Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst
Corresponding Author: Minghui Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 79
Abstract
As sustainable energy becomes a major concern for modern society, renewable and clean energy systems need highly active, stable, and low-cost catalysts for the oxygen evolution reaction (OER). Mesoporous materials offer an attractive route for generating efficient electrocatalysts with high mass transport capabilities. Herein, we report an efficient hard templating pathway to design and synthesize three-dimensional (3-D) mesoporous ternary nickel iron nitride (Ni3FeN). The as-synthesized electrocatalyst shows good OER performance in an alkaline solution with low overpotential (259 mV) and a small Tafel slope (54 mV dec−1), giving superior performance to IrO2 and RuO2 catalysts. The highly active contact area, the hierarchical porosity, and the synergistic effect of bimetal atoms contributed to the improved electrocatalytic performance toward OER. In a practical rechargeable Zn–air battery, mesoporous Ni3FeN is also shown to deliver a lower charging voltage and longer lifetime than RuO2. This work opens up a new promising approach to synthesize active OER electrocatalysts for energy-related devices.
Highlights:
1 3D mesoporous Ni3FeN was constructed through hard templating and thermal nitridation.
2 Ni3FeN exhibits superior electrochemical performance for OER with a small overpotential of 259 mV to achieve a 10 mA cm−2.
3 Ni3FeN can also deliver a lower charging voltage and longer lifetime than RuO2 in a rechargeable Zn–air battery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11(1), 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
- Y.J. Wang, B. Fang, X. Wang, A. Ignaszak, Y. Liu, A. Li, L. Zhang, J. Zhang, Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). Prog. Mater. Sci. 98, 108–167 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.001
- N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke et al., Fabrication of FeNi hydroxides double–shell nanotube arrays with enhanced performance for oxygen evolution reaction. Appl. Catal. B Environ. 261, 118193 (2019). https://doi.org/10.1016/j.apcatb.2019.118193
- W. Zhong, Z. Lin, S. Feng, D. Wang, S. Shen et al., Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale 11(10), 4407–4413 (2019). https://doi.org/10.1039/C8NR10163A
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y.A. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
- X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi et al., Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6(10), 1502585 (2016). https://doi.org/10.1002/aenm.201502585
- J. Yu, Q. Li, Y. Li, C.Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
- A. Fischer, J.O. Müller, M. Antonietti, A. Thomas, Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template. ACS Nano 2(12), 2489–2496 (2008). https://doi.org/10.1021/nn800503a
- Y. Zhang, X. Wang, F. Luo, Y. Tan, L. Zeng, B. Fang, A. Liu, Rock salt type NiCo2O3 supported on ordered mesoporous carbon as a highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. 256, 117852 (2019). https://doi.org/10.1016/j.apcatb.2019.117852
- G. Liao, J. Fang, Q. Li, S. Li, Z. Xu, B. Fang, Ag-based nanocomposites: synthesis and applications in catalysis. Nanoscale 11, 7062–7096 (2019). https://doi.org/10.1039/C9NR01408J
- S.F. Hung, Y.Y. Hsu, C.J. Chang, C.S. Hsu, N.T. Suen, T.S. Chan, H.M. Chen, Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction. Adv. Energy Mater. 8(7), 1701686 (2018). https://doi.org/10.1002/aenm.201701686
- Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 52(85), 12614–12617 (2016). https://doi.org/10.1039/C6CC06608A
- T. Liu, M. Li, X. Bo, M. Zhou, Comparison study toward the influence of the second metals doping on the oxygen evolution activity of cobalt nitrides. ACS Sustain. Chem. Eng. 6(9), 11457–11465 (2018). https://doi.org/10.1021/acssuschemeng.8b01510
- X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49(1), 301–331 (2020). https://doi.org/10.1039/C7CS00614D
- Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1(1), 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
- Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15(36), 1902463 (2019). https://doi.org/10.1002/smll.201902463
- E. Haye, C. Soon Chang, G. Dudek, T. Hauet, J. Ghanbaja et al., Tuning the magnetism of plasma-synthesized iron nitride nanoparticles: application in pervaporative membranes. ACS Appl. Nano Mater. 24, 2484–2493 (2019). https://doi.org/10.1021/acsanm.9b00385
- Y. Yuan, Y. Zhou, H. Shen, S.A. Rasaki, T. Thomas et al., Holey sheets of interconnected carbon-coated nickel nitride nanoparticles as highly active and durable oxygen evolution electrocatalysts. ACS Appl. Energy Mater. 1(12), 6774–6780 (2018). https://doi.org/10.1021/acsaem.8b01855
- T. Grewe, X. Deng, H. Tüysüz, Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4. Chem. Mater. 26(10), 3162–3168 (2014). https://doi.org/10.1021/cm5005888
- J. Landon, E. Demeter, N. Inoglu, C. Keturakis, I.E. Wachs, R. Vasić, A.I. Frenkel, J.R. Kitchin, Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2(8), 1793–1801 (2012). https://doi.org/10.1021/cs3002644
- Y. Wang, X. Cui, Y. Li, L. Chen, Z. Shu, H. Chen, J. Shi, High surface area mesoporous LaFexCo1−xO3 oxides: synthesis and electrocatalytic property for oxygen reduction. Dalton Trans. 42(26), 9448–9452 (2013). https://doi.org/10.1039/C3DT50151E
- S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, D. Du, Y. Lin, Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett. 1(4), 4792–4796 (2016). https://doi.org/10.1021/acsenergylett.6b00408
- Y. Shi, Y. Wan, R. Zhang, D. Zhao, Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Adv. Funct. Mater. 18(16), 2436–2443 (2008). https://doi.org/10.1002/adfm.200800488
- X. Deng, K. Chen, H. Tüysüz, Protocol for the nanocasting method: preparation of ordered mesoporous metal oxides. Chem. Mater. 29(1), 40–52 (2016). https://doi.org/10.1021/acs.chemmater.6b02645
- X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng et al., Container effect in nanocasting synthesis of mesoporous metal oxides. J. Am. Chem. Soc. 133(37), 14542–14545 (2011). https://doi.org/10.1021/ja2060512
- K. Xu, P. Chen, X. Li, Y. Tong, H. Ding et al., Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 137(12), 4119–4125 (2015). https://doi.org/10.1021/ja5119495
- G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
- Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Ni-Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 13(25), 1700099 (2017). https://doi.org/10.1002/smll.201700099
- X. Deng, S. Öztürk, C. Weidenthaler, H. Tüysüz, Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(25), 21225–21233 (2017). https://doi.org/10.1021/acsami.7b02571
- H. Tüysüz, C.W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 130(34), 11510–11517 (2008). https://doi.org/10.1021/ja803362s
- A. Saad, Z. Cheng, X. Zhang, S. Liu, H. Shen, T. Thomas, J. Wang, M. Yang, Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis. Adv. Mater. Interfaces 6(20), 1900960 (2019). https://doi.org/10.1002/admi.201900960
- Q. Chen, R. Wang, M. Yu, Y. Zeng, F. Lu, X. Kuang, X. Lu, Bifunctional iron–nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 247, 666–673 (2017). https://doi.org/10.1016/j.electacta.2017.07.025
- H. Li, S. Ci, M. Zhang, J. Chen, K. Lai, Z. Wen, Facile spray-pyrolysis synthesis of yolk–shell earth-abundant elemental nickel–iron-based nanohybrid electrocatalysts for full water splitting. Chemsuschem 10(23), 4756–4763 (2017). https://doi.org/10.1002/cssc.201701521
- A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600(9), 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041
- B. Liu, B. He, H.Q. Peng, Y. Zhao, J. Cheng et al., Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5, 1800406 (2018). https://doi.org/10.1002/advs.201800406
- K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, W. Yang, Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell. Chem. Commun. 52(79), 11803–11806 (2016). https://doi.org/10.1039/C6CC04951F
- M. Fingerle, S. Tengeler, W. Calvet, T. Mayer, W. Jaegermann, Water interaction with sputter-deposited nickel oxide on n-Si photoanode: cryo photoelectron spectroscopy on adsorbed water in the frozen electrolyte approach. J. Electrochem. Soc. 165(4), H3148–H3153 (2018). https://doi.org/10.1149/2.0191804jes
- M. Muhler, R. Schlögl, G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992). https://doi.org/10.1016/0021-9517(92)90295-S
- K. Liang, L.S. Hui, A. Turak, Probing the multi-step crystallization dynamics of micelle templated nanoparticles: structural evolution of single crystalline γ Fe2O3. Nanoscale 11(18), 9076–9084 (2019). https://doi.org/10.1039/C9NR00148D
- A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36(12), 1564–1574 (2004). https://doi.org/10.1002/sia.1984
- T.C. Lin, G. Seshadri, J.A. Kelber, A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 119(1–2), 83–92 (1997). https://doi.org/10.1016/S0169-4332(97)00167-0
- F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531–4540 (2018). https://doi.org/10.1038/s41467-018-06728-7
- F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen, Z. Ren, Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation. ACS Catal. 7(3), 2052–2057 (2017). https://doi.org/10.1021/acscatal.6b03132
- J.R. Swierk, S. Klaus, L. Trotochaud, A.T. Bell, T.D. Tilley, Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy) hydroxide catalysts. J. Phys. Chem. C 119(33), 19022–19029 (2015). https://doi.org/10.1021/acs.jpcc.5b05861
- G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 30(5), 1704609 (2018). https://doi.org/10.1002/adma.201704609
- B. Fang, J.H. Kim, M.S. Kim, J.S. Yu, Hierarchical nanostructured carbons with meso–macroporosity: design, characterization, and applications. Acc. Chem. Res. 46(7), 1397–1406 (2013). https://doi.org/10.1021/ar300253f
- W.B. Hua, X.D. Guo, Z. Zheng, Y.J. Wang, B.H. Zhong, B. Fang, J.Z. Wang, S.L. Chou, H. Liu, Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J. Power Sources 275, 200–206 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.178
- B. Fang, M.S. Kim, J.H. Kim, S. Lim, J.S. Yu, Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J. Mater. Chem. 20(45), 10253–10259 (2010). https://doi.org/10.1039/C0JM01387K
- J.H. Kim, B. Fang, M. Kim, J.S. Yu, Hollow spherical carbon with mesoporous shell as a superb anode catalyst support in proton exchange membrane fuel cell. Catal. Today 146(1–2), 25–30 (2009). https://doi.org/10.1016/j.cattod.2009.02.013
- B. Fang, J.H. Kim, C. Lee, J.S. Yu, Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J. Phys. Chem. C 112(2), 639–645 (2008). https://doi.org/10.1021/jp710193s
- R.D. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013). https://doi.org/10.1021/ja403102j
- L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744–6753 (2014). https://doi.org/10.1021/ja502379c
- S.L. Candelaria, N.M. Bedford, T.J. Woehl, N.S. Rentz, A.R. Showalter et al., Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catal. 7(1), 365–379 (2016). https://doi.org/10.1021/acscatal.6b02552
- J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air Battery and water splitting. Nano-Micro Lett. 11(1), 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- M.W. Louie, A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135(33), 12329–12337 (2013). https://doi.org/10.1021/ja405351s
- D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3(8), 2515–2525 (2012). https://doi.org/10.1039/C2SC20539D
- A. Saad, H. Shen, Z. Cheng, Q. Ju, H. Guo, M. Munir, A. Turak, J. Wang, M. Yang, Three-dimensional mesoporous phosphide-spinel oxide heterojunctions with dual function as catalysts for overall water splitting. ACS Appl. Energy Mater. 3, 1684–1693 (2020). https://doi.org/10.1021/acsaem.9b02155
- M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv. Funct. Mater. 26(46), 8555–8561 (2016). https://doi.org/10.1002/adfm.201604804
- B. Guo, R. Ma, Z. Li, S. Guo, J. Luo, M. Yang, Q. Liu, T. Thomas, J. Wang, Hierarchical N-doped porous carbons for Zn–Air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
- P. Li, H.C. Zeng, Sandwich-like nanocomposite of CoNiOx/reduced graphene oxide for enhanced electrocatalytic water oxidation. Adv. Funct. Mater. 27(13), 1606325 (2017). https://doi.org/10.1002/adfm.201606325
- J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K. Leung, S. Yang, Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1(2), 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220
References
J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11(1), 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
Y.J. Wang, B. Fang, X. Wang, A. Ignaszak, Y. Liu, A. Li, L. Zhang, J. Zhang, Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). Prog. Mater. Sci. 98, 108–167 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.001
N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke et al., Fabrication of FeNi hydroxides double–shell nanotube arrays with enhanced performance for oxygen evolution reaction. Appl. Catal. B Environ. 261, 118193 (2019). https://doi.org/10.1016/j.apcatb.2019.118193
W. Zhong, Z. Lin, S. Feng, D. Wang, S. Shen et al., Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale 11(10), 4407–4413 (2019). https://doi.org/10.1039/C8NR10163A
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y.A. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi et al., Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6(10), 1502585 (2016). https://doi.org/10.1002/aenm.201502585
J. Yu, Q. Li, Y. Li, C.Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
A. Fischer, J.O. Müller, M. Antonietti, A. Thomas, Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template. ACS Nano 2(12), 2489–2496 (2008). https://doi.org/10.1021/nn800503a
Y. Zhang, X. Wang, F. Luo, Y. Tan, L. Zeng, B. Fang, A. Liu, Rock salt type NiCo2O3 supported on ordered mesoporous carbon as a highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. 256, 117852 (2019). https://doi.org/10.1016/j.apcatb.2019.117852
G. Liao, J. Fang, Q. Li, S. Li, Z. Xu, B. Fang, Ag-based nanocomposites: synthesis and applications in catalysis. Nanoscale 11, 7062–7096 (2019). https://doi.org/10.1039/C9NR01408J
S.F. Hung, Y.Y. Hsu, C.J. Chang, C.S. Hsu, N.T. Suen, T.S. Chan, H.M. Chen, Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction. Adv. Energy Mater. 8(7), 1701686 (2018). https://doi.org/10.1002/aenm.201701686
Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 52(85), 12614–12617 (2016). https://doi.org/10.1039/C6CC06608A
T. Liu, M. Li, X. Bo, M. Zhou, Comparison study toward the influence of the second metals doping on the oxygen evolution activity of cobalt nitrides. ACS Sustain. Chem. Eng. 6(9), 11457–11465 (2018). https://doi.org/10.1021/acssuschemeng.8b01510
X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49(1), 301–331 (2020). https://doi.org/10.1039/C7CS00614D
Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1(1), 100001 (2019). https://doi.org/10.1016/j.enchem.2019.100001
Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15(36), 1902463 (2019). https://doi.org/10.1002/smll.201902463
E. Haye, C. Soon Chang, G. Dudek, T. Hauet, J. Ghanbaja et al., Tuning the magnetism of plasma-synthesized iron nitride nanoparticles: application in pervaporative membranes. ACS Appl. Nano Mater. 24, 2484–2493 (2019). https://doi.org/10.1021/acsanm.9b00385
Y. Yuan, Y. Zhou, H. Shen, S.A. Rasaki, T. Thomas et al., Holey sheets of interconnected carbon-coated nickel nitride nanoparticles as highly active and durable oxygen evolution electrocatalysts. ACS Appl. Energy Mater. 1(12), 6774–6780 (2018). https://doi.org/10.1021/acsaem.8b01855
T. Grewe, X. Deng, H. Tüysüz, Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4. Chem. Mater. 26(10), 3162–3168 (2014). https://doi.org/10.1021/cm5005888
J. Landon, E. Demeter, N. Inoglu, C. Keturakis, I.E. Wachs, R. Vasić, A.I. Frenkel, J.R. Kitchin, Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2(8), 1793–1801 (2012). https://doi.org/10.1021/cs3002644
Y. Wang, X. Cui, Y. Li, L. Chen, Z. Shu, H. Chen, J. Shi, High surface area mesoporous LaFexCo1−xO3 oxides: synthesis and electrocatalytic property for oxygen reduction. Dalton Trans. 42(26), 9448–9452 (2013). https://doi.org/10.1039/C3DT50151E
S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, D. Du, Y. Lin, Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett. 1(4), 4792–4796 (2016). https://doi.org/10.1021/acsenergylett.6b00408
Y. Shi, Y. Wan, R. Zhang, D. Zhao, Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Adv. Funct. Mater. 18(16), 2436–2443 (2008). https://doi.org/10.1002/adfm.200800488
X. Deng, K. Chen, H. Tüysüz, Protocol for the nanocasting method: preparation of ordered mesoporous metal oxides. Chem. Mater. 29(1), 40–52 (2016). https://doi.org/10.1021/acs.chemmater.6b02645
X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng et al., Container effect in nanocasting synthesis of mesoporous metal oxides. J. Am. Chem. Soc. 133(37), 14542–14545 (2011). https://doi.org/10.1021/ja2060512
K. Xu, P. Chen, X. Li, Y. Tong, H. Ding et al., Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 137(12), 4119–4125 (2015). https://doi.org/10.1021/ja5119495
G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Ni-Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 13(25), 1700099 (2017). https://doi.org/10.1002/smll.201700099
X. Deng, S. Öztürk, C. Weidenthaler, H. Tüysüz, Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(25), 21225–21233 (2017). https://doi.org/10.1021/acsami.7b02571
H. Tüysüz, C.W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 130(34), 11510–11517 (2008). https://doi.org/10.1021/ja803362s
A. Saad, Z. Cheng, X. Zhang, S. Liu, H. Shen, T. Thomas, J. Wang, M. Yang, Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis. Adv. Mater. Interfaces 6(20), 1900960 (2019). https://doi.org/10.1002/admi.201900960
Q. Chen, R. Wang, M. Yu, Y. Zeng, F. Lu, X. Kuang, X. Lu, Bifunctional iron–nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 247, 666–673 (2017). https://doi.org/10.1016/j.electacta.2017.07.025
H. Li, S. Ci, M. Zhang, J. Chen, K. Lai, Z. Wen, Facile spray-pyrolysis synthesis of yolk–shell earth-abundant elemental nickel–iron-based nanohybrid electrocatalysts for full water splitting. Chemsuschem 10(23), 4756–4763 (2017). https://doi.org/10.1002/cssc.201701521
A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600(9), 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041
B. Liu, B. He, H.Q. Peng, Y. Zhao, J. Cheng et al., Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5, 1800406 (2018). https://doi.org/10.1002/advs.201800406
K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, W. Yang, Enhancement of oxygen evolution performance through synergetic action between NiFe metal core and NiFeOx shell. Chem. Commun. 52(79), 11803–11806 (2016). https://doi.org/10.1039/C6CC04951F
M. Fingerle, S. Tengeler, W. Calvet, T. Mayer, W. Jaegermann, Water interaction with sputter-deposited nickel oxide on n-Si photoanode: cryo photoelectron spectroscopy on adsorbed water in the frozen electrolyte approach. J. Electrochem. Soc. 165(4), H3148–H3153 (2018). https://doi.org/10.1149/2.0191804jes
M. Muhler, R. Schlögl, G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992). https://doi.org/10.1016/0021-9517(92)90295-S
K. Liang, L.S. Hui, A. Turak, Probing the multi-step crystallization dynamics of micelle templated nanoparticles: structural evolution of single crystalline γ Fe2O3. Nanoscale 11(18), 9076–9084 (2019). https://doi.org/10.1039/C9NR00148D
A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36(12), 1564–1574 (2004). https://doi.org/10.1002/sia.1984
T.C. Lin, G. Seshadri, J.A. Kelber, A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 119(1–2), 83–92 (1997). https://doi.org/10.1016/S0169-4332(97)00167-0
F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531–4540 (2018). https://doi.org/10.1038/s41467-018-06728-7
F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen, Z. Ren, Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation. ACS Catal. 7(3), 2052–2057 (2017). https://doi.org/10.1021/acscatal.6b03132
J.R. Swierk, S. Klaus, L. Trotochaud, A.T. Bell, T.D. Tilley, Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy) hydroxide catalysts. J. Phys. Chem. C 119(33), 19022–19029 (2015). https://doi.org/10.1021/acs.jpcc.5b05861
G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 30(5), 1704609 (2018). https://doi.org/10.1002/adma.201704609
B. Fang, J.H. Kim, M.S. Kim, J.S. Yu, Hierarchical nanostructured carbons with meso–macroporosity: design, characterization, and applications. Acc. Chem. Res. 46(7), 1397–1406 (2013). https://doi.org/10.1021/ar300253f
W.B. Hua, X.D. Guo, Z. Zheng, Y.J. Wang, B.H. Zhong, B. Fang, J.Z. Wang, S.L. Chou, H. Liu, Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J. Power Sources 275, 200–206 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.178
B. Fang, M.S. Kim, J.H. Kim, S. Lim, J.S. Yu, Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J. Mater. Chem. 20(45), 10253–10259 (2010). https://doi.org/10.1039/C0JM01387K
J.H. Kim, B. Fang, M. Kim, J.S. Yu, Hollow spherical carbon with mesoporous shell as a superb anode catalyst support in proton exchange membrane fuel cell. Catal. Today 146(1–2), 25–30 (2009). https://doi.org/10.1016/j.cattod.2009.02.013
B. Fang, J.H. Kim, C. Lee, J.S. Yu, Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J. Phys. Chem. C 112(2), 639–645 (2008). https://doi.org/10.1021/jp710193s
R.D. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013). https://doi.org/10.1021/ja403102j
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136(18), 6744–6753 (2014). https://doi.org/10.1021/ja502379c
S.L. Candelaria, N.M. Bedford, T.J. Woehl, N.S. Rentz, A.R. Showalter et al., Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catal. 7(1), 365–379 (2016). https://doi.org/10.1021/acscatal.6b02552
J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air Battery and water splitting. Nano-Micro Lett. 11(1), 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
M.W. Louie, A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135(33), 12329–12337 (2013). https://doi.org/10.1021/ja405351s
D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3(8), 2515–2525 (2012). https://doi.org/10.1039/C2SC20539D
A. Saad, H. Shen, Z. Cheng, Q. Ju, H. Guo, M. Munir, A. Turak, J. Wang, M. Yang, Three-dimensional mesoporous phosphide-spinel oxide heterojunctions with dual function as catalysts for overall water splitting. ACS Appl. Energy Mater. 3, 1684–1693 (2020). https://doi.org/10.1021/acsaem.9b02155
M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv. Funct. Mater. 26(46), 8555–8561 (2016). https://doi.org/10.1002/adfm.201604804
B. Guo, R. Ma, Z. Li, S. Guo, J. Luo, M. Yang, Q. Liu, T. Thomas, J. Wang, Hierarchical N-doped porous carbons for Zn–Air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
P. Li, H.C. Zeng, Sandwich-like nanocomposite of CoNiOx/reduced graphene oxide for enhanced electrocatalytic water oxidation. Adv. Funct. Mater. 27(13), 1606325 (2017). https://doi.org/10.1002/adfm.201606325
J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K. Leung, S. Yang, Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1(2), 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220