Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors
Corresponding Author: Jiacheng Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 20
Abstract
Nitrogen-doped carbon materials with a large specific surface area, high conductivity, and adjustable microstructures have many prospects for energy-related applications. This is especially true for N-doped nanocarbons used in the electrocatalytic oxygen reduction reaction (ORR) and supercapacitors. Here, we report a low-cost, environmentally friendly, large-scale mechanochemical method of preparing N-doped porous carbons (NPCs) with hierarchical micro-mesopores and a large surface area via ball-milling polymerization followed by pyrolysis. The optimized NPC prepared at 1000 °C (NPC-1000) offers excellent ORR activity with an onset potential (Eonset) and half-wave potential (E1/2) of 0.9 and 0.82 V, respectively (vs. a reversible hydrogen electrode), which are only approximately 30 mV lower than that of Pt/C. The rechargeable Zn–air battery assembled using NPC-1000 and the NiFe-layered double hydroxide as bifunctional ORR and oxygen evolution reaction electrodes offered superior cycling stability and comparable discharge performance to RuO2 and Pt/C. Moreover, the supercapacitor electrode equipped with NPC prepared at 800 °C exhibited a high specific capacity (431 F g−1 at 10 mV s−1), outstanding rate, performance, and excellent cycling stability in an aqueous 6-M KOH solution. This work demonstrates the potential of the mechanochemical preparation method of porous carbons, which are important for energy conversion and storage.
Highlights:
1 Hierarchical N-doped porous carbons (NPCs) with large surface area and controllable N-doping are synthesized by ball milling, followed by pyrolysis.
2 As a Zn–air battery cathode, NPCs have comparable discharge performance to precious metal catalysts and more stability.
3 NPCs also exhibit an excellent specific capacity and cycling stability when used as supercapacitor electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Zhou, Y. Xu, Y. Lei, Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 20, 33–57 (2018). https://doi.org/10.1016/j.nantod.2018.04.002
- S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019). https://doi.org/10.1002/adma.201804297
- M.L. Pegis, C.F. Wise, D.J. Martin, J.M. Mayer, Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 118, 2340–2391 (2018). https://doi.org/10.1021/acs.chemrev.7b00542
- X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
- M.H. Naveen, K. Shim, M.S.A. Hossain, J.H. Kim, Y.-B. Shim, Template free preparation of heteroatoms doped carbon spheres with trace Fe for efficient oxygen reduction reaction and supercapacitor. Adv. Energy Mater. 7, 1602002 (2017). https://doi.org/10.1002/aenm.201602002
- T. Zhou, Y. Zhou, R. Ma, Z. Zhou, G. Liu, Q. Liu, Y. Zhu, J. Wang, In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale 8, 18134–18142 (2016). https://doi.org/10.1039/c6nr06716f
- K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
- T. Zhou, R. Ma, Y. Zhou, R. Xing, Q. Liu, Y. Zhu, J. Wang, Efficient N-doping of hollow core-mesoporous shelled carbon spheres via hydrothermal treatment in ammonia solution for the electrocatalytic oxygen reduction reaction. Microporous Mesoporous Mater. 261, 88–97 (2018). https://doi.org/10.1016/j.micromeso.2017.10.050
- Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie et al., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012). https://doi.org/10.1021/nn203393d
- G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn–air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
- B. Ashourirad, M. Demir, R.A. Smith, R.B. Gupta, H.M. El-Kaderi, Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Adv. 8, 12300–12309 (2018). https://doi.org/10.1039/c8ra00546j
- C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144–1173 (2016). https://doi.org/10.1039/c5ta08620e
- R. Yang, M. Li, S.Q. Liu, D.P. Qiu, W.J. Xu, Preparation of cork-derived porous activated carbon for high performance supercapacitors. J. Inorg. Mater. 34, 625 (2019). https://doi.org/10.15541/jim20180426
- M. Demir, S.K. Saraswat, R.B. Gupta, Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7, 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b
- E. Frackowiaka, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–995 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
- B. Fang, J.H. Kim, M.-S. Kim, A. Bonakdarpour, A. Lam, D.P. Wilkinson, J.-S. Yu, Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J. Mater. Chem. 22, 19031–19038 (2012). https://doi.org/10.1039/c2jm33435f
- E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J.P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011). https://doi.org/10.1038/ncomms1427
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
- A. Ignaszak, S. Ye, E. Gyenge, A study of the catalytic interface for O2 electroreduction on Pt: The interaction between carbon support meso/microstructure and ionomer (Nafion) distribution. J. Phys. Chem. C 113, 298–307 (2008). https://doi.org/10.1021/jp8060398
- Y. Li, I. Hussain, J. Qi, C. Liu, J. Li et al., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep. Purif. Technol. 165, 190–198 (2016). https://doi.org/10.1016/j.seppur.2016.04.007
- M. Demir, B. Ashourirad, J.H. Mugumya, S.K. Saraswat, H.M. El-Kaderi, R.B. Gupta, Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. Int. J. Hydrogen Energy 43, 18549–18558 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.220
- M. Zhong, E.K. Kim, J.P. McGann, S.E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski, Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J. Am. Chem. Soc. 134, 14846–14857 (2012). https://doi.org/10.1021/ja304352n
- S. Wang, J. Zhang, P. Shang, Y. Li, Z. Chen, Q. Xu, N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem. Commun. 50, 12091–12094 (2014). https://doi.org/10.1039/c4cc04832f
- Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim. Acta 153, 448–455 (2015). https://doi.org/10.1016/j.electacta.2014.11.173
- E. Zhang, G.P. Hao, M.E. Casco, V. Bon, S. Grätz, L. Borchardt, Nanocasting in ball mills–combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J. Mater. Chem. A 6, 859–865 (2018). https://doi.org/10.1039/c7ta10783h
- P. Basnet, E. Anderson, Y. Zhao, Hybrid CuxO–TiO2 nanopowders prepared by ball milling for solar energy conversion and visible-light-induced wastewater treatment. ACS Appl. Nano Mater. 2, 2446–2455 (2019). https://doi.org/10.1021/acsanm.9b00325
- L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014). https://doi.org/10.1038/nnano.2013.272
- J. Wang, Q. Liu, An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption. Nanoscale 6, 4148–4156 (2014). https://doi.org/10.1039/c3nr05825e
- X. Liu, H. Liu, M. Mi, W. Kong, Y. Ge, J. Hu, Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Sep. Purif. Technol. 224, 44–50 (2019). https://doi.org/10.1016/j.seppur.2019.05.010
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
- Z. Tang, Z. Pei, Z. Wang, H. Li, J. Zeng et al., Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018). https://doi.org/10.1016/j.carbon.2018.01.055
- J.C. Wang, M.J. Yang, Y.F. Zhu, R.G. Ma, W.T. He, Renewable porous carbons prepared by KOH activation as oxygen reduction electrocatalysts. J. Inorg. Mater. (2019). https://doi.org/10.15541/jim20190036
- B. Bayatsarmadi, Y. Zheng, M. Jaroniec, S.Z. Qiao, Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chem. Asian J. 10, 1546–1553 (2015). https://doi.org/10.1002/asia.201500287
- P.H. Matter, U.S. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109, 115–123 (2006). https://doi.org/10.1007/s10562-006-0067-1
- T. Iwazaki, R. Obinata, W. Sugimoto, Y. Takasu, High oxygen-reduction activity of silk-derived activated carbon. Electrochem. Commun. 11, 376–378 (2009). https://doi.org/10.1016/j.elecom.2008.11.045
- X. Bao, X. Nie, D. Deak, E.J. Biddinger, W. Luo, V. Asthagiri, U.S. Ozkan, C.M. Hadad, A first-principles study of the role of quaternary-N doping on the oxygen reduction reaction activity and selectivity of graphene edge sites. Top. Catal. 56, 1623–1633 (2013). https://doi.org/10.1007/s11244-013-0097-z
- M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll et al., N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. A Mater. Sci. Process. 74, 355–361 (2002). https://doi.org/10.1007/s003390201278
- X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009). https://doi.org/10.1021/ja907098f
- T. Zhou, R. Ma, T. Zhang, Z. Li, M. Yang, Q. Liu, Y. Zhu, J. Wang, Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. J. Colloid Interface Sci. 536, 42–52 (2019). https://doi.org/10.1016/j.jcis.2018.10.021
- H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu, J. Wang, M. Yang, Oxygen reduction reactions of Fe–NC catalysts: current status and the way forward. Electrochem. Energy Rev. 2, 252–276 (2019). https://doi.org/10.1007/s41918-019-00030-w
- P. Xu, H.H. Song, Z.K. Ma, D.L. Wang, Y.E. Xie, Fe-N modified carbon black as a high-performance and cost-effective cathode catalyst in microbial fuel cells. J. Inorg. Mater. 33, 295–300 (2018). https://doi.org/10.15541/jim20170136
- L.T. Ma, C.Y. Zhi, Fe, N doped 2D porous carbon bifunctional catalyst for zinc–air battery. J. Inorg. Mater. 34, 103–108 (2019). https://doi.org/10.15541/jim20180260
- B.-J. Yoon, S.-H. Jeong, K.-H. Lee, S.H. Kim, C.G. Park, J.H. Han, Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem. Phys. Lett. 388, 170–174 (2004). https://doi.org/10.1016/j.cplett.2004.02.071
- Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f
- G. Zhu, T. Chen, Y. Hu, L. Ma, R. Chen et al., Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 33, 229–237 (2017). https://doi.org/10.1016/j.nanoen.2017.01.038
- J. Wang, J. Tang, B. Ding, V. Malgras, Z. Chang et al., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 8, 15717 (2017). https://doi.org/10.1038/ncomms15717
- H. Zhou, Y. Zhou, L. Li, Y. Li, X. Liu, P. Zhao, B. Gao, Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustain. Chem. Eng. 7, 9281–9290 (2019). https://doi.org/10.1021/acssuschemeng.9b00279
- S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154–18162 (2015). https://doi.org/10.1039/c5ta04721h
- V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
- T. Ling, P. Da, X. Zheng, B. Ge, Z. Hu et al., Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, 6261 (2018). https://doi.org/10.1126/sciadv.aau6261
- J. Shao, X. Zhou, Q. Liu, R. Zou, W. Li, J. Yang, J. Hu, Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. J. Mater. Chem. A 3, 6168–6176 (2015). https://doi.org/10.1039/c4ta06793b
- G. Lota, K. Lota, E. Frackowiak, Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem. Commun. 9, 1828–1832 (2007). https://doi.org/10.1016/j.elecom.2007.04.015
- G. Wang, J. Zhang, S. Kuang, J. Zhou, W. Xing, S. Zhuo, Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim. Acta 153, 273–279 (2015). https://doi.org/10.1016/j.electacta.2014.12.006
References
M. Zhou, Y. Xu, Y. Lei, Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 20, 33–57 (2018). https://doi.org/10.1016/j.nantod.2018.04.002
S.K. Singh, K. Takeyasu, J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297 (2019). https://doi.org/10.1002/adma.201804297
M.L. Pegis, C.F. Wise, D.J. Martin, J.M. Mayer, Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 118, 2340–2391 (2018). https://doi.org/10.1021/acs.chemrev.7b00542
X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
M.H. Naveen, K. Shim, M.S.A. Hossain, J.H. Kim, Y.-B. Shim, Template free preparation of heteroatoms doped carbon spheres with trace Fe for efficient oxygen reduction reaction and supercapacitor. Adv. Energy Mater. 7, 1602002 (2017). https://doi.org/10.1002/aenm.201602002
T. Zhou, Y. Zhou, R. Ma, Z. Zhou, G. Liu, Q. Liu, Y. Zhu, J. Wang, In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale 8, 18134–18142 (2016). https://doi.org/10.1039/c6nr06716f
K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
T. Zhou, R. Ma, Y. Zhou, R. Xing, Q. Liu, Y. Zhu, J. Wang, Efficient N-doping of hollow core-mesoporous shelled carbon spheres via hydrothermal treatment in ammonia solution for the electrocatalytic oxygen reduction reaction. Microporous Mesoporous Mater. 261, 88–97 (2018). https://doi.org/10.1016/j.micromeso.2017.10.050
Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie et al., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012). https://doi.org/10.1021/nn203393d
G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn–air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
B. Ashourirad, M. Demir, R.A. Smith, R.B. Gupta, H.M. El-Kaderi, Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Adv. 8, 12300–12309 (2018). https://doi.org/10.1039/c8ra00546j
C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin, Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005). https://doi.org/10.1016/j.carbon.2004.12.028
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144–1173 (2016). https://doi.org/10.1039/c5ta08620e
R. Yang, M. Li, S.Q. Liu, D.P. Qiu, W.J. Xu, Preparation of cork-derived porous activated carbon for high performance supercapacitors. J. Inorg. Mater. 34, 625 (2019). https://doi.org/10.15541/jim20180426
M. Demir, S.K. Saraswat, R.B. Gupta, Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7, 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b
E. Frackowiaka, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–995 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
B. Fang, J.H. Kim, M.-S. Kim, A. Bonakdarpour, A. Lam, D.P. Wilkinson, J.-S. Yu, Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J. Mater. Chem. 22, 19031–19038 (2012). https://doi.org/10.1039/c2jm33435f
E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J.P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011). https://doi.org/10.1038/ncomms1427
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
A. Ignaszak, S. Ye, E. Gyenge, A study of the catalytic interface for O2 electroreduction on Pt: The interaction between carbon support meso/microstructure and ionomer (Nafion) distribution. J. Phys. Chem. C 113, 298–307 (2008). https://doi.org/10.1021/jp8060398
Y. Li, I. Hussain, J. Qi, C. Liu, J. Li et al., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep. Purif. Technol. 165, 190–198 (2016). https://doi.org/10.1016/j.seppur.2016.04.007
M. Demir, B. Ashourirad, J.H. Mugumya, S.K. Saraswat, H.M. El-Kaderi, R.B. Gupta, Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. Int. J. Hydrogen Energy 43, 18549–18558 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.220
M. Zhong, E.K. Kim, J.P. McGann, S.E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski, Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J. Am. Chem. Soc. 134, 14846–14857 (2012). https://doi.org/10.1021/ja304352n
S. Wang, J. Zhang, P. Shang, Y. Li, Z. Chen, Q. Xu, N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem. Commun. 50, 12091–12094 (2014). https://doi.org/10.1039/c4cc04832f
Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim. Acta 153, 448–455 (2015). https://doi.org/10.1016/j.electacta.2014.11.173
E. Zhang, G.P. Hao, M.E. Casco, V. Bon, S. Grätz, L. Borchardt, Nanocasting in ball mills–combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J. Mater. Chem. A 6, 859–865 (2018). https://doi.org/10.1039/c7ta10783h
P. Basnet, E. Anderson, Y. Zhao, Hybrid CuxO–TiO2 nanopowders prepared by ball milling for solar energy conversion and visible-light-induced wastewater treatment. ACS Appl. Nano Mater. 2, 2446–2455 (2019). https://doi.org/10.1021/acsanm.9b00325
L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014). https://doi.org/10.1038/nnano.2013.272
J. Wang, Q. Liu, An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption. Nanoscale 6, 4148–4156 (2014). https://doi.org/10.1039/c3nr05825e
X. Liu, H. Liu, M. Mi, W. Kong, Y. Ge, J. Hu, Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Sep. Purif. Technol. 224, 44–50 (2019). https://doi.org/10.1016/j.seppur.2019.05.010
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
Z. Tang, Z. Pei, Z. Wang, H. Li, J. Zeng et al., Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018). https://doi.org/10.1016/j.carbon.2018.01.055
J.C. Wang, M.J. Yang, Y.F. Zhu, R.G. Ma, W.T. He, Renewable porous carbons prepared by KOH activation as oxygen reduction electrocatalysts. J. Inorg. Mater. (2019). https://doi.org/10.15541/jim20190036
B. Bayatsarmadi, Y. Zheng, M. Jaroniec, S.Z. Qiao, Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chem. Asian J. 10, 1546–1553 (2015). https://doi.org/10.1002/asia.201500287
P.H. Matter, U.S. Ozkan, Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109, 115–123 (2006). https://doi.org/10.1007/s10562-006-0067-1
T. Iwazaki, R. Obinata, W. Sugimoto, Y. Takasu, High oxygen-reduction activity of silk-derived activated carbon. Electrochem. Commun. 11, 376–378 (2009). https://doi.org/10.1016/j.elecom.2008.11.045
X. Bao, X. Nie, D. Deak, E.J. Biddinger, W. Luo, V. Asthagiri, U.S. Ozkan, C.M. Hadad, A first-principles study of the role of quaternary-N doping on the oxygen reduction reaction activity and selectivity of graphene edge sites. Top. Catal. 56, 1623–1633 (2013). https://doi.org/10.1007/s11244-013-0097-z
M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll et al., N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. A Mater. Sci. Process. 74, 355–361 (2002). https://doi.org/10.1007/s003390201278
X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009). https://doi.org/10.1021/ja907098f
T. Zhou, R. Ma, T. Zhang, Z. Li, M. Yang, Q. Liu, Y. Zhu, J. Wang, Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. J. Colloid Interface Sci. 536, 42–52 (2019). https://doi.org/10.1016/j.jcis.2018.10.021
H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu, J. Wang, M. Yang, Oxygen reduction reactions of Fe–NC catalysts: current status and the way forward. Electrochem. Energy Rev. 2, 252–276 (2019). https://doi.org/10.1007/s41918-019-00030-w
P. Xu, H.H. Song, Z.K. Ma, D.L. Wang, Y.E. Xie, Fe-N modified carbon black as a high-performance and cost-effective cathode catalyst in microbial fuel cells. J. Inorg. Mater. 33, 295–300 (2018). https://doi.org/10.15541/jim20170136
L.T. Ma, C.Y. Zhi, Fe, N doped 2D porous carbon bifunctional catalyst for zinc–air battery. J. Inorg. Mater. 34, 103–108 (2019). https://doi.org/10.15541/jim20180260
B.-J. Yoon, S.-H. Jeong, K.-H. Lee, S.H. Kim, C.G. Park, J.H. Han, Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem. Phys. Lett. 388, 170–174 (2004). https://doi.org/10.1016/j.cplett.2004.02.071
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f
G. Zhu, T. Chen, Y. Hu, L. Ma, R. Chen et al., Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 33, 229–237 (2017). https://doi.org/10.1016/j.nanoen.2017.01.038
J. Wang, J. Tang, B. Ding, V. Malgras, Z. Chang et al., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 8, 15717 (2017). https://doi.org/10.1038/ncomms15717
H. Zhou, Y. Zhou, L. Li, Y. Li, X. Liu, P. Zhao, B. Gao, Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustain. Chem. Eng. 7, 9281–9290 (2019). https://doi.org/10.1021/acssuschemeng.9b00279
S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154–18162 (2015). https://doi.org/10.1039/c5ta04721h
V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
T. Ling, P. Da, X. Zheng, B. Ge, Z. Hu et al., Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, 6261 (2018). https://doi.org/10.1126/sciadv.aau6261
J. Shao, X. Zhou, Q. Liu, R. Zou, W. Li, J. Yang, J. Hu, Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. J. Mater. Chem. A 3, 6168–6176 (2015). https://doi.org/10.1039/c4ta06793b
G. Lota, K. Lota, E. Frackowiak, Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem. Commun. 9, 1828–1832 (2007). https://doi.org/10.1016/j.elecom.2007.04.015
G. Wang, J. Zhang, S. Kuang, J. Zhou, W. Xing, S. Zhuo, Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim. Acta 153, 273–279 (2015). https://doi.org/10.1016/j.electacta.2014.12.006