N. Saito, T. Ishizaki, Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon 98, 411–420 (2016). doi:10.1016/j.carbon.2015.11.013
- F. Zheng, G. Mu, Z. Zhang, Y. Shen, M. Zhao, G. Pang, Nitrogen-doped hollow macroporous carbon spheres with high electrocatalytic activity for oxygen reduction. Mater. Lett. 68(1), 453–456 (2012). doi:10.1016/j.matlet.2011.11.035
- B. Bayatsarmadi, Y. Zheng, M. Jaroniec, S. Qiao, Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chem. Asian J. 10(7), 1546–1553 (2015). doi:10.1002/asia.201500287
- T. Yang, J. Liu, R. Zhou, Z. Chen, H. Xu, S. Qiao, M. Monteiro, N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. J. Mater. Chem. A 2(42), 18139–18146 (2014). doi:10.1039/C4TA04301D
- Y. Ma, L. Sun, W. Huang, L. Zhang, J. Zhao, Q. Fan, W. Huang, Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 115(50), 24592–24597 (2012). doi:10.1021/jp207736h
- S.M. Unni, R. Illathvalappil, P.K. Gangadharan, S.N. Bhange, S. Kurungot, Layer-separated distribution of nitrogen doped graphene by wrapping on carbon nitride tetrapods for enhanced oxygen reduction reaction in acid medium. Chem. Commun. 50(89), 13769–13772 (2014). doi:10.1039/C4CC06180B
- C. Xiong, Z. Wei, B. Hu, S. Chen, L. Li, L. Guo, W. Ding, X. Liu, W. Ji, X. Wang, Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J. Power Sources 215(5), 216–220 (2012). doi:10.1016/j.jpowsour.2012.04.057
- D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132(43), 15127–15129 (2010). doi:10.1021/ja105617z
- G. Lalande, D. Guay, J.P. Dodelet, G. Denes, Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction. J. Electrochem. Soc. 145(7), 2411–2418 (1998). doi:10.1149/1.1838651
- M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 27(15), 2521–2527 (2015). doi:10.1002/adma.201500262
- J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012). doi:10.1039/c2jm34066f
- S. Sircar, T.C. Golden, M.B. Rao, Activated carbon for gas separation and storage. Carbon 34(1), 1–12 (1996). doi:10.1016/0008-6223(95)00128-X
- M.A. Elsayed, P.J. Hall, M.J. Heslop, Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation. Adsorption 13(3), 299–306 (2007). doi:10.1007/s10450-007-9065-x
- K. Xia, Q. Gao, S. Song, C. Wu, J. Jiang, J. Hu, L. Gao, CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int. J. Hydrog. Energy 33(1), 116–123 (2008). doi:10.1016/j.ijhydene.2007.08.019
- A.A. Rownaghi, F. Rezaei, M. Stante, J. Hedlund, Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl. Catal. B Environ. 119, 56–61 (2012). doi:10.1016/j.apcatb.2012.02.017
- W.J. Sweet, J.S. Jur, G.N. Parsons, Bi-layer Al2O3/ZnO atomic layer deposition for controllable conductive coatings on polypropylene nonwoven fiber mats. J. Appl. Phys. 113(19), 1415 (2013). doi:10.1063/1.4804960
- S. Tao, Y. Wang, Y. Yu, Y. An, W. Shi, Hierarchically porous tungstophosphoric acid/silica hybrid for high performance vis-light photocatalysis. J. Environ. Chem. Eng. 1(4), 719–727 (2013). doi:10.1016/j.jece.2013.07.012
- D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon. J. Phys. Chem. C 112(26), 9950–9955 (2008). doi:10.1021/jp800173z
- K. Xia, X. Tian, S. Fei, K. You, Hierarchical porous graphene-based carbons prepared by carbon dioxide activation and their gas adsorption properties. Int. J. Hydrog. Energy 39(21), 11047–11054 (2014). doi:10.1016/j.ijhydene.2014.05.059
- F. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, S. Dai, Design and synthesis of micro-meso-macroporous polymers with versatile active sites and excellent activities in production of biofuels and fine chemicals. Green Chem. 18(24), 6536–6544 (2016). doi:10.1039/C6GC02237E
- H.W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5(5), 4973 (2014). doi:10.1038/ncomms5973
- Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52(11), 3110–3116 (2013). doi:10.1002/anie.201209548
- J. Wang, Q. Liu, An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption. Nanoscale 6(8), 4148–4156 (2014). doi:10.1039/C3NR05825E
- L.S. Panchakarla, A. Govindaraj, C.N. Rao, Nitrogen-and boron-doped double-walled carbon nanotubes. ACS Nano 1(5), 494–500 (2007). doi:10.1021/nn700230n
- S. Wu, Y. Zhu, Y. Huo, Y. Luo, L. Zhang et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017). doi:10.1007/s40843-017-9041-0
- L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20(2), 564–574 (2014). doi:10.1002/chem.201303345
- S.B. Yoon, G.S. Chai, S.K. Kang, J.S. Yu, K.P. Gierszal, M. Jaroniec, Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J. Am. Chem. Soc. 127(12), 4188–4189 (2005). doi:10.1021/ja0423466
- D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4(2), 385–393 (1989). doi:10.1557/JMR.1989.0385
- M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59(10), R6585–R6588 (1999). doi:10.1103/PhysRevB.59.R6585
- J. Tang, J. Liu, C. Li, Y. Li, M.O. Tade, S. Dai, Y. Yamauchi, Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 54(2), 588–593 (2015). doi:10.1002/ange.201407629
- C.V. Rao, C.R. Cabrera, Y. Ishikawa, In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J. Phys. Chem. Lett. 1(18), 2622–2627 (2010). doi:10.1021/jz100971v
- S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012). doi:10.1002/adma.201202424
References
S. Basu, Recent trends in fuel cell science and technology (Springer, New York, 2007)
R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127(1), 112–126 (2004). doi:10.1016/j.jpowsour.2003.09.032
H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155(2), 95–110 (2006). doi:10.1016/j.jpowsour.2006.01.030
F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1(14), 2204–2219 (2010). doi:10.1021/jz100553m
W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112(11), 5780–5817 (2012). doi:10.1021/cr300096b
C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45(3), 517–531 (2016). doi:10.1039/C5CS00670H
B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152(1), 1–15 (2005). doi:10.1016/j.jpowsour.2005.05.098
MathSciNet
L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). doi:10.1021/cr5003563
X. Li, Y. Chen, X.L. Chi, Y.C. Xu, Q. Yang, H.Y. Zhang, J.L. Zhang, D.R. Xiao, Three octamolybdate-templated inorganic-organic hybrid frameworks based on dinuclear/tetranuclear metal-tetrazole clusters. Inorg. Chim. Acta 437, 159–166 (2015). doi:10.1016/j.ica.2015.08.021
Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). doi:10.1039/C4CS00484A
L. Wang, M. Yao, X. Hu, G. Hu, J. Lu, M. Luo, M. Fan, Amine-modified ordered mesoporous silica: the effect of pore size on CO2 capture performance. Appl. Surf. Sci. 324, 286–292 (2015). doi:10.1016/j.apsusc.2014.10.135
C. Shang, M. Li, Z. Wang, S. Wu, Z. Lu, Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. Chemelectrochem 3(9), 1437–1445 (2016). doi:10.1002/celc.201600275
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). doi:10.1038/nmat3087
L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). doi:10.1021/nn901850u
R. Lv, T. Cui, M.S. Jun, Q. Zhang, A. Cao et al., Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 21(5), 999–1006 (2015). doi:10.1002/adfm.201001602
Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano 5(3), 1677–1684 (2011). doi:10.1021/nn1030127
J. Sanetuntikul, T. Hang, S. Shanmugam, Hollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction. Chem. Commun. 50(67), 9473–9476 (2014). doi:10.1039/C4CC03437F
Y. Lu, M. Liu, H. Nie, C. Gu, M. Liu, Z. Yang, K. Yang, X.A. Chen, S. Huang, Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell. J. Nanopart. Res. 18(6), 1–9 (2016). doi:10.1007/s11051-016-3457-3
Z. Wu, R. Liu, J. Wang, J. Zhu, W. Xiao, C. Xuan, W. Lei, D. Wang, Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale 8(45), 19086–19092 (2016). doi:10.1039/C6NR06817K
Y. Xia, A. Zhuxian Yang, R. Mokaya, Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J. Phys. Chem. B 108(50), 19293–19298 (2009). doi:10.1021/jp046142n
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015). doi:10.1039/C4CS00269E
G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem. Phys. Lett. 404(1), 53–58 (2005). doi:10.1016/j.cplett.2005.01.074
W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, J. Huang, J. Yang, D. Zhao, Z. Jiang, Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 9(4), 569–573 (2007). doi:10.1016/j.elecom.2006.10.027
Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang, D. Feng, J. Yang, A. Yu, D. Zhao, Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4), 1248–1257 (2011). doi:10.1016/j.carbon.2010.11.043
S.M. Mahurin, J.S. Lee, G.A. Baker, H. Luo, S. Dai, Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. J. Membr. Sci. 353(1), 177–183 (2010). doi:10.1016/j.memsci.2010.02.045
G.H. Wang, J. Hilgert, F.H. Richter, F. Wang, H.J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schuth, Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 13(3), 293–300 (2014). doi:10.1038/nmat3872
D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour. Technol. 99(14), 6017–6027 (2008). doi:10.1016/j.biortech.2007.11.064
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). doi:10.1002/anie.201300519
R.A. Nistor, D.M. Newns, G.J. Martyna, The role of chemistry in graphene doping for carbon-based electronics. ACS Nano 5(4), 3096–3103 (2011). doi:10.1021/nn200225f
D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, Metal-free heterogeneous catalysis for sustainable chemistry. Chemsuschem 3(2), 169–180 (2010). doi:10.1002/cssc.200900180
L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim et al., Visualizing individual nitrogen dopants in monolayer grapheme. Science 333(6045), 999–1003 (2011). doi:10.1126/science.1208759
K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). doi:10.1039/C3EE44078H
L. Chen, X. Cui, Y. Wang, M. Wang, R. Qiu et al., One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions. Dalton Trans. 43(9), 3420–3423 (2014). doi:10.1039/c3dt52253a
Y.C. Lin, C.Y. Lin, P.W. Chiu, Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96(13), 133110 (2010). doi:10.1063/1.3368697
C. Shen, G. Huang, Y. Cheng, R. Cao, F. Ding, U. Schwingenschlögl, Y. Mei, Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Res. Lett. 7(1), 1–8 (2012). doi:10.1186/1556-276X-7-268
G. Tao, L. Zhang, L. Chen, X. Cui, Z. Hua, M. Wang, J. Wang, Y. Chen, J. Shi, N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86, 108–117 (2015). doi:10.1016/j.carbon.2014.12.102
D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped grapheme. Energy Environ. Sci. 4(3), 760–764 (2011). doi:10.1039/c0ee00326c
R. Ma, X. Ren, B.Y. Xia, Y. Zhou, C. Sun, Q. Liu, J. Liu, J. Wang, Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res. 9(3), 808–819 (2016). doi:10.1007/s12274-015-0960-2
R. Ma, B.Y. Xia, Y. Zhou, P. Li, Y. Chen, Q. Liu, J. Wang, Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102, 58–65 (2016). doi:10.1016/j.carbon.2016.02.034
H.J. Cui, H.M. Yu, J.F. Zheng, Z.J. Wang, Y.Y. Zhu, S.P. Jia, J. Jia, Z.P. Zhu, N-doped graphene frameworks with superhigh surface area: excellent electrocatalytic performance for oxygen reduction. Nanoscale 8(5), 2795–2803 (2016). doi:10.1039/C5NR06319A
Z. Chen, D. Higgins, H. Tao, R.S. Hsu, Z. Chen, Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J. Phys. Chem. C 113(113), 21008–21013 (2009). doi:10.1021/jp908067v
W. Xiong, F. Du, Y. Liu, J. Albert Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). doi:10.1021/ja104425h
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). doi:10.1126/science.1168049
Y.T. Lee, N.S. Kim, S.Y. Bae, J. Park, S.C. Yu, H. Ryu, H.J. Lee, Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 °C. J. Phys. Chem. B 107(47), 12958–12963 (2003). doi:10.1021/jp0274536
H. Li, H. Liu, Z. Jong, Q. Wei, D. Geng, X. Sun, H. Wang, Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int. J. Hydrog Energy 36(3), 2258–2265 (2011). doi:10.1016/j.ijhydene.2010.11.025
Y. Chen, Q. Liu, J. Wang, Carbon dioxide activated carbon nanofibers with hierarchical micro-/mesoporosity towards electrocatalytic oxygen reduction. J. Mater. Chem. A 4(15), 5553–5560 (2016). doi:10.1039/C6TA00136J
P. Chen, L.K. Wang, G. Wang, M.R. Gao, J. Ge, W.J. Yuan, Y. Shen, A. Xie, S.H. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). doi:10.1039/C4EE02531H
G. Panomsuwan, N. Saito, T. Ishizaki, Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon 98, 411–420 (2016). doi:10.1016/j.carbon.2015.11.013
F. Zheng, G. Mu, Z. Zhang, Y. Shen, M. Zhao, G. Pang, Nitrogen-doped hollow macroporous carbon spheres with high electrocatalytic activity for oxygen reduction. Mater. Lett. 68(1), 453–456 (2012). doi:10.1016/j.matlet.2011.11.035
B. Bayatsarmadi, Y. Zheng, M. Jaroniec, S. Qiao, Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chem. Asian J. 10(7), 1546–1553 (2015). doi:10.1002/asia.201500287
T. Yang, J. Liu, R. Zhou, Z. Chen, H. Xu, S. Qiao, M. Monteiro, N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. J. Mater. Chem. A 2(42), 18139–18146 (2014). doi:10.1039/C4TA04301D
Y. Ma, L. Sun, W. Huang, L. Zhang, J. Zhao, Q. Fan, W. Huang, Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 115(50), 24592–24597 (2012). doi:10.1021/jp207736h
S.M. Unni, R. Illathvalappil, P.K. Gangadharan, S.N. Bhange, S. Kurungot, Layer-separated distribution of nitrogen doped graphene by wrapping on carbon nitride tetrapods for enhanced oxygen reduction reaction in acid medium. Chem. Commun. 50(89), 13769–13772 (2014). doi:10.1039/C4CC06180B
C. Xiong, Z. Wei, B. Hu, S. Chen, L. Li, L. Guo, W. Ding, X. Liu, W. Ji, X. Wang, Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J. Power Sources 215(5), 216–220 (2012). doi:10.1016/j.jpowsour.2012.04.057
D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132(43), 15127–15129 (2010). doi:10.1021/ja105617z
G. Lalande, D. Guay, J.P. Dodelet, G. Denes, Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction. J. Electrochem. Soc. 145(7), 2411–2418 (1998). doi:10.1149/1.1838651
M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 27(15), 2521–2527 (2015). doi:10.1002/adma.201500262
J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012). doi:10.1039/c2jm34066f
S. Sircar, T.C. Golden, M.B. Rao, Activated carbon for gas separation and storage. Carbon 34(1), 1–12 (1996). doi:10.1016/0008-6223(95)00128-X
M.A. Elsayed, P.J. Hall, M.J. Heslop, Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation. Adsorption 13(3), 299–306 (2007). doi:10.1007/s10450-007-9065-x
K. Xia, Q. Gao, S. Song, C. Wu, J. Jiang, J. Hu, L. Gao, CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int. J. Hydrog. Energy 33(1), 116–123 (2008). doi:10.1016/j.ijhydene.2007.08.019
A.A. Rownaghi, F. Rezaei, M. Stante, J. Hedlund, Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl. Catal. B Environ. 119, 56–61 (2012). doi:10.1016/j.apcatb.2012.02.017
W.J. Sweet, J.S. Jur, G.N. Parsons, Bi-layer Al2O3/ZnO atomic layer deposition for controllable conductive coatings on polypropylene nonwoven fiber mats. J. Appl. Phys. 113(19), 1415 (2013). doi:10.1063/1.4804960
S. Tao, Y. Wang, Y. Yu, Y. An, W. Shi, Hierarchically porous tungstophosphoric acid/silica hybrid for high performance vis-light photocatalysis. J. Environ. Chem. Eng. 1(4), 719–727 (2013). doi:10.1016/j.jece.2013.07.012
D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon. J. Phys. Chem. C 112(26), 9950–9955 (2008). doi:10.1021/jp800173z
K. Xia, X. Tian, S. Fei, K. You, Hierarchical porous graphene-based carbons prepared by carbon dioxide activation and their gas adsorption properties. Int. J. Hydrog. Energy 39(21), 11047–11054 (2014). doi:10.1016/j.ijhydene.2014.05.059
F. Liu, C. Liu, W. Kong, C. Qi, A. Zheng, S. Dai, Design and synthesis of micro-meso-macroporous polymers with versatile active sites and excellent activities in production of biofuels and fine chemicals. Green Chem. 18(24), 6536–6544 (2016). doi:10.1039/C6GC02237E
H.W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5(5), 4973 (2014). doi:10.1038/ncomms5973
Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52(11), 3110–3116 (2013). doi:10.1002/anie.201209548
J. Wang, Q. Liu, An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption. Nanoscale 6(8), 4148–4156 (2014). doi:10.1039/C3NR05825E
L.S. Panchakarla, A. Govindaraj, C.N. Rao, Nitrogen-and boron-doped double-walled carbon nanotubes. ACS Nano 1(5), 494–500 (2007). doi:10.1021/nn700230n
S. Wu, Y. Zhu, Y. Huo, Y. Luo, L. Zhang et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017). doi:10.1007/s40843-017-9041-0
L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. Eur. J. 20(2), 564–574 (2014). doi:10.1002/chem.201303345
S.B. Yoon, G.S. Chai, S.K. Kang, J.S. Yu, K.P. Gierszal, M. Jaroniec, Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J. Am. Chem. Soc. 127(12), 4188–4189 (2005). doi:10.1021/ja0423466
D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4(2), 385–393 (1989). doi:10.1557/JMR.1989.0385
M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59(10), R6585–R6588 (1999). doi:10.1103/PhysRevB.59.R6585
J. Tang, J. Liu, C. Li, Y. Li, M.O. Tade, S. Dai, Y. Yamauchi, Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 54(2), 588–593 (2015). doi:10.1002/ange.201407629
C.V. Rao, C.R. Cabrera, Y. Ishikawa, In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J. Phys. Chem. Lett. 1(18), 2622–2627 (2010). doi:10.1021/jz100971v
S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012). doi:10.1002/adma.201202424