Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review
Corresponding Author: Lili Han
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 228
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Highlights:
1 The burgeoning research topic of axially coordinated single-atom catalysts (SACs) is briefly outlined in this review.
2 A comprehensive summary of the recent advances on synthetic strategies and electrocatalytic applications of axially coordinated SACs is provided.
3 The challenges and outlooks for future axially coordinated SACs study have been emphasized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Slamersak, G. Kallis, D.W. O’Neill, Energy requirements and carbon emissions for a low-carbon energy transition. Nat. Commun. 13, 6932 (2022). https://doi.org/10.1038/s41467-022-33976-5
- K. Zhang, W. Guo, Z. Liang, R. Zou, Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci. China Chem. 62, 417–429 (2019). https://doi.org/10.1007/s11426-018-9441-4
- G.A. Abdalrb, I. Mircioiu, M. Amzoiu, I. Belu, V. Anuta, Microwave preparation of catalyst layer for enhancing the oxygen reduction of air cathode in microbial fuel cells. Curr. Health Sci. J. 43, 214–219 (2017). https://doi.org/10.12865/CHSJ.43.03.05
- T. Matthews, T.A. Mashola, K.A. Adegoke, K. Mugadza, C.T. Fakude et al., Electrocatalytic activity on single atoms catalysts: synthesis strategies, characterization, classification, and energy conversion applications. Coordin. Chem. Rev. 467, 214600 (2022). https://doi.org/10.1016/j.ccr.2022.214600
- H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12, 7656–7676 (2021). https://doi.org/10.1039/d1sc00716e
- Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
- L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
- D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
- D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
- X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang et al., Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4, 51–58 (2016). https://doi.org/10.1039/c5ta06869j
- L.-N. Zhang, Z.-L. Lang, Y.-H. Wang, H.-Q. Tan, H.-Y. Zang et al., Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 12, 2569–2580 (2019). https://doi.org/10.1039/c9ee01647c
- L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 131, 2343–2347 (2019). https://doi.org/10.1002/ange.201811728
- L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui et al., Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 133, 349–354 (2021). https://doi.org/10.1002/ange.202010159
- S. Chen, L. Kuo, Z. Jian, L. Qian, L. Xijun et al., In Situ Transmission electron microscopy and three-dimensional electron tomography for catalyst studies. Chin. J. Struct. Chem. 41, 2210056–2210076 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0187
- Z. Du, J. Liang, S. Li, Z. Xu, T. Li et al., Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 9, 13861–13866 (2021). https://doi.org/10.1039/d1ta02424h
- X. Luo, W. Wu, Y. Wang, Y. Li, J. Ye et al., Relay Catalysis of Multi-Sites Promotes Oxygen Reduction Reaction. Adv. Funct. Mater. 33, 2215021 (2023). https://doi.org/10.1002/adfm.202215021
- F.V.E. dos Reis, V.S. Antonin, P. Hammer, M.C. Santos, P.H.C. Camargo, Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J. Catal. 326, 100–106 (2015). https://doi.org/10.1016/j.jcat.2015.04.007
- Y. Guo, R. Zhang, S. Zhang, H. Hong, Y. Zhao et al., Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction. Energy Environ. Sci. 15, 4167–4174 (2022). https://doi.org/10.1039/d2ee01797k
- R. Ma, J. Wang, Y. Tang, J. Wang, Design strategies for single-atom iron electrocatalysts toward efficient oxygen reduction. J. Phys. Chem. Lett. 13, 168–174 (2021). https://doi.org/10.1021/acs.jpclett.1c03753
- S. Xu, R. Lu, K. Sun, J. Tang, Y. Cen et al., Synergistic effects in N, O-comodified carbon nanotubes boost highly selective electrochemical oxygen reduction to H2O2. Adv. Sci. 9, 2201421 (2022). https://doi.org/10.1002/advs.202201421
- F. An, X.-Q. Bao, X.-Y. Deng, Z.-Z. Ma, X.-G. Wang, Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater. 37, 338–354 (2022). https://doi.org/10.1016/s1872-5805(22)60590-0
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
- Z. Lin, Q. Zhang, J. Pan, C. Tsounis, A.A. Esmailpour et al., Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 15, 1172–1182 (2022). https://doi.org/10.1039/d1ee02884g
- W.J. Niu, J.Z. He, B.N. Gu, M.C. Liu, Y.L. Chueh, Opportunities and challenges in precise synthesis of transition metal single-atom supported by 2D Materials as catalysts toward oxygen reduction reaction. Adv. Funct. Mater. 31, 2103558 (2021). https://doi.org/10.1002/adfm.202103558
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2020). https://doi.org/10.1021/acscatal.0c04102
- L. Han, S. Song, M. Liu, S. Yao, Z. Liang et al., Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020). https://doi.org/10.1021/jacs.9b12111
- W. Liu, H. Li, P. Ou, J. Mao, L. Han et al., Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5513-5
- M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
- H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa et al., Active site engineering in porous electrocatalysts. Adv. Mater. 32, 2002435 (2020). https://doi.org/10.1002/adma.202002435
- A. Kumar, G. Yasin, S. Ajmal, S. Ali, M.A. Mushtaq et al., Molecular MnN4-complex immobilized on carbon black as efficient electrocatalyst for oxygen reduction reaction. Inter. J. Hydrogen Energy 47, 17621–17629 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.243
- S. Chen, T. Luo, X. Li, K. Chen, J. Fu et al., Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c01194
- L. Han, H. Cheng, W. Liu, H. Li, P. Ou et al., A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022). https://doi.org/10.1038/s41563-022-01252-y
- L. Gao, X. Gao, P. Jiang, C. Zhang, H. Guo et al., Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc-air flow batteries. Small 18, 2105892 (2022). https://doi.org/10.1002/smll.202105892
- L. Han, X. Liu, J. He, Z. Liang, H.T. Wang et al., Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Adv. Energy Mater. 11, 2100044 (2021). https://doi.org/10.1002/aenm.202100044
- L. Liang, K.-Y. Niu, L. Zhang, J. Tian, K. Zhou et al., Engineering oxygen vacancies in mesocrystalline CuO nanosheets for water oxidation. ACS Appl. Nano Mater. 4, 6135–6144 (2021). https://doi.org/10.1021/acsanm.1c00941
- L. Zhang, X. Wang, R. Wang, M. Hong, Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27, 7610–7618 (2015). https://doi.org/10.1021/acs.chemmater.5b02708
- M. Wang, H. Zhang, Y. Liu, Y. Pan, Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. J. Energy Chem. 72, 56–72 (2022). https://doi.org/10.1016/j.jechem.2022.05.007
- J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
- K. Du, L. Zhang, J. Shan, J. Guo, J. Mao et al., Interface engineering breaks both stability and activity limits of ruo2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022). https://doi.org/10.1038/s41467-022-33150-x
- Y. Yang, K. Mao, S. Gao, H. Huang, G. Xia et al., O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732
- Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2021). https://doi.org/10.1002/anie.202012798
- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
- Y. Xu, W. Zhang, Y. Li, P. Lu, Z.-S. Wu, A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J. Energy Chem. 43, 52–57 (2020). https://doi.org/10.1016/j.jechem.2019.08.006
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- X. Tao, R. Lu, L. Ni, V. Gridin, S.H. Al-Hilfi et al., Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Mater. Horiz. 9, 417–424 (2022). https://doi.org/10.1039/d1mh01307f
- W. Xu, W. Song, Y. Kang, L. Jiao, Y. Wu et al., Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 93, 12758–12766 (2021). https://doi.org/10.1021/acs.analchem.1c02842
- H.C. Zhang, P.X. Cui, D.H. Xie, Y.J. Wang, P. Wang et al., Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. 10, e2205681 (2023). https://doi.org/10.1002/advs.202205681
- T. Chen, D. Zhou, S. Hou, Y. Li, Y. Liu et al., Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 94, 15270–15279 (2022). https://doi.org/10.1021/acs.analchem.2c02540
- H. Zhang, L. Huang, J. Chen, L. Liu, X. Zhu et al., Bionic design of cytochrome C oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy 83, 105798 (2021). https://doi.org/10.1016/j.nanoen.2021.105798
- C. Xu, Y.P. Zhang, T.L. Zheng, Z.Q. Wang, Y.M. Zhao et al., Contracted Fe-N5-C11 sites in single-atom catalysts boosting catalytic performance for oxygen reduction reaction. ACS Appl. Mater. Interfaces 15, 32341–32351 (2023). https://doi.org/10.1021/acsami.3c03982
- Y.M. Zhao, P.C. Zhang, C. Xu, X.Y. Zhou, L.M. Liao et al., Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 12, 17334–17342 (2020). https://doi.org/10.1021/acsami.9b20711
- F.X. Ma, Z.Q. Liu, G. Zhang, H.S. Fan, Y. Du et al., Self-sacrificing template synthesis of carbon nanosheets assembled hollow spheres with abundant active Fe-N4O1 moieties for electrocatalytic oxygen reduction. Small 19, 2207991 (2023). https://doi.org/10.1002/smll.202207991
- T. Liu, Y. Wang, Y. Li, Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 32, 2207110 (2022). https://doi.org/10.1002/adfm.202207110
- X. Liu, Y. Liu, W. Yang, X. Feng, B. Wang, Controlled Modification of axial coordination for transition-metal single-atom electrocatalyst. Chem 28, e202201471 (2022). https://doi.org/10.1002/chem.202201471
- A. Pizarro, G. Abarca, C. Gutiérrez-Cerón, D. Cortés-Arriagada, F. Bernardi et al., Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catal. 8, 8406–8419 (2018). https://doi.org/10.1021/acscatal.8b01479
- B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-sized yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, e2300381 (2023). https://doi.org/10.1002/adma.202300381
- J. Xi, H.S. Jung, Y. Xu, F. Xiao, J.W. Bae et al., Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 31, 2008318 (2021). https://doi.org/10.1002/adfm.202008318
- F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen et al., Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 61, 60–68 (2019). https://doi.org/10.1016/j.nanoen.2019.04.033
- X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang et al., Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021). https://doi.org/10.1002/anie.202013427
- L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang et al., Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34, 2202544 (2022). https://doi.org/10.1002/adma.202202544
- C. Xu, Y. Si, B. Hu, X. Xu, B. Hu et al., Promoting oxygen reduction via crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorg. Chem. Front 9, 3306–3318 (2022). https://doi.org/10.1039/d2qi00668e
- F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo et al., P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020). https://doi.org/10.1038/s41563-020-0717-5
- L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao et al., Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 27324–27329 (2021). https://doi.org/10.1002/anie.202113895
- J. Huang, Q. Lu, X. Ma, X. Yang, Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J. Mater. Chem. A 6, 18488–18497 (2018). https://doi.org/10.1039/c8ta06455e
- G. Qu, K. Wei, K. Pan, J. Qin, J. Lv et al., Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. Nanoscale 15, 3666–3692 (2023). https://doi.org/10.1039/d2nr06190b
- Y. Zhao, P.V. Kumar, X. Tan, X. Lu, X. Zhu et al., Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
- Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu et al., Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv. Mater. 35, 2210757 (2023). https://doi.org/10.1002/adma.202210757
- J. Guo, X. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018). https://doi.org/10.1016/j.nanoen.2018.02.026
- Y. Mu, T. Wang, J. Zhang, C. Meng, Y. Zhang et al., Single-atom catalysts: Advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy Rev. 5, 145–186 (2022). https://doi.org/10.1007/s41918-021-00124-4
- B. Yang, X. Li, Q. Cheng, X. Jia, Y. Liu et al., A highly efficient axial coordinated CoN5 electrocatalyst via pyrolysis-free strategy for alkaline polymer electrolyte fuel cells. Nano Energy 101, 107565 (2022). https://doi.org/10.1016/j.nanoen.2022.107565
- J. Riquelme, K. Neira, J.F. Marco, P. Hermosilla-Ibáñez, W. Orellana et al., Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim. Acta 265, 547–555 (2018). https://doi.org/10.1016/j.electacta.2018.01.177
- W. Fan, Z. Duan, W. Liu, R. Mehmood, J. Qu et al., Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 14, 1426 (2023). https://doi.org/10.1038/s41467-023-37066-y
- Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin et al., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020). https://doi.org/10.1038/s41467-020-14917-6
- J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu et al., A minireview on the synthesis of single atom catalysts. RSC Adv. 12, 9373–9394 (2022). https://doi.org/10.1039/d2ra00657j
- F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
- T. Zhang, J. Jin, J. Chen, Y. Fang, X. Han et al., Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13, 6875 (2022). https://doi.org/10.1038/s41467-022-34619-5
- L. Li, Y. Wen, G. Han, F. Kong, L. Du et al., Architecting FeNx on high graphitization carbon for high-performance oxygen reduction by regulating d-band center. Small 19, e2300758 (2023). https://doi.org/10.1002/smll.202300758
- W. Li, Z. Guo, J. Yang, Y. Li, X. Sun et al., Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem. Energy Rev. 5, 9 (2022). https://doi.org/10.1007/s41918-022-00169-z
- Y. Wang, J. Hao, Y. Liu, M. Liu, K. Sheng et al., Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J. Energy Chem. 76, 601–616 (2023). https://doi.org/10.1016/j.jechem.2022.09.047
- H. Jin, Z. Xu, Z.Y. Hu, Z. Yin, Z. Wang et al., Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 14, 1518 (2023). https://doi.org/10.1038/s41467-023-37268-4
- W. Liu, L. Han, H.-T. Wang, X. Zhao, J.A. Boscoboinik et al., FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 77, 105078 (2020). https://doi.org/10.1016/j.nanoen.2020.105078
- X. Peng, R. Zhang, Y. Mi, H.T. Wang, Y.C. Huang et al., Disordered Au nanoclusters for efficient ammonia electrosynthesis. Chem. Sus. Chem. (2023). https://doi.org/10.1002/cssc.202201385
- L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
- S. Sarkar, S.C. Peter, An overview on Pt3X Electrocatalysts for oxygen reduction reaction. Chem. Asian J. 16, 1184–1197 (2021). https://doi.org/10.1002/asia.202100166
- W. Zhu, S. Chen, Recent progress of single-atom catalysts in the electrocatalytic reduction of oxygen to hydrogen peroxide. Electroanalysis 32, 2591–2602 (2020). https://doi.org/10.1002/elan.202060334
- N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 8, 2100076 (2021). https://doi.org/10.1002/advs.202100076
- D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576–591 (2014). https://doi.org/10.1039/c3ee43463j
- X. Yang, C. Priest, Y. Hou, G. Wu, Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. Sus. Mat. 2, 569–590 (2022). https://doi.org/10.1002/sus2.69
- L. Zhang, T. Gu, K. Lu, L. Zhou, D.S. Li et al., Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 31, 2103187 (2021). https://doi.org/10.1002/adfm.202103187
- L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014). https://doi.org/10.1039/C4NR00348A
- S. Yuan, J. Zhang, L. Hu, J. Li, S. Li et al., Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 21685–21690 (2021). https://doi.org/10.1002/anie.202107053
- J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable zn-air batteries. Small (2019). https://doi.org/10.1002/smll.201900307
- N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban et al., Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017). https://doi.org/10.1126/science.aan6515
- Y. Zhang, Q. Chen, A. Guo, X. Wang, Y. Wang et al., Carbon-nanosheet-driven spontaneous deposition of Au nanops for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 445, 136586 (2022). https://doi.org/10.1016/j.cej.2022.136586
- Y.R. Zheng, S. Hu, X.L. Zhang, H. Ju, Z. Wang et al., Black phosphorous mediates surface charge redistribution of CoSe2 for electrochemical H2O2 production in acidic electrolytes. Adv. Mater. 34, 2205414 (2022). https://doi.org/10.1002/adma.202205414
- Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
- S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
- J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
- A.R. Payne, Hysteresis of rubbers loaded with carbon black. Nature 201, 1213–1214 (1964). https://doi.org/10.1038/2011213a0
- J. Barrio, A. Pedersen, S.C. Sarma, A. Bagger, M. Gong et al., FeNC oxygen reduction electrocatalyst with high utilization penta-coordinated sites. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211022
- M.P. Oyarzún, N. Silva, D. Cortés-Arriagada, J.F. Silva, I.O. Ponce et al., Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: pyridine-functionalized single-walled carbon nanotubes. Electrochim. Acta 398, 139263 (2021). https://doi.org/10.1016/j.electacta.2021.139263
- Y. Zhou, Y.F. Xing, J. Wen, H.B. Ma, F.B. Wang et al., Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci. Bull. 64, 1158–1166 (2019). https://doi.org/10.1016/j.scib.2019.07.003
- Y. Niu, X. Huang, W. Hu, Fe3C nanop decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 332, 305–311 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.130
- P.J. Wei, G.Q. Yu, Y. Naruta, J.G. Liu, Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem. Int. Ed. 53, 6659–6663 (2014). https://doi.org/10.1002/anie.201403133
- L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multi-dimensional NiCO/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023). https://doi.org/10.1016/j.carbon.2023.01.057
- G. Panomsuwan, N. Saito, T. Ishizaki, Nitrogen-doped carbon nanop-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 6962–6971 (2016). https://doi.org/10.1021/acsami.5b10493
- R. Venegas, F.J. Recio, J. Riquelme, K. Neira, J.F. Marco et al., Biomimetic reduction of O2 in an acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes. J. Mater. Chem. A 5, 12054–12059 (2017). https://doi.org/10.1039/c7ta02381b
- W. Zhang, E.J. Meeus, L. Wang, L.H. Zhang, S. Yang et al., Boosting electrochemical oxygen reduction performance of iron phthalocyanine through axial coordination sphere interaction. ChemSusChem (2022). https://doi.org/10.1002/cssc.202102379
- R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim et al., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4, 2076 (2013). https://doi.org/10.1038/ncomms3076
- W. Xia, Z. Hou, J. Tang, J. Li, W. Chaikittisilp et al., Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy 94, 106868 (2022). https://doi.org/10.1016/j.nanoen.2021.106868
- M. Viera, J. Riquelme, C. Aliaga, J.F. Marco, W. Orellana et al., Oxygen reduction reaction at penta-coordinated Co phthalocyanines. Front Chem. 8, 22 (2020). https://doi.org/10.3389/fchem.2020.00022
- F. Liu, G. Zhu, D. Yang, D. Jia, F. Jin et al., Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Adv. 9, 22656–22667 (2019). https://doi.org/10.1039/c9ra02822f
- F. Liu, N. Yan, G. Zhu, Z. Liu, S. Ma et al., Fe–N–C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New J. Chem. 45, 13004–13014 (2021). https://doi.org/10.1039/d1nj01380g
- Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian et al., Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019). https://doi.org/10.1002/adma.201808193
- L. Li, Y.-J. Chen, H.-R. Xing, N. Li, J.-W. Xia et al., Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 15, 8056–8064 (2022). https://doi.org/10.1007/s12274-022-4424-1
- Y. Qin, C. Guo, Z. Ou, C. Xu, Q. Lan et al., Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. J. Energy Chem. 80, 542–552 (2023). https://doi.org/10.1016/j.jechem.2023.01.048
- Q. Wang, G. Long, X. Gao, J. Chen, C. You et al., A highly active and stable single-atom catalyst for oxygen reduction with axial Fe–O coordination prepared through a fast medium-temperature pyrolysis process. Appl. Catal. B: Environ. 337, 123009 (2023). https://doi.org/10.1016/j.apcatb.2023.123009
- F. Kraushofer, G.S. Parkinson, Single-atom catalysis: Insights from model systems. Chem. Rev. 122, 14911–14939 (2022). https://doi.org/10.1021/acs.chemrev.2c00259
- X. Wang, Y. An, L. Liu, L. Fang, Y. Liu et al., Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202209746 (2022). https://doi.org/10.1002/anie.202209746
- S. Zhang, Q. Zhou, L. Fang, R. Wang, T. Lu et al., Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 328, 122489 (2023). https://doi.org/10.1016/j.apcatb.2023.122489
- L. Cheng, H. Huang, Z. Lin, Y. Yang, Q. Yuan et al., N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. J. Colloid Interface Sci. 594, 466–473 (2021). https://doi.org/10.1016/j.jcis.2021.03.074
- Y. Liu, X. Liu, Z. Lv, R. Liu, L. Li et al., Tuning the spin state of the iron Center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202117617
- K. Chen, K. Liu, P. An, H. Li, Y. Lin et al., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020). https://doi.org/10.1038/s41467-020-18062-y
- P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu et al., Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 14, 172 (2023). https://doi.org/10.1038/s41467-023-35839-z
- C. Xiao, L. Cheng, Y. Zhu, G. Wang, L. Chen et al., Super-coordinated nickel N4Ni1O2 site single-atom catalyst for selective H2O2 electrosynthesis at high current densities. Angew. Chem. Int. Ed. 61, e202206544 (2022). https://doi.org/10.1002/anie.202206544
- L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022). https://doi.org/10.1002/smll.202105387
- L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59, 13923–13928 (2020). https://doi.org/10.1002/anie.202004534
- Y. Guo, H. Yin, F. Cheng, M. Li, S. Zhang et al., Altering ligand microenvironment of atomically dispersed CrN4 by axial ligand sulfur for enhanced oxygen reduction reaction in alkaline and acidic medium. Small 19, 2206861 (2023). https://doi.org/10.1002/smll.202206861
- S. Li, L. Xia, J. Li, Z. Chen, W. Zhang et al., Tuning structural and electronic configuration of FeN4 via external S for enhanced oxygen reduction reaction. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12560
- C. Chen, Z. Chen, J. Zhong, X. Song, D. Chen et al., Regulating electronic structure of CoN4 with axial Co-S for promoting oxygen reduction and zn-air battery performance. Nano Res. 16, 4211–4218 (2023). https://doi.org/10.1007/s12274-022-5164-y
- C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021). https://doi.org/10.1002/adfm.202108345
- Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng et al., Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11, 2348–2352 (2018). https://doi.org/10.1039/c8ee01481g
- X. Zhang, L. Truong-Phuoc, X. Liao, V. Papaefthimiou, M. Pugliesi et al., Inducing atomically dispersed Cl-FeN4 sites for ORRs in the SiO2-mediated synthesis of highly mesoporous N-enriched C-networks. J. Mater. Chem. A 10, 6153–6164 (2022). https://doi.org/10.1039/d1ta09519f
- S. Ding, J.A. Barr, Q. Shi, Y. Zeng, P. Tieu et al., Engineering atomic single metal-fen(4)cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022). https://doi.org/10.1021/acsnano.2c06459
- A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of mof-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
- B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-size yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, 2300381 (2023). https://doi.org/10.1002/adma.202300381
- K.M. Zhao, S. Liu, Y.Y. Li, X. Wei, G. Ye et al., Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction. Adv. Energy Mater. 12, 2103588 (2022). https://doi.org/10.1002/aenm.202103588
- X. Yan, X. Xu, Q. Liu, J. Guo, L. Kang et al., Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. J. Power Sources 389, 260–266 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.042
- G. Luo, Y. Wang, Y. Li, Two-dimensional iron-porphyrin sheet as a promising catalyst for oxygen reduction reaction: a computational study. Sci. Bull 62, 1337–1343 (2017). https://doi.org/10.1016/j.scib.2017.08.015
- X. She, J. Gao, Y. Gao, H. Tang, K. Li et al., Axial ligand engineering for highly efficient oxygen reduction catalysts in transition metal–N4 doped graphene. New J. Chem. 46, 16138–16150 (2022). https://doi.org/10.1039/d2nj03058f
- R. Lu, C. Quan, C. Zhang, Q. He, X. Liao et al., Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Res. 15, 6067–6075 (2022). https://doi.org/10.1007/s12274-022-4318-2
- F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2021). https://doi.org/10.1007/s40820-020-00536-9
- X. Zhu, X. Tan, K.-H. Wu, C.-L. Chiang, Y.-C. Lin et al., N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 7, 14732–14742 (2019). https://doi.org/10.1039/c9ta03011e
- X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li et al., Single-atom to single-atom grafting of Pt1 onto Fe–N4 Center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8, 1701345 (2018). https://doi.org/10.1002/aenm.201701345
- B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod et al., Metalloid-cluster ligands enabling stable and active FeN4-Ten motifs for the oxygen reduction reaction. Adv. Mater. 34, 2202714 (2022). https://doi.org/10.1002/adma.202202714
- L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi et al., Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery. Proc. Natl. Acad. Sci. (2022). https://doi.org/10.1073/pnas.2207326119
- M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014). https://doi.org/10.1021/cr4002758
- J. Dong, Y. Cheng, Y. Li, X. Peng, R. Zhang et al., Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO. ACS Appl. Mater. Interfaces 14, 41969–41977 (2022). https://doi.org/10.1021/acsami.2c09615
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2021). https://doi.org/10.1007/s40820-020-00538-7
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- J. Tuo, Y. Lin, Y. Zhu, H. Jiang, Y. Li et al., Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B: Environ. 272, 118960 (2020). https://doi.org/10.1016/j.apcatb.2020.118960
- H. Cheng, X. Wu, X. Li, Y. Zhang, M. Feng et al., Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts. J. Catal. 395, 63–69 (2021). https://doi.org/10.1016/j.jcat.2020.12.032
- Z. Li, J. Jiang, X. Liu, Z. Zhu, J. Wang et al., Coupling atomically dispersed Fe-N5 sites with defective N-doped carbon boosts CO2 electroreduction. Small 18, 2203495 (2022). https://doi.org/10.1002/smll.202203495
- J.R. Huang, X.F. Qiu, Z.H. Zhao, H.L. Zhu, Y.C. Liu et al., Single-product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single-atom nanozyme. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202210985
- H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
- M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang et al., Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B: Environ. 251, 112–118 (2019). https://doi.org/10.1016/j.apcatb.2019.03.047
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% co selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- X. Li, S.-G. Han, W. Wu, K. Zhang, B. Chen et al., Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy Environ. Sci. 16, 502–512 (2023). https://doi.org/10.1039/d2ee03022e
- M. Huang, B. Deng, X. Zhao, Z. Zhang, F. Li et al., Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 16, 2110–2119 (2022). https://doi.org/10.1021/acsnano.1c07746
- J. Wang, Q. Hao, H. Zhong, K. Li, X. Zhang, Ligand centered electrocatalytic efficient CO2 reduction reaction at low overpotential on single-atom Ni regulated molecular catalyst. Nano Res. 15, 5816–5823 (2022). https://doi.org/10.1007/s12274-022-4197-6
- X. Chen, W. Liu, Y. Sun, T. Tan, C.X. Du et al., KOH-enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction. Small Methods 7, 2201311 (2023). https://doi.org/10.1002/smtd.202201311
- T. Zhang, X. Han, H. Liu, M. Biset-Peiró, J. Li et al., Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide. Adv. Funct. Mater. 32, 2111446 (2022). https://doi.org/10.1002/adfm.202111446
- X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo et al., Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 266, 118630 (2020). https://doi.org/10.1016/j.apcatb.2020.118630
- Z. Chen, A. Huang, K. Yu, T. Cui, Z. Zhuang et al., Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14, 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c
- Y. Deng, J. Zhao, S. Wang, R. Chen, J. Ding et al., Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 7242–7251 (2023). https://doi.org/10.1021/jacs.2c12952
- Y. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu et al., Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem. Int. Ed. 60, 20803–20810 (2021). https://doi.org/10.1002/anie.202105263
- C. Hu, Y. Zhang, A. Hu, Y. Wang, X. Wei et al., Near- and long-range electronic modulation of single metal sites to boost CO2 electrocatalytic reduction. Adv. Mater. 35, 2209298 (2023). https://doi.org/10.1002/adma.202209298
- Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai et al., Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 430, 132882 (2022). https://doi.org/10.1016/j.cej.2021.132882
- B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1
- J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
- C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487
- Y. Li, B. Wei, Z. Li, L. Fan, Q. Jiang et al., Morphological attributes govern CO2 reduction on mesoporous carbon nanosphere with embedded axial Co-N5 sites. (2021). Preprint (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-999257/v1
- X. Hu, S. Yao, L. Chen, X. Zhang, M. Jiao et al., Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts: via simulations in realistic electrochemical environment. J. Mater Chem. A 9, 23515–23521 (2021). https://doi.org/10.1039/D1TA07791K
- D. Zhou, X. Li, H. Shang, F. Qin, W. Chen, Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 9, 23382–23418 (2021). https://doi.org/10.1039/d1ta06915b
- J. Wang, M. Zheng, X. Zhao, W. Fan, Structure-performance descriptors and the role of the axial oxygen atom on M-N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catal. 12, 5441–5454 (2022). https://doi.org/10.1021/acscatal.2c00429
- J. Wang, H. Li, S. Liu, Y. Hu, J. Zhang et al., Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem. Int. Ed. 60, 181–185 (2021). https://doi.org/10.1002/ange.202009991
- X. Sun, Y. Tuo, C. Ye, C. Chen, Q. Lu et al., Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 60, 23614–23618 (2021). https://doi.org/10.1002/anie.202110433
- L. Sun, V. Reddu, T. Su, X. Chen, T. Wu et al., Effects of axial functional groups on heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Small Struct. 2, 2100093 (2021). https://doi.org/10.1002/sstr.202100093
- M. Ma, Q. Tang, Axial coordination modification of M-N4 single-atom catalysts to regulate the electrocatalytic CO2 reduction reaction. J. Mater. Chem. C 10, 15948–15956 (2022). https://doi.org/10.1039/d2tc02467e
- Y. Liu, D. Wang, B. Yang, Z. Li, X. Peng et al., Efficiently electrochemical CO2 reduction on molybdenum-nitrogen-carbon catalysts with optimized p-block axial ligands. Chem. Eng. Sci. 273, 118638 (2023). https://doi.org/10.1016/j.ces.2023.118638
- L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 129, 13882–13886 (2017). https://doi.org/10.1002/ange.201706921
- L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, Nanohybrid of carbon quantum dots/molybdenum phosphide nanop for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Interfaces 10, 9460–9467 (2018). https://doi.org/10.1021/acsami.8b00211
- Y. Xu, X. Zhang, Y. Liu, R. Wang, Y. Yang et al., A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ. Sci. Pollut. Res. 30, 11302–11320 (2023). https://doi.org/10.1007/s11356-022-24728-5
- Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12, 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
- P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
- D. Liu, G. Xu, H. Yang, H. Wang, B.Y. Xia, Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 33, 2208358 (2023). https://doi.org/10.1002/adfm.202208358
- X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
- M. Li, M. Wang, D. Liu, Y. Pan, S. Liu et al., Atomically-dispersed NiN4-Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. J. Mater. Chem. A 10, 6007–6015 (2022). https://doi.org/10.1039/d1ta08287f
- Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47, 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
- J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
- B. Cheng, K. Kong, L. Zhang, R. Sa, T. Gu et al., Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chem. Eng. J. 441, 136122 (2022). https://doi.org/10.1016/j.cej.2022.136122
- J. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen et al., Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution. Angew. Chem. Int. Ed. 59, 13101–13108 (2020). https://doi.org/10.1002/anie.202004420
- L. Zhang, T. Mi, M.A. Ziaee, L. Liang, R. Wang, Hollow POM@ MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 6, 1639–1647 (2018). https://doi.org/10.1039/C7TA08683K
- J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin et al., Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10, 5692 (2019). https://doi.org/10.1038/s41467-019-13519-1
- L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang et al., Design of Ru–Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abm377
- W.H. Lee, Y.J. Ko, J.Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Commun. 56, 12687–12697 (2020). https://doi.org/10.1039/d0cc04752j
- Q. Deng, J. Zhao, T. Wu, G. Chen, H.A. Hansen et al., 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). J. Catal. 370, 378–384 (2019). https://doi.org/10.1016/j.jcat.2018.12.012
- Y.L. Zhang, B. Liu, Y.K. Dai, Y.F. Xia, P. Guo et al., Electronic delocalization regulates the occupancy and energy level of Co 3dz2 orbitals to enhance bifunctional oxygen catalytic activity. Adv. Funct. Mater. 32, 2209499 (2022). https://doi.org/10.1002/adfm.202209499
- T. Li, T. Lu, H. Zhong, S. Xi, M. Zhang et al., Atomically dispersed V-O2N3 sites with axial V–O coordination on multichannel carbon nanofibers achieving superior electrocatalytic oxygen evolution in acidic media. Adv. Energy Mater. 13, 2203274 (2022). https://doi.org/10.1002/aenm.202203274
- Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang et al., Axial phosphate coordination in co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, 2206107 (2023). https://doi.org/10.1002/advs.202206107
- Y. Yang, C. Hu, J. Shan, C. Cheng, L. Han et al., Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 62, e202300989 (2023). https://doi.org/10.1002/anie.202300989
- Y. Huang, C. Tang, Q. Li, J. Gong, Computational studies for boosting nitrate electroreduction activity of Fe-N4-C Single-Atom catalyst via axial fifth ligand. Appl. Surf. Sci. 616, 156440 (2023). https://doi.org/10.1016/j.apsusc.2023.156440
- L. Liu, T. Xiao, H. Fu, Z. Chen, X. Qu et al., Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B: Environ. 323, 122181 (2023). https://doi.org/10.1016/j.apcatb.2022.122181
- A. Wu, J. Yang, B. Xu, X.-Y. Wu, Y. Wang et al., Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B: Environ. 299, 120667 (2021). https://doi.org/10.1016/j.apcatb.2021.120667
References
A. Slamersak, G. Kallis, D.W. O’Neill, Energy requirements and carbon emissions for a low-carbon energy transition. Nat. Commun. 13, 6932 (2022). https://doi.org/10.1038/s41467-022-33976-5
K. Zhang, W. Guo, Z. Liang, R. Zou, Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci. China Chem. 62, 417–429 (2019). https://doi.org/10.1007/s11426-018-9441-4
G.A. Abdalrb, I. Mircioiu, M. Amzoiu, I. Belu, V. Anuta, Microwave preparation of catalyst layer for enhancing the oxygen reduction of air cathode in microbial fuel cells. Curr. Health Sci. J. 43, 214–219 (2017). https://doi.org/10.12865/CHSJ.43.03.05
T. Matthews, T.A. Mashola, K.A. Adegoke, K. Mugadza, C.T. Fakude et al., Electrocatalytic activity on single atoms catalysts: synthesis strategies, characterization, classification, and energy conversion applications. Coordin. Chem. Rev. 467, 214600 (2022). https://doi.org/10.1016/j.ccr.2022.214600
H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12, 7656–7676 (2021). https://doi.org/10.1039/d1sc00716e
Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018). https://doi.org/10.1038/s41467-018-06279-x
D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang et al., Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4, 51–58 (2016). https://doi.org/10.1039/c5ta06869j
L.-N. Zhang, Z.-L. Lang, Y.-H. Wang, H.-Q. Tan, H.-Y. Zang et al., Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 12, 2569–2580 (2019). https://doi.org/10.1039/c9ee01647c
L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 131, 2343–2347 (2019). https://doi.org/10.1002/ange.201811728
L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui et al., Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 133, 349–354 (2021). https://doi.org/10.1002/ange.202010159
S. Chen, L. Kuo, Z. Jian, L. Qian, L. Xijun et al., In Situ Transmission electron microscopy and three-dimensional electron tomography for catalyst studies. Chin. J. Struct. Chem. 41, 2210056–2210076 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0187
Z. Du, J. Liang, S. Li, Z. Xu, T. Li et al., Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 9, 13861–13866 (2021). https://doi.org/10.1039/d1ta02424h
X. Luo, W. Wu, Y. Wang, Y. Li, J. Ye et al., Relay Catalysis of Multi-Sites Promotes Oxygen Reduction Reaction. Adv. Funct. Mater. 33, 2215021 (2023). https://doi.org/10.1002/adfm.202215021
F.V.E. dos Reis, V.S. Antonin, P. Hammer, M.C. Santos, P.H.C. Camargo, Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J. Catal. 326, 100–106 (2015). https://doi.org/10.1016/j.jcat.2015.04.007
Y. Guo, R. Zhang, S. Zhang, H. Hong, Y. Zhao et al., Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction. Energy Environ. Sci. 15, 4167–4174 (2022). https://doi.org/10.1039/d2ee01797k
R. Ma, J. Wang, Y. Tang, J. Wang, Design strategies for single-atom iron electrocatalysts toward efficient oxygen reduction. J. Phys. Chem. Lett. 13, 168–174 (2021). https://doi.org/10.1021/acs.jpclett.1c03753
S. Xu, R. Lu, K. Sun, J. Tang, Y. Cen et al., Synergistic effects in N, O-comodified carbon nanotubes boost highly selective electrochemical oxygen reduction to H2O2. Adv. Sci. 9, 2201421 (2022). https://doi.org/10.1002/advs.202201421
F. An, X.-Q. Bao, X.-Y. Deng, Z.-Z. Ma, X.-G. Wang, Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater. 37, 338–354 (2022). https://doi.org/10.1016/s1872-5805(22)60590-0
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
Z. Lin, Q. Zhang, J. Pan, C. Tsounis, A.A. Esmailpour et al., Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 15, 1172–1182 (2022). https://doi.org/10.1039/d1ee02884g
W.J. Niu, J.Z. He, B.N. Gu, M.C. Liu, Y.L. Chueh, Opportunities and challenges in precise synthesis of transition metal single-atom supported by 2D Materials as catalysts toward oxygen reduction reaction. Adv. Funct. Mater. 31, 2103558 (2021). https://doi.org/10.1002/adfm.202103558
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2020). https://doi.org/10.1021/acscatal.0c04102
L. Han, S. Song, M. Liu, S. Yao, Z. Liang et al., Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020). https://doi.org/10.1021/jacs.9b12111
W. Liu, H. Li, P. Ou, J. Mao, L. Han et al., Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5513-5
M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa et al., Active site engineering in porous electrocatalysts. Adv. Mater. 32, 2002435 (2020). https://doi.org/10.1002/adma.202002435
A. Kumar, G. Yasin, S. Ajmal, S. Ali, M.A. Mushtaq et al., Molecular MnN4-complex immobilized on carbon black as efficient electrocatalyst for oxygen reduction reaction. Inter. J. Hydrogen Energy 47, 17621–17629 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.243
S. Chen, T. Luo, X. Li, K. Chen, J. Fu et al., Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c01194
L. Han, H. Cheng, W. Liu, H. Li, P. Ou et al., A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022). https://doi.org/10.1038/s41563-022-01252-y
L. Gao, X. Gao, P. Jiang, C. Zhang, H. Guo et al., Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc-air flow batteries. Small 18, 2105892 (2022). https://doi.org/10.1002/smll.202105892
L. Han, X. Liu, J. He, Z. Liang, H.T. Wang et al., Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Adv. Energy Mater. 11, 2100044 (2021). https://doi.org/10.1002/aenm.202100044
L. Liang, K.-Y. Niu, L. Zhang, J. Tian, K. Zhou et al., Engineering oxygen vacancies in mesocrystalline CuO nanosheets for water oxidation. ACS Appl. Nano Mater. 4, 6135–6144 (2021). https://doi.org/10.1021/acsanm.1c00941
L. Zhang, X. Wang, R. Wang, M. Hong, Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27, 7610–7618 (2015). https://doi.org/10.1021/acs.chemmater.5b02708
M. Wang, H. Zhang, Y. Liu, Y. Pan, Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. J. Energy Chem. 72, 56–72 (2022). https://doi.org/10.1016/j.jechem.2022.05.007
J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
K. Du, L. Zhang, J. Shan, J. Guo, J. Mao et al., Interface engineering breaks both stability and activity limits of ruo2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022). https://doi.org/10.1038/s41467-022-33150-x
Y. Yang, K. Mao, S. Gao, H. Huang, G. Xia et al., O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732
Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2021). https://doi.org/10.1002/anie.202012798
X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451
Y. Xu, W. Zhang, Y. Li, P. Lu, Z.-S. Wu, A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J. Energy Chem. 43, 52–57 (2020). https://doi.org/10.1016/j.jechem.2019.08.006
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
X. Tao, R. Lu, L. Ni, V. Gridin, S.H. Al-Hilfi et al., Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Mater. Horiz. 9, 417–424 (2022). https://doi.org/10.1039/d1mh01307f
W. Xu, W. Song, Y. Kang, L. Jiao, Y. Wu et al., Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 93, 12758–12766 (2021). https://doi.org/10.1021/acs.analchem.1c02842
H.C. Zhang, P.X. Cui, D.H. Xie, Y.J. Wang, P. Wang et al., Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. 10, e2205681 (2023). https://doi.org/10.1002/advs.202205681
T. Chen, D. Zhou, S. Hou, Y. Li, Y. Liu et al., Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 94, 15270–15279 (2022). https://doi.org/10.1021/acs.analchem.2c02540
H. Zhang, L. Huang, J. Chen, L. Liu, X. Zhu et al., Bionic design of cytochrome C oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy 83, 105798 (2021). https://doi.org/10.1016/j.nanoen.2021.105798
C. Xu, Y.P. Zhang, T.L. Zheng, Z.Q. Wang, Y.M. Zhao et al., Contracted Fe-N5-C11 sites in single-atom catalysts boosting catalytic performance for oxygen reduction reaction. ACS Appl. Mater. Interfaces 15, 32341–32351 (2023). https://doi.org/10.1021/acsami.3c03982
Y.M. Zhao, P.C. Zhang, C. Xu, X.Y. Zhou, L.M. Liao et al., Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 12, 17334–17342 (2020). https://doi.org/10.1021/acsami.9b20711
F.X. Ma, Z.Q. Liu, G. Zhang, H.S. Fan, Y. Du et al., Self-sacrificing template synthesis of carbon nanosheets assembled hollow spheres with abundant active Fe-N4O1 moieties for electrocatalytic oxygen reduction. Small 19, 2207991 (2023). https://doi.org/10.1002/smll.202207991
T. Liu, Y. Wang, Y. Li, Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 32, 2207110 (2022). https://doi.org/10.1002/adfm.202207110
X. Liu, Y. Liu, W. Yang, X. Feng, B. Wang, Controlled Modification of axial coordination for transition-metal single-atom electrocatalyst. Chem 28, e202201471 (2022). https://doi.org/10.1002/chem.202201471
A. Pizarro, G. Abarca, C. Gutiérrez-Cerón, D. Cortés-Arriagada, F. Bernardi et al., Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catal. 8, 8406–8419 (2018). https://doi.org/10.1021/acscatal.8b01479
B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-sized yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, e2300381 (2023). https://doi.org/10.1002/adma.202300381
J. Xi, H.S. Jung, Y. Xu, F. Xiao, J.W. Bae et al., Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 31, 2008318 (2021). https://doi.org/10.1002/adfm.202008318
F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen et al., Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 61, 60–68 (2019). https://doi.org/10.1016/j.nanoen.2019.04.033
X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang et al., Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021). https://doi.org/10.1002/anie.202013427
L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang et al., Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34, 2202544 (2022). https://doi.org/10.1002/adma.202202544
C. Xu, Y. Si, B. Hu, X. Xu, B. Hu et al., Promoting oxygen reduction via crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorg. Chem. Front 9, 3306–3318 (2022). https://doi.org/10.1039/d2qi00668e
F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo et al., P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020). https://doi.org/10.1038/s41563-020-0717-5
L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao et al., Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 27324–27329 (2021). https://doi.org/10.1002/anie.202113895
J. Huang, Q. Lu, X. Ma, X. Yang, Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J. Mater. Chem. A 6, 18488–18497 (2018). https://doi.org/10.1039/c8ta06455e
G. Qu, K. Wei, K. Pan, J. Qin, J. Lv et al., Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. Nanoscale 15, 3666–3692 (2023). https://doi.org/10.1039/d2nr06190b
Y. Zhao, P.V. Kumar, X. Tan, X. Lu, X. Zhu et al., Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu et al., Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv. Mater. 35, 2210757 (2023). https://doi.org/10.1002/adma.202210757
J. Guo, X. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018). https://doi.org/10.1016/j.nanoen.2018.02.026
Y. Mu, T. Wang, J. Zhang, C. Meng, Y. Zhang et al., Single-atom catalysts: Advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy Rev. 5, 145–186 (2022). https://doi.org/10.1007/s41918-021-00124-4
B. Yang, X. Li, Q. Cheng, X. Jia, Y. Liu et al., A highly efficient axial coordinated CoN5 electrocatalyst via pyrolysis-free strategy for alkaline polymer electrolyte fuel cells. Nano Energy 101, 107565 (2022). https://doi.org/10.1016/j.nanoen.2022.107565
J. Riquelme, K. Neira, J.F. Marco, P. Hermosilla-Ibáñez, W. Orellana et al., Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim. Acta 265, 547–555 (2018). https://doi.org/10.1016/j.electacta.2018.01.177
W. Fan, Z. Duan, W. Liu, R. Mehmood, J. Qu et al., Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 14, 1426 (2023). https://doi.org/10.1038/s41467-023-37066-y
Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin et al., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020). https://doi.org/10.1038/s41467-020-14917-6
J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu et al., A minireview on the synthesis of single atom catalysts. RSC Adv. 12, 9373–9394 (2022). https://doi.org/10.1039/d2ra00657j
F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
T. Zhang, J. Jin, J. Chen, Y. Fang, X. Han et al., Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13, 6875 (2022). https://doi.org/10.1038/s41467-022-34619-5
L. Li, Y. Wen, G. Han, F. Kong, L. Du et al., Architecting FeNx on high graphitization carbon for high-performance oxygen reduction by regulating d-band center. Small 19, e2300758 (2023). https://doi.org/10.1002/smll.202300758
W. Li, Z. Guo, J. Yang, Y. Li, X. Sun et al., Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem. Energy Rev. 5, 9 (2022). https://doi.org/10.1007/s41918-022-00169-z
Y. Wang, J. Hao, Y. Liu, M. Liu, K. Sheng et al., Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J. Energy Chem. 76, 601–616 (2023). https://doi.org/10.1016/j.jechem.2022.09.047
H. Jin, Z. Xu, Z.Y. Hu, Z. Yin, Z. Wang et al., Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 14, 1518 (2023). https://doi.org/10.1038/s41467-023-37268-4
W. Liu, L. Han, H.-T. Wang, X. Zhao, J.A. Boscoboinik et al., FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 77, 105078 (2020). https://doi.org/10.1016/j.nanoen.2020.105078
X. Peng, R. Zhang, Y. Mi, H.T. Wang, Y.C. Huang et al., Disordered Au nanoclusters for efficient ammonia electrosynthesis. Chem. Sus. Chem. (2023). https://doi.org/10.1002/cssc.202201385
L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
S. Sarkar, S.C. Peter, An overview on Pt3X Electrocatalysts for oxygen reduction reaction. Chem. Asian J. 16, 1184–1197 (2021). https://doi.org/10.1002/asia.202100166
W. Zhu, S. Chen, Recent progress of single-atom catalysts in the electrocatalytic reduction of oxygen to hydrogen peroxide. Electroanalysis 32, 2591–2602 (2020). https://doi.org/10.1002/elan.202060334
N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 8, 2100076 (2021). https://doi.org/10.1002/advs.202100076
D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576–591 (2014). https://doi.org/10.1039/c3ee43463j
X. Yang, C. Priest, Y. Hou, G. Wu, Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. Sus. Mat. 2, 569–590 (2022). https://doi.org/10.1002/sus2.69
L. Zhang, T. Gu, K. Lu, L. Zhou, D.S. Li et al., Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 31, 2103187 (2021). https://doi.org/10.1002/adfm.202103187
L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014). https://doi.org/10.1039/C4NR00348A
S. Yuan, J. Zhang, L. Hu, J. Li, S. Li et al., Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 21685–21690 (2021). https://doi.org/10.1002/anie.202107053
J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable zn-air batteries. Small (2019). https://doi.org/10.1002/smll.201900307
N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban et al., Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017). https://doi.org/10.1126/science.aan6515
Y. Zhang, Q. Chen, A. Guo, X. Wang, Y. Wang et al., Carbon-nanosheet-driven spontaneous deposition of Au nanops for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 445, 136586 (2022). https://doi.org/10.1016/j.cej.2022.136586
Y.R. Zheng, S. Hu, X.L. Zhang, H. Ju, Z. Wang et al., Black phosphorous mediates surface charge redistribution of CoSe2 for electrochemical H2O2 production in acidic electrolytes. Adv. Mater. 34, 2205414 (2022). https://doi.org/10.1002/adma.202205414
Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
A.R. Payne, Hysteresis of rubbers loaded with carbon black. Nature 201, 1213–1214 (1964). https://doi.org/10.1038/2011213a0
J. Barrio, A. Pedersen, S.C. Sarma, A. Bagger, M. Gong et al., FeNC oxygen reduction electrocatalyst with high utilization penta-coordinated sites. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211022
M.P. Oyarzún, N. Silva, D. Cortés-Arriagada, J.F. Silva, I.O. Ponce et al., Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: pyridine-functionalized single-walled carbon nanotubes. Electrochim. Acta 398, 139263 (2021). https://doi.org/10.1016/j.electacta.2021.139263
Y. Zhou, Y.F. Xing, J. Wen, H.B. Ma, F.B. Wang et al., Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci. Bull. 64, 1158–1166 (2019). https://doi.org/10.1016/j.scib.2019.07.003
Y. Niu, X. Huang, W. Hu, Fe3C nanop decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 332, 305–311 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.130
P.J. Wei, G.Q. Yu, Y. Naruta, J.G. Liu, Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem. Int. Ed. 53, 6659–6663 (2014). https://doi.org/10.1002/anie.201403133
L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multi-dimensional NiCO/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023). https://doi.org/10.1016/j.carbon.2023.01.057
G. Panomsuwan, N. Saito, T. Ishizaki, Nitrogen-doped carbon nanop-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 6962–6971 (2016). https://doi.org/10.1021/acsami.5b10493
R. Venegas, F.J. Recio, J. Riquelme, K. Neira, J.F. Marco et al., Biomimetic reduction of O2 in an acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes. J. Mater. Chem. A 5, 12054–12059 (2017). https://doi.org/10.1039/c7ta02381b
W. Zhang, E.J. Meeus, L. Wang, L.H. Zhang, S. Yang et al., Boosting electrochemical oxygen reduction performance of iron phthalocyanine through axial coordination sphere interaction. ChemSusChem (2022). https://doi.org/10.1002/cssc.202102379
R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim et al., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4, 2076 (2013). https://doi.org/10.1038/ncomms3076
W. Xia, Z. Hou, J. Tang, J. Li, W. Chaikittisilp et al., Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy 94, 106868 (2022). https://doi.org/10.1016/j.nanoen.2021.106868
M. Viera, J. Riquelme, C. Aliaga, J.F. Marco, W. Orellana et al., Oxygen reduction reaction at penta-coordinated Co phthalocyanines. Front Chem. 8, 22 (2020). https://doi.org/10.3389/fchem.2020.00022
F. Liu, G. Zhu, D. Yang, D. Jia, F. Jin et al., Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Adv. 9, 22656–22667 (2019). https://doi.org/10.1039/c9ra02822f
F. Liu, N. Yan, G. Zhu, Z. Liu, S. Ma et al., Fe–N–C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New J. Chem. 45, 13004–13014 (2021). https://doi.org/10.1039/d1nj01380g
Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian et al., Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019). https://doi.org/10.1002/adma.201808193
L. Li, Y.-J. Chen, H.-R. Xing, N. Li, J.-W. Xia et al., Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 15, 8056–8064 (2022). https://doi.org/10.1007/s12274-022-4424-1
Y. Qin, C. Guo, Z. Ou, C. Xu, Q. Lan et al., Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. J. Energy Chem. 80, 542–552 (2023). https://doi.org/10.1016/j.jechem.2023.01.048
Q. Wang, G. Long, X. Gao, J. Chen, C. You et al., A highly active and stable single-atom catalyst for oxygen reduction with axial Fe–O coordination prepared through a fast medium-temperature pyrolysis process. Appl. Catal. B: Environ. 337, 123009 (2023). https://doi.org/10.1016/j.apcatb.2023.123009
F. Kraushofer, G.S. Parkinson, Single-atom catalysis: Insights from model systems. Chem. Rev. 122, 14911–14939 (2022). https://doi.org/10.1021/acs.chemrev.2c00259
X. Wang, Y. An, L. Liu, L. Fang, Y. Liu et al., Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202209746 (2022). https://doi.org/10.1002/anie.202209746
S. Zhang, Q. Zhou, L. Fang, R. Wang, T. Lu et al., Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 328, 122489 (2023). https://doi.org/10.1016/j.apcatb.2023.122489
L. Cheng, H. Huang, Z. Lin, Y. Yang, Q. Yuan et al., N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. J. Colloid Interface Sci. 594, 466–473 (2021). https://doi.org/10.1016/j.jcis.2021.03.074
Y. Liu, X. Liu, Z. Lv, R. Liu, L. Li et al., Tuning the spin state of the iron Center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202117617
K. Chen, K. Liu, P. An, H. Li, Y. Lin et al., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020). https://doi.org/10.1038/s41467-020-18062-y
P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu et al., Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 14, 172 (2023). https://doi.org/10.1038/s41467-023-35839-z
C. Xiao, L. Cheng, Y. Zhu, G. Wang, L. Chen et al., Super-coordinated nickel N4Ni1O2 site single-atom catalyst for selective H2O2 electrosynthesis at high current densities. Angew. Chem. Int. Ed. 61, e202206544 (2022). https://doi.org/10.1002/anie.202206544
L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022). https://doi.org/10.1002/smll.202105387
L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59, 13923–13928 (2020). https://doi.org/10.1002/anie.202004534
Y. Guo, H. Yin, F. Cheng, M. Li, S. Zhang et al., Altering ligand microenvironment of atomically dispersed CrN4 by axial ligand sulfur for enhanced oxygen reduction reaction in alkaline and acidic medium. Small 19, 2206861 (2023). https://doi.org/10.1002/smll.202206861
S. Li, L. Xia, J. Li, Z. Chen, W. Zhang et al., Tuning structural and electronic configuration of FeN4 via external S for enhanced oxygen reduction reaction. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12560
C. Chen, Z. Chen, J. Zhong, X. Song, D. Chen et al., Regulating electronic structure of CoN4 with axial Co-S for promoting oxygen reduction and zn-air battery performance. Nano Res. 16, 4211–4218 (2023). https://doi.org/10.1007/s12274-022-5164-y
C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021). https://doi.org/10.1002/adfm.202108345
Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng et al., Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11, 2348–2352 (2018). https://doi.org/10.1039/c8ee01481g
X. Zhang, L. Truong-Phuoc, X. Liao, V. Papaefthimiou, M. Pugliesi et al., Inducing atomically dispersed Cl-FeN4 sites for ORRs in the SiO2-mediated synthesis of highly mesoporous N-enriched C-networks. J. Mater. Chem. A 10, 6153–6164 (2022). https://doi.org/10.1039/d1ta09519f
S. Ding, J.A. Barr, Q. Shi, Y. Zeng, P. Tieu et al., Engineering atomic single metal-fen(4)cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022). https://doi.org/10.1021/acsnano.2c06459
A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of mof-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-size yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, 2300381 (2023). https://doi.org/10.1002/adma.202300381
K.M. Zhao, S. Liu, Y.Y. Li, X. Wei, G. Ye et al., Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction. Adv. Energy Mater. 12, 2103588 (2022). https://doi.org/10.1002/aenm.202103588
X. Yan, X. Xu, Q. Liu, J. Guo, L. Kang et al., Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. J. Power Sources 389, 260–266 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.042
G. Luo, Y. Wang, Y. Li, Two-dimensional iron-porphyrin sheet as a promising catalyst for oxygen reduction reaction: a computational study. Sci. Bull 62, 1337–1343 (2017). https://doi.org/10.1016/j.scib.2017.08.015
X. She, J. Gao, Y. Gao, H. Tang, K. Li et al., Axial ligand engineering for highly efficient oxygen reduction catalysts in transition metal–N4 doped graphene. New J. Chem. 46, 16138–16150 (2022). https://doi.org/10.1039/d2nj03058f
R. Lu, C. Quan, C. Zhang, Q. He, X. Liao et al., Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Res. 15, 6067–6075 (2022). https://doi.org/10.1007/s12274-022-4318-2
F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2021). https://doi.org/10.1007/s40820-020-00536-9
X. Zhu, X. Tan, K.-H. Wu, C.-L. Chiang, Y.-C. Lin et al., N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 7, 14732–14742 (2019). https://doi.org/10.1039/c9ta03011e
X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li et al., Single-atom to single-atom grafting of Pt1 onto Fe–N4 Center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8, 1701345 (2018). https://doi.org/10.1002/aenm.201701345
B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod et al., Metalloid-cluster ligands enabling stable and active FeN4-Ten motifs for the oxygen reduction reaction. Adv. Mater. 34, 2202714 (2022). https://doi.org/10.1002/adma.202202714
L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi et al., Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery. Proc. Natl. Acad. Sci. (2022). https://doi.org/10.1073/pnas.2207326119
M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014). https://doi.org/10.1021/cr4002758
J. Dong, Y. Cheng, Y. Li, X. Peng, R. Zhang et al., Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO. ACS Appl. Mater. Interfaces 14, 41969–41977 (2022). https://doi.org/10.1021/acsami.2c09615
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2021). https://doi.org/10.1007/s40820-020-00538-7
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
J. Tuo, Y. Lin, Y. Zhu, H. Jiang, Y. Li et al., Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B: Environ. 272, 118960 (2020). https://doi.org/10.1016/j.apcatb.2020.118960
H. Cheng, X. Wu, X. Li, Y. Zhang, M. Feng et al., Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts. J. Catal. 395, 63–69 (2021). https://doi.org/10.1016/j.jcat.2020.12.032
Z. Li, J. Jiang, X. Liu, Z. Zhu, J. Wang et al., Coupling atomically dispersed Fe-N5 sites with defective N-doped carbon boosts CO2 electroreduction. Small 18, 2203495 (2022). https://doi.org/10.1002/smll.202203495
J.R. Huang, X.F. Qiu, Z.H. Zhao, H.L. Zhu, Y.C. Liu et al., Single-product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single-atom nanozyme. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202210985
H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang et al., Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B: Environ. 251, 112–118 (2019). https://doi.org/10.1016/j.apcatb.2019.03.047
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% co selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
X. Li, S.-G. Han, W. Wu, K. Zhang, B. Chen et al., Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy Environ. Sci. 16, 502–512 (2023). https://doi.org/10.1039/d2ee03022e
M. Huang, B. Deng, X. Zhao, Z. Zhang, F. Li et al., Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 16, 2110–2119 (2022). https://doi.org/10.1021/acsnano.1c07746
J. Wang, Q. Hao, H. Zhong, K. Li, X. Zhang, Ligand centered electrocatalytic efficient CO2 reduction reaction at low overpotential on single-atom Ni regulated molecular catalyst. Nano Res. 15, 5816–5823 (2022). https://doi.org/10.1007/s12274-022-4197-6
X. Chen, W. Liu, Y. Sun, T. Tan, C.X. Du et al., KOH-enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction. Small Methods 7, 2201311 (2023). https://doi.org/10.1002/smtd.202201311
T. Zhang, X. Han, H. Liu, M. Biset-Peiró, J. Li et al., Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide. Adv. Funct. Mater. 32, 2111446 (2022). https://doi.org/10.1002/adfm.202111446
X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo et al., Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 266, 118630 (2020). https://doi.org/10.1016/j.apcatb.2020.118630
Z. Chen, A. Huang, K. Yu, T. Cui, Z. Zhuang et al., Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14, 3430–3437 (2021). https://doi.org/10.1039/d1ee00569c
Y. Deng, J. Zhao, S. Wang, R. Chen, J. Ding et al., Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 7242–7251 (2023). https://doi.org/10.1021/jacs.2c12952
Y. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu et al., Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem. Int. Ed. 60, 20803–20810 (2021). https://doi.org/10.1002/anie.202105263
C. Hu, Y. Zhang, A. Hu, Y. Wang, X. Wei et al., Near- and long-range electronic modulation of single metal sites to boost CO2 electrocatalytic reduction. Adv. Mater. 35, 2209298 (2023). https://doi.org/10.1002/adma.202209298
Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai et al., Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 430, 132882 (2022). https://doi.org/10.1016/j.cej.2021.132882
B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1
J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018). https://doi.org/10.1002/aenm.201703487
Y. Li, B. Wei, Z. Li, L. Fan, Q. Jiang et al., Morphological attributes govern CO2 reduction on mesoporous carbon nanosphere with embedded axial Co-N5 sites. (2021). Preprint (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-999257/v1
X. Hu, S. Yao, L. Chen, X. Zhang, M. Jiao et al., Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts: via simulations in realistic electrochemical environment. J. Mater Chem. A 9, 23515–23521 (2021). https://doi.org/10.1039/D1TA07791K
D. Zhou, X. Li, H. Shang, F. Qin, W. Chen, Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 9, 23382–23418 (2021). https://doi.org/10.1039/d1ta06915b
J. Wang, M. Zheng, X. Zhao, W. Fan, Structure-performance descriptors and the role of the axial oxygen atom on M-N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catal. 12, 5441–5454 (2022). https://doi.org/10.1021/acscatal.2c00429
J. Wang, H. Li, S. Liu, Y. Hu, J. Zhang et al., Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem. Int. Ed. 60, 181–185 (2021). https://doi.org/10.1002/ange.202009991
X. Sun, Y. Tuo, C. Ye, C. Chen, Q. Lu et al., Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 60, 23614–23618 (2021). https://doi.org/10.1002/anie.202110433
L. Sun, V. Reddu, T. Su, X. Chen, T. Wu et al., Effects of axial functional groups on heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Small Struct. 2, 2100093 (2021). https://doi.org/10.1002/sstr.202100093
M. Ma, Q. Tang, Axial coordination modification of M-N4 single-atom catalysts to regulate the electrocatalytic CO2 reduction reaction. J. Mater. Chem. C 10, 15948–15956 (2022). https://doi.org/10.1039/d2tc02467e
Y. Liu, D. Wang, B. Yang, Z. Li, X. Peng et al., Efficiently electrochemical CO2 reduction on molybdenum-nitrogen-carbon catalysts with optimized p-block axial ligands. Chem. Eng. Sci. 273, 118638 (2023). https://doi.org/10.1016/j.ces.2023.118638
L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 129, 13882–13886 (2017). https://doi.org/10.1002/ange.201706921
L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, Nanohybrid of carbon quantum dots/molybdenum phosphide nanop for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Interfaces 10, 9460–9467 (2018). https://doi.org/10.1021/acsami.8b00211
Y. Xu, X. Zhang, Y. Liu, R. Wang, Y. Yang et al., A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ. Sci. Pollut. Res. 30, 11302–11320 (2023). https://doi.org/10.1007/s11356-022-24728-5
Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12, 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
D. Liu, G. Xu, H. Yang, H. Wang, B.Y. Xia, Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 33, 2208358 (2023). https://doi.org/10.1002/adfm.202208358
X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
M. Li, M. Wang, D. Liu, Y. Pan, S. Liu et al., Atomically-dispersed NiN4-Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. J. Mater. Chem. A 10, 6007–6015 (2022). https://doi.org/10.1039/d1ta08287f
Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47, 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
B. Cheng, K. Kong, L. Zhang, R. Sa, T. Gu et al., Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chem. Eng. J. 441, 136122 (2022). https://doi.org/10.1016/j.cej.2022.136122
J. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen et al., Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution. Angew. Chem. Int. Ed. 59, 13101–13108 (2020). https://doi.org/10.1002/anie.202004420
L. Zhang, T. Mi, M.A. Ziaee, L. Liang, R. Wang, Hollow POM@ MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 6, 1639–1647 (2018). https://doi.org/10.1039/C7TA08683K
J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin et al., Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10, 5692 (2019). https://doi.org/10.1038/s41467-019-13519-1
L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang et al., Design of Ru–Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abm377
W.H. Lee, Y.J. Ko, J.Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Commun. 56, 12687–12697 (2020). https://doi.org/10.1039/d0cc04752j
Q. Deng, J. Zhao, T. Wu, G. Chen, H.A. Hansen et al., 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). J. Catal. 370, 378–384 (2019). https://doi.org/10.1016/j.jcat.2018.12.012
Y.L. Zhang, B. Liu, Y.K. Dai, Y.F. Xia, P. Guo et al., Electronic delocalization regulates the occupancy and energy level of Co 3dz2 orbitals to enhance bifunctional oxygen catalytic activity. Adv. Funct. Mater. 32, 2209499 (2022). https://doi.org/10.1002/adfm.202209499
T. Li, T. Lu, H. Zhong, S. Xi, M. Zhang et al., Atomically dispersed V-O2N3 sites with axial V–O coordination on multichannel carbon nanofibers achieving superior electrocatalytic oxygen evolution in acidic media. Adv. Energy Mater. 13, 2203274 (2022). https://doi.org/10.1002/aenm.202203274
Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang et al., Axial phosphate coordination in co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, 2206107 (2023). https://doi.org/10.1002/advs.202206107
Y. Yang, C. Hu, J. Shan, C. Cheng, L. Han et al., Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 62, e202300989 (2023). https://doi.org/10.1002/anie.202300989
Y. Huang, C. Tang, Q. Li, J. Gong, Computational studies for boosting nitrate electroreduction activity of Fe-N4-C Single-Atom catalyst via axial fifth ligand. Appl. Surf. Sci. 616, 156440 (2023). https://doi.org/10.1016/j.apsusc.2023.156440
L. Liu, T. Xiao, H. Fu, Z. Chen, X. Qu et al., Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B: Environ. 323, 122181 (2023). https://doi.org/10.1016/j.apcatb.2022.122181
A. Wu, J. Yang, B. Xu, X.-Y. Wu, Y. Wang et al., Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B: Environ. 299, 120667 (2021). https://doi.org/10.1016/j.apcatb.2021.120667