Zn(TFSI)2-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries
Corresponding Author: Yonggang Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 120
Abstract
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent. The Zn(TFSI)2 salt catalyzes the ring-opening polymerization of (1,3-dioxolane (DOL)), generating oxidation-resistant and non-combustible long-chain polymer (poly(1,3-dioxolane) (pDOL)). The pDOL reduces the active H2O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents, ZnO and ZnF2. The introduction of pDOL endows the electrolyte with several advantages: excellent Zn dendrite inhibition, improved corrosion resistance, widened electrochemical window (2.6 V), and enhanced low-temperature performance (freezing point = − 34.9 °C). Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02% Coulomb efficiency and maintains a lifetime of 8200 h. Moreover, Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%. A Zn//VO2 pouch cell assembled with lean electrolyte (electrolyte/capacity (E/C = 41 mL (Ah)−1) also demonstrates a capacity retention ratio of 92% after 600 cycles. These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering.
Highlights:
1 A novel electrolyte enabled by Zn(TFSI)2-mediated ring-opening polymerization strategy for highly reversible aqueous zinc metal batteries was proposed.
2 The novel electrolyte has good antioxidant stability and non-inflammability.
3 The novel electrolyte widens the electrochemical window, improves the low-temperature performance, and inhibits Zn dendrite. The Zn metal anode shows an 8200 h lifespan at 1 mAh cm−2 and a 2500 h lifespan at 60% depth of discharge.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R. Rep. 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16, 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- M. Chen, Y. Gong, Y. Zhao, Y. Song, Y. Tang et al., Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries. Natl. Sci. Rev. 11, nwae205 (2024). https://doi.org/10.1093/nsr/nwae205
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17, 3168–3178 (2024). https://doi.org/10.1039/D3EE04360F
- J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36, e2310623 (2024). https://doi.org/10.1002/adma.202310623
- Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35, e2300369 (2023). https://doi.org/10.1002/adma.202300369
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable Hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
- F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
- M. Xi, Z. Liu, Z. Qi, R. Sheng, Y. Huang, An encapsulation-based Zn electroplating/stripping via 3D hollow PPy. J. Electrochem. Soc. 170, 100512 (2023). https://doi.org/10.1149/1945-7111/acfff7
- M. Xi, Z. Liu, R. Sheng, J. Zhu, Y. Guo et al., A novel solvent system of polyamides achieves new application in ZIBs by aggregation induced Lewis acid-base centers. Chem. Eng. J. 461, 141987 (2023). https://doi.org/10.1016/j.cej.2023.141987
- D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- Z. Liu, G. Li, M. Xi, Y. Huang, H. Li et al., Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 63, e202319091 (2024). https://doi.org/10.1002/anie.202319091
- Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12, 5843–5852 (2021). https://doi.org/10.1039/d0sc06734b
- M. Xu, B. Zhang, Y. Sang, D. Luo, R. Gao et al., Bicontinuous-phase electrolyte for a highly reversible Zn metal anode working at ultralow temperature. Energy Environ. Sci. 17, 8966–8977 (2024). https://doi.org/10.1039/d4ee02815e
- S. Yang, K. Xue, J. Zhang, Y. Guo, G. Wu et al., Synergistic electrostatic shielding manipulation of Na+ and desolvation effect of Zn2+ enabled by glycerol for long-lifespan and dendrite-free Zn anodes. Energy Storage Mater. 62, 102929 (2023). https://doi.org/10.1016/j.ensm.2023.102929
- W. Xu, J. Li, X. Liao, L. Zhang, X. Zhang et al., Fluoride-rich, organic-inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J. Am. Chem. Soc. 145, 22456–22465 (2023). https://doi.org/10.1021/jacs.3c06523
- L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang et al., Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano 16, 9667–9678 (2022). https://doi.org/10.1021/acsnano.2c02996
- Y. Liu, H. Zou, Z. Huang, Q. Wen, J. Lai et al., In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries. Energy Environ. Sci. 16, 6110–6119 (2023). https://doi.org/10.1039/D3EE02797J
- Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
- Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, e2300019 (2023). https://doi.org/10.1002/adma.202300019
- Z. Zheng, D. Ren, Y. Li, F. Kang, X. Li et al., Self-assembled robust interfacial layer for dendrite-free and flexible zinc-based energy storage. Adv. Funct. Mater. 34, 2312855 (2024). https://doi.org/10.1002/adfm.202312855
- Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144, 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
- T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202314883 (2023). https://doi.org/10.1002/anie.202314883
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- X. Zhao, N. Dong, M. Yan, H. Pan, Unraveling the interphasial chemistry for highly reversible aqueous Zn ion batteries. ACS Appl. Mater. Interfaces 15, 4053–4060 (2023). https://doi.org/10.1021/acsami.2c19022
- S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35, e2300195 (2023). https://doi.org/10.1002/adma.202300195
- L. Lin, H. Zheng, Q. Luo, J. Lin, L. Wang et al., Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries. Adv. Funct. Mater. 34, 2315201 (2024). https://doi.org/10.1002/adfm.202315201
- C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
- T.C. Li, Y. Lim, X.L. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12, 2103231 (2022). https://doi.org/10.1002/aenm.202103231
- X. Cao, W. Xu, D. Zheng, F. Wang, Y. Wang et al., Weak solvation effect induced optimal interfacial chemistry enables highly durable Zn anodes for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202317302 (2024). https://doi.org/10.1002/anie.202317302
- J. Zhu, M. Yang, Y. Hu, M. Yao, J. Chen et al., The construction of binary phase electrolyte interface for highly stable zinc anodes. Adv. Mater. 36, e2304426 (2024). https://doi.org/10.1002/adma.202304426
- S. Wang, G. Liu, W. Wan, X. Li, J. Li et al., Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 36, e2306546 (2024). https://doi.org/10.1002/adma.202306546
- D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
- L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202206717 (2022). https://doi.org/10.1002/anie.202206717
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
- R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16, 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
- Q. He, T. Hu, Q. Wu, C. Wang, X. Han et al., Tunnel-oriented VO2 (B) cathode for high-rate aqueous zinc-ion batteries. Adv. Mater. 36, e2400888 (2024). https://doi.org/10.1002/adma.202400888
References
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R. Rep. 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16, 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
M. Chen, Y. Gong, Y. Zhao, Y. Song, Y. Tang et al., Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries. Natl. Sci. Rev. 11, nwae205 (2024). https://doi.org/10.1093/nsr/nwae205
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17, 3168–3178 (2024). https://doi.org/10.1039/D3EE04360F
J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36, e2310623 (2024). https://doi.org/10.1002/adma.202310623
Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35, e2300369 (2023). https://doi.org/10.1002/adma.202300369
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable Hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
M. Xi, Z. Liu, Z. Qi, R. Sheng, Y. Huang, An encapsulation-based Zn electroplating/stripping via 3D hollow PPy. J. Electrochem. Soc. 170, 100512 (2023). https://doi.org/10.1149/1945-7111/acfff7
M. Xi, Z. Liu, R. Sheng, J. Zhu, Y. Guo et al., A novel solvent system of polyamides achieves new application in ZIBs by aggregation induced Lewis acid-base centers. Chem. Eng. J. 461, 141987 (2023). https://doi.org/10.1016/j.cej.2023.141987
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018). https://doi.org/10.1039/C8EE00378E
Z. Liu, G. Li, M. Xi, Y. Huang, H. Li et al., Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 63, e202319091 (2024). https://doi.org/10.1002/anie.202319091
Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12, 5843–5852 (2021). https://doi.org/10.1039/d0sc06734b
M. Xu, B. Zhang, Y. Sang, D. Luo, R. Gao et al., Bicontinuous-phase electrolyte for a highly reversible Zn metal anode working at ultralow temperature. Energy Environ. Sci. 17, 8966–8977 (2024). https://doi.org/10.1039/d4ee02815e
S. Yang, K. Xue, J. Zhang, Y. Guo, G. Wu et al., Synergistic electrostatic shielding manipulation of Na+ and desolvation effect of Zn2+ enabled by glycerol for long-lifespan and dendrite-free Zn anodes. Energy Storage Mater. 62, 102929 (2023). https://doi.org/10.1016/j.ensm.2023.102929
W. Xu, J. Li, X. Liao, L. Zhang, X. Zhang et al., Fluoride-rich, organic-inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J. Am. Chem. Soc. 145, 22456–22465 (2023). https://doi.org/10.1021/jacs.3c06523
L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang et al., Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano 16, 9667–9678 (2022). https://doi.org/10.1021/acsnano.2c02996
Y. Liu, H. Zou, Z. Huang, Q. Wen, J. Lai et al., In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries. Energy Environ. Sci. 16, 6110–6119 (2023). https://doi.org/10.1039/D3EE02797J
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, e2300019 (2023). https://doi.org/10.1002/adma.202300019
Z. Zheng, D. Ren, Y. Li, F. Kang, X. Li et al., Self-assembled robust interfacial layer for dendrite-free and flexible zinc-based energy storage. Adv. Funct. Mater. 34, 2312855 (2024). https://doi.org/10.1002/adfm.202312855
Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144, 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202314883 (2023). https://doi.org/10.1002/anie.202314883
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
X. Zhao, N. Dong, M. Yan, H. Pan, Unraveling the interphasial chemistry for highly reversible aqueous Zn ion batteries. ACS Appl. Mater. Interfaces 15, 4053–4060 (2023). https://doi.org/10.1021/acsami.2c19022
S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35, e2300195 (2023). https://doi.org/10.1002/adma.202300195
L. Lin, H. Zheng, Q. Luo, J. Lin, L. Wang et al., Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries. Adv. Funct. Mater. 34, 2315201 (2024). https://doi.org/10.1002/adfm.202315201
C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
T.C. Li, Y. Lim, X.L. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12, 2103231 (2022). https://doi.org/10.1002/aenm.202103231
X. Cao, W. Xu, D. Zheng, F. Wang, Y. Wang et al., Weak solvation effect induced optimal interfacial chemistry enables highly durable Zn anodes for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202317302 (2024). https://doi.org/10.1002/anie.202317302
J. Zhu, M. Yang, Y. Hu, M. Yao, J. Chen et al., The construction of binary phase electrolyte interface for highly stable zinc anodes. Adv. Mater. 36, e2304426 (2024). https://doi.org/10.1002/adma.202304426
S. Wang, G. Liu, W. Wan, X. Li, J. Li et al., Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 36, e2306546 (2024). https://doi.org/10.1002/adma.202306546
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023). https://doi.org/10.1002/anie.202216934
L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202206717 (2022). https://doi.org/10.1002/anie.202206717
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16, 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
Q. He, T. Hu, Q. Wu, C. Wang, X. Han et al., Tunnel-oriented VO2 (B) cathode for high-rate aqueous zinc-ion batteries. Adv. Mater. 36, e2400888 (2024). https://doi.org/10.1002/adma.202400888