Dilute Aqueous-Aprotic Electrolyte Towards Robust Zn-Ion Hybrid Supercapacitor with High Operation Voltage and Long Lifespan
Corresponding Author: Wenjun Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 161
Abstract
With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using ‘water in salt’ electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI− anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.
Highlights:
1 A novel aqueous/aprotic electrolyte with low salt concentration (i.e., 0.5 m Zn(CF3SO3)2+1 m LiTFSI) demonstrated an expanded electrochemical window, which can simultaneously stabilize Zn metal anode and increase the operation voltage of Zn-ion hybrid supercapacitors.
2 The coordination shell of the electrolyte induced by acetonitrile and LiTFSI can not only suppress the Zn corrosion and hydrogen evolution reaction but also promote the cathodic stability and ion migration, which is depicted by the density functional theory simulations together with experimental characterizations.
3 The Zn-ion hybrid supercapacitor based on the developed electrolyte can operate within 0–2.2 V in a wide temperature range with an ultra-long lifespan (> 120,000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60, 990–997 (2021). https://doi.org/10.1002/anie.202012030
- P.J. Wang, X.S. Xie, Z.Y. Xing, X.H. Chen, G.Z. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11(30), 2101158 (2021). https://doi.org/10.1002/aenm.202101158
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang et al., Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Adv. Funct. Mater. 32, 2209914 (2022). https://doi.org/10.1002/adfm.202209914
- C.-C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33, e2101698 (2021). https://doi.org/10.1002/adma.202101698
- L. Wang, M. Peng, J. Chen, T. Hu, K. Yuan et al., Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Adv. Mater. 34, e2203744 (2022). https://doi.org/10.1002/adma.202203744
- J. Yin, W.L. Zhang, W.X. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31, e1904948 (2019). https://doi.org/10.1002/adma.201904948
- Y.Y. Lu, Z.W. Li, Z.Y. Bai, H.Y. Mi, C.C. Ji et al., High energy-power zn-ion hybrid supercapacitors enabled by layered b/n co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
- X.L. Li, N. Li, Z.D. Huang, Z. Chen, G.J. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chemistry by mxene confinement. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006897
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, e1908121 (2020). https://doi.org/10.1002/adma.201908121
- Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11, 2003931 (2021). https://doi.org/10.1002/aenm.202003931
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
- S. Gao, Z. Zhang, F. Mao, P. Liu, Z. Zhou, Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 7, 3232–3258 (2023). https://doi.org/10.1039/d3qm00104k
- X. Li, X. Ma, Y. Hou, Z. Zhang, Y. Lu et al., Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 5, 2993–3005 (2021). https://doi.org/10.1016/j.joule.2021.09.006
- X. Li, S. Wang, D. Zhang, P. Li, Z. Chen et al., Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater. 36, e2304557 (2024). https://doi.org/10.1002/adma.202304557
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- R.Z. Qin, Y.T. Wang, M.Z. Zhang, Y. Wang, S.X. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- N.J. Yang, S.Y. Yu, W.J. Zhang, H.M. Cheng, P. Simon et al., Electrochemical capacitors with confined redox electrolytes and porous electrodes. Adv. Mater. 34(34), 2202380 (2022). https://doi.org/10.1002/adma.202202380
- S.L. Wu, B.Z. Su, M.Z. Sun, S. Gu, Z.G. Lu et al., Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering. Adv. Mater. 33(41), 2102390 (2021). https://doi.org/10.1002/adma.202102390
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/c6ta08736a
- Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- T.C. Li, Y. Lim, X.L. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12, 2103231 (2022). https://doi.org/10.1002/aenm.202103231
- H. Bi, X. Wang, H. Liu, Y. He, W. Wang et al., A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32, e2000074 (2020). https://doi.org/10.1002/adma.202000074
- J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- H. Tang, J.J. Yao, Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
- Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3(9), 1294–1301 (2010). https://doi.org/10.1039/C0EE00074D
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33, e2100445 (2021). https://doi.org/10.1002/adma.202100445
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60, 990–997 (2021). https://doi.org/10.1002/anie.202012030
P.J. Wang, X.S. Xie, Z.Y. Xing, X.H. Chen, G.Z. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11(30), 2101158 (2021). https://doi.org/10.1002/aenm.202101158
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
W. Jian, W. Zhang, X. Wei, B. Wu, W. Liang et al., Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Adv. Funct. Mater. 32, 2209914 (2022). https://doi.org/10.1002/adfm.202209914
C.-C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33, e2101698 (2021). https://doi.org/10.1002/adma.202101698
L. Wang, M. Peng, J. Chen, T. Hu, K. Yuan et al., Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Adv. Mater. 34, e2203744 (2022). https://doi.org/10.1002/adma.202203744
J. Yin, W.L. Zhang, W.X. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31, e1904948 (2019). https://doi.org/10.1002/adma.201904948
Y.Y. Lu, Z.W. Li, Z.Y. Bai, H.Y. Mi, C.C. Ji et al., High energy-power zn-ion hybrid supercapacitors enabled by layered b/n co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
X.L. Li, N. Li, Z.D. Huang, Z. Chen, G.J. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chemistry by mxene confinement. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006897
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, e1908121 (2020). https://doi.org/10.1002/adma.201908121
Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11, 2003931 (2021). https://doi.org/10.1002/aenm.202003931
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
S. Gao, Z. Zhang, F. Mao, P. Liu, Z. Zhou, Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 7, 3232–3258 (2023). https://doi.org/10.1039/d3qm00104k
X. Li, X. Ma, Y. Hou, Z. Zhang, Y. Lu et al., Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 5, 2993–3005 (2021). https://doi.org/10.1016/j.joule.2021.09.006
X. Li, S. Wang, D. Zhang, P. Li, Z. Chen et al., Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater. 36, e2304557 (2024). https://doi.org/10.1002/adma.202304557
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
R.Z. Qin, Y.T. Wang, M.Z. Zhang, Y. Wang, S.X. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
N.J. Yang, S.Y. Yu, W.J. Zhang, H.M. Cheng, P. Simon et al., Electrochemical capacitors with confined redox electrolytes and porous electrodes. Adv. Mater. 34(34), 2202380 (2022). https://doi.org/10.1002/adma.202202380
S.L. Wu, B.Z. Su, M.Z. Sun, S. Gu, Z.G. Lu et al., Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering. Adv. Mater. 33(41), 2102390 (2021). https://doi.org/10.1002/adma.202102390
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/c6ta08736a
Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
T.C. Li, Y. Lim, X.L. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12, 2103231 (2022). https://doi.org/10.1002/aenm.202103231
H. Bi, X. Wang, H. Liu, Y. He, W. Wang et al., A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32, e2000074 (2020). https://doi.org/10.1002/adma.202000074
J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
H. Tang, J.J. Yao, Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3(9), 1294–1301 (2010). https://doi.org/10.1039/C0EE00074D
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33, e2100445 (2021). https://doi.org/10.1002/adma.202100445
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770