A Mechanically Robust In-Situ Solidified Polymer Electrolyte for SiOx-Based Anodes Toward High-Energy Lithium Batteries
Corresponding Author: Guanglei Cui
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 250
Abstract
Silicon suboxide (SiOx, 0 < x < 2) is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries. Nevertheless, the huge volume change and rapid capacity decay of SiOx electrodes during cycling pose huge challenges to their large-scale practical applications. To eliminate this bottleneck, a dragonfly wing microstructure-inspired polymer electrolyte (denoted as PPM-PE) is developed based on in-situ polymerization of bicyclic phosphate ester- and urethane motif-containing monomer and methyl methacrylate in traditional liquid electrolyte. PPM-PE delivers excellent mechanical properties, highly correlated with the formation of a micro-phase separation structure similar with dragonfly wings. By virtue of superior mechanical properties and the in-situ solidified preparation method, PPM-PE can form a 3D polymer network buffer against stress within the electrode particles gap, enabling much suppressed electrode volume expansion and more stabilized solid electrolyte interface along with evidently decreased electrolyte decomposition. Resultantly, PPM-PE shows significant improvements in both cycling and rate performance in button and soft package batteries with SiOx-based electrodes, compared with the liquid electrolyte counterpart. Such a dragonfly wing microstructure-inspired design philosophy of in-situ solidified polymer electrolytes helps facilitate the practical implementation of high-energy lithium batteries with SiOx-based anodes.
Highlights:
1 Inspired by the microstructure of high-mechanical-property dragonfly wings, a phase separation structure design philosophy of in-situ solidified polymer electrolytes was first proposed, enabling superior mechanical properties of them.
2 By virtue of superior mechanical properties and the in-situ solidified preparation method, the failure behaviors of SiOx-based electrodes are effectively suppressed by the as-developed polymer electrolyte.
3 A dragonfly wing microstructure-inspired polymer electrolyte (denoted as PPM-PE) enables excellent electrochemical performance of SiOx-based electrodes in button-type and soft package full cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
- J. Su, H. Song, C. Wang, Morphology reshaping enabling self-densification of manganese oxide hybrid materials for high-density lithium storage anodes. Adv. Funct. Mater. 29(51), 1907154 (2019). https://doi.org/10.1002/adfm.201907154
- L. Wang, T.F. Liu, X. Peng, W.W. Zeng, Z.Z. Jin et al., Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28(3), 1704858 (2018). https://doi.org/10.1002/adfm.201704858
- S. Nam, Y. Kim, S.H. Kim, H.B. Son, D.Y. Han et al., Tailoring three-dimensional cross-linked networks based on water-soluble polymeric materials for stable silicon anode. ACS Appl. Mater. Interfaces 16(1), 594–604 (2024). https://doi.org/10.1021/acsami.3c13896
- E. Zhao, S. Luo, A. Hu, Z. Liao, C. Huang et al., Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode. Chem. Eng. J. 463, 142306 (2023). https://doi.org/10.1016/j.cej.2023.142306
- Z. Ma, D. Ruan, D. Wang, Z. Lu, Z. He et al., Selective methylation of cyclic ether towards highly elastic solid electrolyte interphase for silicon-based anodes. Angew. Chem. Int. Ed. 64(2), e202414859 (2025). https://doi.org/10.1002/anie.202414859
- R. Wu, X. Du, T. Liu, X. Zhuang, P. Guan et al., Robust and fast-ion conducting interphase empowering SiOx anode toward high energy lithium–ion batteries. Adv. Energy Mater. 14(2), 2302899 (2024). https://doi.org/10.1002/aenm.202302899
- W. Guo, D. Fu, F. Tian, H. Song, C. Wang, Ca-based hybrid interfaces inhibit uncontrolled electrolyte decomposition for efficient Ion-Storage. Chem. Eng. J. 489, 151116 (2024). https://doi.org/10.1016/j.cej.2024.151116
- W. Tang, L. Feng, X. Wei, G. Lai, H. Chen et al., Three-dimensional crosslinked PAA-TA hybrid binders for long-cycle-life SiOx anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(51), 56910–56918 (2022). https://doi.org/10.1021/acsami.2c19344
- H.S. Kim, T.H. Kim, S.S. Park, M.S. Kang, G. Jeong, Interphasial engineering via individual moiety functionalized organosilane single-molecule for extreme quick rechargeable SiO/NCM811 lithium-ion batteries. ACS Appl. Mater. Interfaces 13(37), 44348–44357 (2021). https://doi.org/10.1021/acsami.1c12240
- S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion–dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
- M.G. Oh, S. Kwak, K. An, Y.H.T. Tran, D.G. Kang et al., Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery. Adv. Funct. Mater. 33(21), 2212890 (2023). https://doi.org/10.1002/adfm.202212890
- W. Min, L. Li, M. Wang, S. Ma, H. Feng et al., Mastering the copolymerization behavior of ethyl cyanoacrylate as gel polymer electrolyte for lithium-metal battery application. Angew. Chem. Int. Ed. 64(13), e202422510 (2025). https://doi.org/10.1002/anie.202422510
- Q. Huang, J. Song, Y. Gao, D. Wang, S. Liu et al., Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat. Commun. 10, 5586 (2019). https://doi.org/10.1038/s41467-019-13434-5
- L. Lee, W.T.A. Ran, J.-H. Lee, S.M. Hwang, Y.-J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chem. Eng. J. 442, 136166 (2022). https://doi.org/10.1016/j.cej.2022.136166
- M. Yang, L. Jin, M. He, Z. Yi, T. Duan et al., SiOx@C composites obtained by facile synthesis as anodes for lithium- and potassium-ion batteries with excellent electrochemical performance. Appl. Surf. Sci. 542, 148712 (2021). https://doi.org/10.1016/j.apsusc.2020.148712
- Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang et al., Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 13, 112–118 (2018). https://doi.org/10.1016/j.ensm.2018.01.004
- Z.H. Li, W.T. Tang, Y.J. Yang, G.Y. Lai, Z. Lin et al., Engineering prelithiation of polyacrylic acid binder: a universal strategy to boost initial coulombic efficiency for high-areal-capacity Si-based anodes. Adv. Funct. Mater. 32(40), 2206615 (2022). https://doi.org/10.1002/adfm.202206615
- H. Xiao, J. Qiu, S. Wu, L. Xie, W. Zhou et al., Cross-linked γ-polyglutamic acid as an aqueous SiOx anode binder for long-term lithium-ion batteries. ACS Appl. Mater. Interfaces 14(16), 18625–18633 (2022). https://doi.org/10.1021/acsami.2c03458
- Z. Weng, S. Di, L. Chen, G. Wu, Y. Zhang et al., Random copolymer hydrogel as elastic binder for the SiOx microp anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(37), 42494–42503 (2022). https://doi.org/10.1021/acsami.2c12128
- Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17(1), 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
- K. Yoon, S. Lee, K. Oh, K. Kang, Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv. Mater. 34(4), e2104666 (2022). https://doi.org/10.1002/adma.202104666
- Y. Zhai, Z. Wei, J. He, Z. Zhao, Q. Li et al., Biomimetic surface design enables a resilient solid electrolyte interphase for high-performance anodes. Energy Storage Mater. 74, 103871 (2025). https://doi.org/10.1016/j.ensm.2024.103871
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- B. Zhou, T. Deng, C. Yang, M. Wang, H. Yan et al., Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv. Funct. Mater. 33(13), 2212005 (2023). https://doi.org/10.1002/adfm.202212005
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- K. Guo, S. Li, J. Wang, Z. Shi, Y. Wang et al., In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes. ACS Energy Lett. 9(3), 843–852 (2024). https://doi.org/10.1021/acsenergylett.3c02422
- T. Song, H. Lei, A.J. Clancy, S. Ma, H. Yu, L. Zhang, Supramolecular hydrogen bond enables kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight. Nano Energy 87, 106207 (2021). https://doi.org/10.1016/j.nanoen.2021.106207
- R. Daw, At a stretch. Nature 437(7061), 961 (2005). https://doi.org/10.1038/437961a
- J. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu et al., Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter 4(7), 2474–2489 (2021). https://doi.org/10.1016/j.matt.2021.05.001
- Y. Zhou, J. Luo, Q. Jing, S. Ge, S. Chen et al., Tough, waterproofing, and sustainable bio-adhesive inspired by the dragonfly wing. Adv. Funct. Mater. 34(42), 2406557 (2024). https://doi.org/10.1002/adfm.202406557
- Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao et al., Dual-interface reinforced flexible solid garnet batteries enabled by in situ solidified gel polymer electrolytes. Nano Energy 90, 106498 (2021). https://doi.org/10.1016/j.nanoen.2021.106498
- X. Yang, H. Zhang, J. Zhao, Y. Liu, Z. Zhang et al., Multiscale supramolecular polymer network with microphase-separated structure enabled by host−guest self-sorting recognitions. Chem. Eng. J. 450, 138135 (2022). https://doi.org/10.1016/j.cej.2022.138135
- Z. Shi, J. Wang, K. Guo, H. Wang, H. Nie et al., Deep eutectic solvent-assisted phase separation for polyurea-based polymer electrolytes. Chem. Eng. J. 468, 143687 (2023). https://doi.org/10.1016/j.cej.2023.143687
- N. Q. Nguyen, R. L. Hamblin, K. H. DuBay, Emergent sequence biasing in step-growth copolymerization: Influence of non-bonded interactions and comonomer reactivities. J. Phys. Chem. 126(34), 6585–6597 (2022). https://doi.org/10.1021/acs.jpcb.2c04092
- Y. Yoshinaga, Y. Yoshida, Stereospecific radical polymerization of methacrylate bearing oxazolidone structure and improvement of glass transition temperature of urethane methacrylate copolymers. J. Polym. Sci. 61(17), 2050–2059 (2023). https://doi.org/10.1002/pol.20230210
- Y.J. Chen, Y.P. Song, Z. Zhang, Y.L. Chen, Q.L. Deng et al., Thiol-functionalized covalent organic frameworks as thermal history indictor for temperature and time history monitoring. Adv. Funct. Mater. 31(41), 2104885 (2021). https://doi.org/10.1002/adfm.202104885
- H.-D. Nguyen, G.-T. Kim, J. Shi, E. Paillard, P. Judeinstein et al., Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 11(11), 3298–3309 (2018). https://doi.org/10.1039/c8ee02093k
- J. Han, M.J. Lee, J.H. Min, K.H. Kim, K. Lee et al., Fluorine-containing phase-separated polymer electrolytes enabling high-energy solid-state lithium metal batteries. Adv. Funct. Mater. 34(19), 2310801 (2024). https://doi.org/10.1002/adfm.202310801
- B.K. Wheatle, N.A. Lynd, V. Ganesan, Effect of polymer polarity on ion transport: a competition between ion aggregation and polymer segmental dynamics. ACS Macro Lett. 7(10), 1149–1154 (2018). https://doi.org/10.1021/acsmacrolett.8b00594
- L. Yang, H. Wang, J. Cao, F. Du, J. Yu et al., Intermolecular interaction induced spontaneous aggregation enables over 14% efficiency as-cast nonfullerene solar cells. Chem. Eng. J. 427, 131942 (2022). https://doi.org/10.1016/j.cej.2021.131942
- H. Liu, L. Xu, F. Zhu, D. Luo, Y. Zhang et al., Unveiling the effect law of carbon dots with polyfunctional groups on interface structure and ion migration in polymer electrolytes for solid lithium battery. Nano Energy 126, 109623 (2024). https://doi.org/10.1016/j.nanoen.2024.109623
- G.G. Eshetu, E. Figgemeier, Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem 12(12), 2515–2539 (2019). https://doi.org/10.1002/cssc.201900209
- B. Tang, H. Wu, X. Du, X. Cheng, X. Liu et al., Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries. Small 16(5), e1905737 (2020). https://doi.org/10.1002/smll.201905737
- Z. Lin, Y. Ma, W. Wang, Y. He, M. Wang et al., A homogeneous and mechanically stable artificial diffusion layer using rigid-flexible hybrid polymer for high-performance lithium metal batteries. J. Energy Chem. 76, 631–638 (2023). https://doi.org/10.1016/j.jechem.2022.09.030
- Y.-F. Tian, S.-J. Tan, Z.-Y. Lu, D.-X. Xu, H.-X. Chen et al., Insights into anion-solvent interactions to boost stable operation of ether-based electrolytes in pure- SiOx||LiNi0.8Mn0.1Co0.1O2 full cells. Angew. Chem. Int. Ed. 62(33), e202305988 (2023). https://doi.org/10.1002/anie.202305988
- R. Li, B. Cui, Q. Zhou, X. Mu, Y. Gao et al., Stabilizing electrode-electrolyte interface for high-performance SiOx anode by dual electrolyte additive. J. Energy Chem. 86, 32–40 (2023). https://doi.org/10.1016/j.jechem.2023.07.015
- H.N. Kim, T. Yim, 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether as an advanced electrolyte additive for SiOx-based lithium-ion batteries. J. Alloys Compd. 931, 167529 (2023). https://doi.org/10.1016/j.jallcom.2022.167529
- C.C. Nguyen, H. Choi, S.-W. Song, Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries. J. Electrochem. Soc. 160(6), A906–A914 (2013). https://doi.org/10.1149/2.118306jes
- J.W. Kim, M.J. Seong, D.W. Park, G. Jeong, T. Yim, Anti-corrosive and surface-stabilizing functional electrolyte containing LiFSI and LiPO2F2 for SiOx/NCM811-based batteries. Corros. Sci. 198, 110117 (2022). https://doi.org/10.1016/j.corsci.2022.110117
- S. Lee, T. Yim, Regulating interfacial stability of SiOx anode with fluoride-abundant solid–electrolyte interphase by fluorine-functionalized additive. Rare Met. 43(2), 671–681 (2024). https://doi.org/10.1007/s12598-023-02474-y
- H.N. Kim, S.Y. Kim, J. Ahn, T. Yim, Simultaneous realization of multilayer interphases on a Ni-rich NCM cathode and a SiOx anode by the combination of vinylene carbonate with lithium difluoro(oxalato)borate. ACS Appl. Mater. Interfaces 16(12), 14940–14953 (2024). https://doi.org/10.1021/acsami.4c01032
- Z.H. Li, Y. Zhang, T.F. Liu, X.H. Gao, S.Y. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110
References
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
J. Su, H. Song, C. Wang, Morphology reshaping enabling self-densification of manganese oxide hybrid materials for high-density lithium storage anodes. Adv. Funct. Mater. 29(51), 1907154 (2019). https://doi.org/10.1002/adfm.201907154
L. Wang, T.F. Liu, X. Peng, W.W. Zeng, Z.Z. Jin et al., Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28(3), 1704858 (2018). https://doi.org/10.1002/adfm.201704858
S. Nam, Y. Kim, S.H. Kim, H.B. Son, D.Y. Han et al., Tailoring three-dimensional cross-linked networks based on water-soluble polymeric materials for stable silicon anode. ACS Appl. Mater. Interfaces 16(1), 594–604 (2024). https://doi.org/10.1021/acsami.3c13896
E. Zhao, S. Luo, A. Hu, Z. Liao, C. Huang et al., Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode. Chem. Eng. J. 463, 142306 (2023). https://doi.org/10.1016/j.cej.2023.142306
Z. Ma, D. Ruan, D. Wang, Z. Lu, Z. He et al., Selective methylation of cyclic ether towards highly elastic solid electrolyte interphase for silicon-based anodes. Angew. Chem. Int. Ed. 64(2), e202414859 (2025). https://doi.org/10.1002/anie.202414859
R. Wu, X. Du, T. Liu, X. Zhuang, P. Guan et al., Robust and fast-ion conducting interphase empowering SiOx anode toward high energy lithium–ion batteries. Adv. Energy Mater. 14(2), 2302899 (2024). https://doi.org/10.1002/aenm.202302899
W. Guo, D. Fu, F. Tian, H. Song, C. Wang, Ca-based hybrid interfaces inhibit uncontrolled electrolyte decomposition for efficient Ion-Storage. Chem. Eng. J. 489, 151116 (2024). https://doi.org/10.1016/j.cej.2024.151116
W. Tang, L. Feng, X. Wei, G. Lai, H. Chen et al., Three-dimensional crosslinked PAA-TA hybrid binders for long-cycle-life SiOx anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(51), 56910–56918 (2022). https://doi.org/10.1021/acsami.2c19344
H.S. Kim, T.H. Kim, S.S. Park, M.S. Kang, G. Jeong, Interphasial engineering via individual moiety functionalized organosilane single-molecule for extreme quick rechargeable SiO/NCM811 lithium-ion batteries. ACS Appl. Mater. Interfaces 13(37), 44348–44357 (2021). https://doi.org/10.1021/acsami.1c12240
S. Dong, L. Shi, S. Geng, Y. Ning, C. Kang et al., Breaking solvation dominance effect enabled by ion–dipole interaction toward long-spanlife silicon oxide anodes in lithium-ion batteries. Nano-Micro Lett. 17(1), 95 (2024). https://doi.org/10.1007/s40820-024-01592-1
M.G. Oh, S. Kwak, K. An, Y.H.T. Tran, D.G. Kang et al., Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery. Adv. Funct. Mater. 33(21), 2212890 (2023). https://doi.org/10.1002/adfm.202212890
W. Min, L. Li, M. Wang, S. Ma, H. Feng et al., Mastering the copolymerization behavior of ethyl cyanoacrylate as gel polymer electrolyte for lithium-metal battery application. Angew. Chem. Int. Ed. 64(13), e202422510 (2025). https://doi.org/10.1002/anie.202422510
Q. Huang, J. Song, Y. Gao, D. Wang, S. Liu et al., Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat. Commun. 10, 5586 (2019). https://doi.org/10.1038/s41467-019-13434-5
L. Lee, W.T.A. Ran, J.-H. Lee, S.M. Hwang, Y.-J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chem. Eng. J. 442, 136166 (2022). https://doi.org/10.1016/j.cej.2022.136166
M. Yang, L. Jin, M. He, Z. Yi, T. Duan et al., SiOx@C composites obtained by facile synthesis as anodes for lithium- and potassium-ion batteries with excellent electrochemical performance. Appl. Surf. Sci. 542, 148712 (2021). https://doi.org/10.1016/j.apsusc.2020.148712
Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang et al., Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 13, 112–118 (2018). https://doi.org/10.1016/j.ensm.2018.01.004
Z.H. Li, W.T. Tang, Y.J. Yang, G.Y. Lai, Z. Lin et al., Engineering prelithiation of polyacrylic acid binder: a universal strategy to boost initial coulombic efficiency for high-areal-capacity Si-based anodes. Adv. Funct. Mater. 32(40), 2206615 (2022). https://doi.org/10.1002/adfm.202206615
H. Xiao, J. Qiu, S. Wu, L. Xie, W. Zhou et al., Cross-linked γ-polyglutamic acid as an aqueous SiOx anode binder for long-term lithium-ion batteries. ACS Appl. Mater. Interfaces 14(16), 18625–18633 (2022). https://doi.org/10.1021/acsami.2c03458
Z. Weng, S. Di, L. Chen, G. Wu, Y. Zhang et al., Random copolymer hydrogel as elastic binder for the SiOx microp anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(37), 42494–42503 (2022). https://doi.org/10.1021/acsami.2c12128
Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17(1), 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
K. Yoon, S. Lee, K. Oh, K. Kang, Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv. Mater. 34(4), e2104666 (2022). https://doi.org/10.1002/adma.202104666
Y. Zhai, Z. Wei, J. He, Z. Zhao, Q. Li et al., Biomimetic surface design enables a resilient solid electrolyte interphase for high-performance anodes. Energy Storage Mater. 74, 103871 (2025). https://doi.org/10.1016/j.ensm.2024.103871
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
B. Zhou, T. Deng, C. Yang, M. Wang, H. Yan et al., Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv. Funct. Mater. 33(13), 2212005 (2023). https://doi.org/10.1002/adfm.202212005
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
K. Guo, S. Li, J. Wang, Z. Shi, Y. Wang et al., In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes. ACS Energy Lett. 9(3), 843–852 (2024). https://doi.org/10.1021/acsenergylett.3c02422
T. Song, H. Lei, A.J. Clancy, S. Ma, H. Yu, L. Zhang, Supramolecular hydrogen bond enables kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight. Nano Energy 87, 106207 (2021). https://doi.org/10.1016/j.nanoen.2021.106207
R. Daw, At a stretch. Nature 437(7061), 961 (2005). https://doi.org/10.1038/437961a
J. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu et al., Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter 4(7), 2474–2489 (2021). https://doi.org/10.1016/j.matt.2021.05.001
Y. Zhou, J. Luo, Q. Jing, S. Ge, S. Chen et al., Tough, waterproofing, and sustainable bio-adhesive inspired by the dragonfly wing. Adv. Funct. Mater. 34(42), 2406557 (2024). https://doi.org/10.1002/adfm.202406557
Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao et al., Dual-interface reinforced flexible solid garnet batteries enabled by in situ solidified gel polymer electrolytes. Nano Energy 90, 106498 (2021). https://doi.org/10.1016/j.nanoen.2021.106498
X. Yang, H. Zhang, J. Zhao, Y. Liu, Z. Zhang et al., Multiscale supramolecular polymer network with microphase-separated structure enabled by host−guest self-sorting recognitions. Chem. Eng. J. 450, 138135 (2022). https://doi.org/10.1016/j.cej.2022.138135
Z. Shi, J. Wang, K. Guo, H. Wang, H. Nie et al., Deep eutectic solvent-assisted phase separation for polyurea-based polymer electrolytes. Chem. Eng. J. 468, 143687 (2023). https://doi.org/10.1016/j.cej.2023.143687
N. Q. Nguyen, R. L. Hamblin, K. H. DuBay, Emergent sequence biasing in step-growth copolymerization: Influence of non-bonded interactions and comonomer reactivities. J. Phys. Chem. 126(34), 6585–6597 (2022). https://doi.org/10.1021/acs.jpcb.2c04092
Y. Yoshinaga, Y. Yoshida, Stereospecific radical polymerization of methacrylate bearing oxazolidone structure and improvement of glass transition temperature of urethane methacrylate copolymers. J. Polym. Sci. 61(17), 2050–2059 (2023). https://doi.org/10.1002/pol.20230210
Y.J. Chen, Y.P. Song, Z. Zhang, Y.L. Chen, Q.L. Deng et al., Thiol-functionalized covalent organic frameworks as thermal history indictor for temperature and time history monitoring. Adv. Funct. Mater. 31(41), 2104885 (2021). https://doi.org/10.1002/adfm.202104885
H.-D. Nguyen, G.-T. Kim, J. Shi, E. Paillard, P. Judeinstein et al., Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 11(11), 3298–3309 (2018). https://doi.org/10.1039/c8ee02093k
J. Han, M.J. Lee, J.H. Min, K.H. Kim, K. Lee et al., Fluorine-containing phase-separated polymer electrolytes enabling high-energy solid-state lithium metal batteries. Adv. Funct. Mater. 34(19), 2310801 (2024). https://doi.org/10.1002/adfm.202310801
B.K. Wheatle, N.A. Lynd, V. Ganesan, Effect of polymer polarity on ion transport: a competition between ion aggregation and polymer segmental dynamics. ACS Macro Lett. 7(10), 1149–1154 (2018). https://doi.org/10.1021/acsmacrolett.8b00594
L. Yang, H. Wang, J. Cao, F. Du, J. Yu et al., Intermolecular interaction induced spontaneous aggregation enables over 14% efficiency as-cast nonfullerene solar cells. Chem. Eng. J. 427, 131942 (2022). https://doi.org/10.1016/j.cej.2021.131942
H. Liu, L. Xu, F. Zhu, D. Luo, Y. Zhang et al., Unveiling the effect law of carbon dots with polyfunctional groups on interface structure and ion migration in polymer electrolytes for solid lithium battery. Nano Energy 126, 109623 (2024). https://doi.org/10.1016/j.nanoen.2024.109623
G.G. Eshetu, E. Figgemeier, Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. ChemSusChem 12(12), 2515–2539 (2019). https://doi.org/10.1002/cssc.201900209
B. Tang, H. Wu, X. Du, X. Cheng, X. Liu et al., Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries. Small 16(5), e1905737 (2020). https://doi.org/10.1002/smll.201905737
Z. Lin, Y. Ma, W. Wang, Y. He, M. Wang et al., A homogeneous and mechanically stable artificial diffusion layer using rigid-flexible hybrid polymer for high-performance lithium metal batteries. J. Energy Chem. 76, 631–638 (2023). https://doi.org/10.1016/j.jechem.2022.09.030
Y.-F. Tian, S.-J. Tan, Z.-Y. Lu, D.-X. Xu, H.-X. Chen et al., Insights into anion-solvent interactions to boost stable operation of ether-based electrolytes in pure- SiOx||LiNi0.8Mn0.1Co0.1O2 full cells. Angew. Chem. Int. Ed. 62(33), e202305988 (2023). https://doi.org/10.1002/anie.202305988
R. Li, B. Cui, Q. Zhou, X. Mu, Y. Gao et al., Stabilizing electrode-electrolyte interface for high-performance SiOx anode by dual electrolyte additive. J. Energy Chem. 86, 32–40 (2023). https://doi.org/10.1016/j.jechem.2023.07.015
H.N. Kim, T. Yim, 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether as an advanced electrolyte additive for SiOx-based lithium-ion batteries. J. Alloys Compd. 931, 167529 (2023). https://doi.org/10.1016/j.jallcom.2022.167529
C.C. Nguyen, H. Choi, S.-W. Song, Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries. J. Electrochem. Soc. 160(6), A906–A914 (2013). https://doi.org/10.1149/2.118306jes
J.W. Kim, M.J. Seong, D.W. Park, G. Jeong, T. Yim, Anti-corrosive and surface-stabilizing functional electrolyte containing LiFSI and LiPO2F2 for SiOx/NCM811-based batteries. Corros. Sci. 198, 110117 (2022). https://doi.org/10.1016/j.corsci.2022.110117
S. Lee, T. Yim, Regulating interfacial stability of SiOx anode with fluoride-abundant solid–electrolyte interphase by fluorine-functionalized additive. Rare Met. 43(2), 671–681 (2024). https://doi.org/10.1007/s12598-023-02474-y
H.N. Kim, S.Y. Kim, J. Ahn, T. Yim, Simultaneous realization of multilayer interphases on a Ni-rich NCM cathode and a SiOx anode by the combination of vinylene carbonate with lithium difluoro(oxalato)borate. ACS Appl. Mater. Interfaces 16(12), 14940–14953 (2024). https://doi.org/10.1021/acsami.4c01032
Z.H. Li, Y. Zhang, T.F. Liu, X.H. Gao, S.Y. Li et al., Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1903110 (2020). https://doi.org/10.1002/aenm.201903110