An Endotenon Sheath-Inspired Double-Network Binder Enables Superior Cycling Performance of Silicon Electrodes
Corresponding Author: Guanglei Cui
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 87
Abstract
Silicon (Si) has been regarded as an alternative anode material to traditional graphite owing to its higher theoretical capacity (4200 vs. 372 mAh g−1). However, Si anodes suffer from the inherent volume expansion and unstable solid electrolyte interphase, thus experiencing fast capacity decay, which hinders their commercial application. To address this, herein, an endotenon sheath-inspired water-soluble double-network binder (DNB) is presented for resolving the bottleneck of Si anodes. The as-developed binder shows excellent adhesion, high mechanical properties, and a considerable self-healing capability mainly benefited by its supramolecular hybrid network. Apart from these advantages, this binder also induces a Li3N/LiF-rich solid electrolyte interface layer, contributing to a superior cycle stability of Si electrodes. As expected, the DNB can achieve mechanically more stable Si electrodes than traditional polyacrylic acid and pectin binders. As a result, DNB delivers superior electrochemical performance of Si/Li half cells and LiNi0.8Co0.1Mn0.1O2/Si full cells, even with a high loading of Si electrode, to traditional polyacrylic acid and pectin binders. The bioinspired binder design provides a promising route to achieve long-life Si anode-assembled lithium batteries.
Highlights:
1 The double-network binder shows excellent adhesive and self-healing abilities, which help suppress electrode volume expansion and stabilize the electrode interface upon cycling.
2 This binder induces a Li3N/LiF-rich solid electrolyte interface layer, which can suppress continuous electrolyte decomposition.
3 Superior electrochemical performance can be achieved in Si/Li half cells and LiNi0.8Co0.1Mn0.1O2/Si full cells, even with a high loading of Si electrode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li et al., Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241
- F. Zou, A. Manthiram, A review of the design of advanced binders for high-performance batteries. Adv. Energy Mater. 10(45), 2002508 (2020). https://doi.org/10.1002/aenm.202002508
- M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12(5), 2318–2323 (2012). https://doi.org/10.1021/nl300206e
- S. Choi, J. Kim, D.Y. Hwang, H. Park, J. Ryu et al., Generalized redox-responsive assembly of carbon-sheathed metallic and semiconducting nanowire heterostructures. Nano Lett. 16(2), 1179–1185 (2016). https://doi.org/10.1021/acs.nanolett.5b04476
- Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang et al., An all-integrated anode via interlinked chemical bonding between double-shelled–yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29(44), 1703028 (2017). https://doi.org/10.1002/adma.201703028
- W. Zeng, L. Wang, X. Peng, T. Liu, Y. Jiang et al., Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8(11), 1702314 (2018). https://doi.org/10.1002/aenm.201702314
- L. Wang, T. Liu, X. Peng, W. Zeng, Z. Jin et al., Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28(3), 1704858 (2018). https://doi.org/10.1002/adfm.201704858
- L. Hencz, H. Chen, Z. Wu, S. Qian, S. Chen et al., Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2(1), 20210131 (2022). https://doi.org/10.1002/EXP.20210131
- H.Y. Ling, C. Lai, C. Wang, Z. Su, H. Chen et al., Amylopectin from glutinous rice as a sustainable binder. Energy Environ. Mater. 4(2), 263–268 (2021). https://doi.org/10.1002/eem2.12143
- B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou et al., A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes. Adv. Funct. Mater. 31(41), 2104433 (2021). https://doi.org/10.1002/adfm.202104433
- H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan et al., A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021). https://doi.org/10.1016/j.nanoen.2020.105654
- H. Chen, Z. Wu, Z. Su, L. Hencz, S. Chen et al., A hydrophilic poly (methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J. Energy Chem. 62, 127–135 (2021). https://doi.org/10.1016/j.jechem.2021.03.015
- A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
- J. Guo, C. Wang, A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 46(9), 1428–1430 (2010). https://doi.org/10.1039/B918727H
- I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). https://doi.org/10.1126/science.1209150
- B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 124(35), 8892–8897 (2012). https://doi.org/10.1002/ange.201201568
- Z. Ma, Z. Yang, Q. Gao, G. Bao, A. Valiei et al., Bioinspired tough gel sheath for robust and versatile surface functionalization. Sci. Adv. 7(11), eabc3012 (2021). https://doi.org/10.1126/sciadv.abc3012
- M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu et al., Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12, 178–185 (2015). https://doi.org/10.1016/j.nanoen.2014.12.011
- G.G. Kresse, J.J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P. Blochl, E. Blöchl, P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- MathSciNet
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- M.H.M.A. Shibraen, O.M. Ibrahim, R.A.M. Asad, S. Yang, M.R. El-Aassar, Interpenetration of metal cations into polyelectrolyte-multilayer-films via layer-by-layer assembly: selective antibacterial functionality of cationic guar gum/polyacrylic acid-Ag+ nanofilm against resistant E. coli. Colloids Surf. A Physicochem. Eng. Asp. 610, 125921 (2021). https://doi.org/10.1016/j.colsurfa.2020.125921
- M. Tian, X. Chen, S. Sun, D. Yang, P. Wu, A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon p-based lithium-ion battery. Nano Res. 12, 1121–1127 (2019). https://doi.org/10.1007/s12274-019-2359-y
- S. Wu, Y. Yang, C. Liu, T. Liu, Y. Zhang et al., In-situ polymerized binder: a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett. 6(1), 290–297 (2020). https://doi.org/10.1021/acsenergylett.0c02342
- H.H. Haeri, V. Jerschabek, A. Sadeghi, D. Hinderberger, Copper–calcium poly(acrylic acid) composite hydrogels as studied by electron paramagnetic resonance (EPR) spectroscopy. Macromol. Chem. Phys. 221(23), 2000262 (2020). https://doi.org/10.1002/macp.202000262
- K.J. You, J.W. Choi, Mussel-inspired self-healing metallopolymers for silicon nanop anodes. ACS Nano 13(7), 8364–8373 (2019). https://doi.org/10.1021/acsnano.9b03837
- C. Ye, W. Tu, L. Yin, Q. Zheng, C. Wang et al., Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 6(36), 17642–17652 (2018). https://doi.org/10.1039/C8TA06150E
- W.J. Tang, W.J. Peng, G.C. Yan, H.J. Guo, X.H. Li et al., Effect of fluoroethylene carbonate as an electrolyte additive on the cycle performance of silicon-carbon composite anode in lithium-ion battery. Ionics 23, 3281–3288 (2017). https://doi.org/10.1007/s11581-017-2143-5
- S. Li, Y.M. Chen, W. Liang, Y. Shao, K. Liu et al., A superionic conductive, electrochemically stable dual-salt polymer electrolyte. Joule 2(9), 1838–1856 (2018). https://doi.org/10.1016/j.joule.2018.06.008
- H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin et al., Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 18(11), 7414–7418 (2018). https://doi.org/10.1021/acs.nanolett.8b03902
- B. Tang, H. Wu, X. Du, X. Cheng, X. Liu et al., Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium–sulfur batteries. Small 16(5), 1905737 (2020). https://doi.org/10.1002/smll.201905737
- U.V. Alpen, Li3N: a promising Li ionic conductor. J. Solid State Chem. 29(3), 379–392 (1979). https://doi.org/10.1016/0022-4596(79)90195-6
References
H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li et al., Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241
F. Zou, A. Manthiram, A review of the design of advanced binders for high-performance batteries. Adv. Energy Mater. 10(45), 2002508 (2020). https://doi.org/10.1002/aenm.202002508
M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12(5), 2318–2323 (2012). https://doi.org/10.1021/nl300206e
S. Choi, J. Kim, D.Y. Hwang, H. Park, J. Ryu et al., Generalized redox-responsive assembly of carbon-sheathed metallic and semiconducting nanowire heterostructures. Nano Lett. 16(2), 1179–1185 (2016). https://doi.org/10.1021/acs.nanolett.5b04476
Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang et al., An all-integrated anode via interlinked chemical bonding between double-shelled–yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29(44), 1703028 (2017). https://doi.org/10.1002/adma.201703028
W. Zeng, L. Wang, X. Peng, T. Liu, Y. Jiang et al., Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8(11), 1702314 (2018). https://doi.org/10.1002/aenm.201702314
L. Wang, T. Liu, X. Peng, W. Zeng, Z. Jin et al., Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28(3), 1704858 (2018). https://doi.org/10.1002/adfm.201704858
L. Hencz, H. Chen, Z. Wu, S. Qian, S. Chen et al., Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2(1), 20210131 (2022). https://doi.org/10.1002/EXP.20210131
H.Y. Ling, C. Lai, C. Wang, Z. Su, H. Chen et al., Amylopectin from glutinous rice as a sustainable binder. Energy Environ. Mater. 4(2), 263–268 (2021). https://doi.org/10.1002/eem2.12143
B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou et al., A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes. Adv. Funct. Mater. 31(41), 2104433 (2021). https://doi.org/10.1002/adfm.202104433
H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan et al., A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021). https://doi.org/10.1016/j.nanoen.2020.105654
H. Chen, Z. Wu, Z. Su, L. Hencz, S. Chen et al., A hydrophilic poly (methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J. Energy Chem. 62, 127–135 (2021). https://doi.org/10.1016/j.jechem.2021.03.015
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
J. Guo, C. Wang, A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 46(9), 1428–1430 (2010). https://doi.org/10.1039/B918727H
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). https://doi.org/10.1126/science.1209150
B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 124(35), 8892–8897 (2012). https://doi.org/10.1002/ange.201201568
Z. Ma, Z. Yang, Q. Gao, G. Bao, A. Valiei et al., Bioinspired tough gel sheath for robust and versatile surface functionalization. Sci. Adv. 7(11), eabc3012 (2021). https://doi.org/10.1126/sciadv.abc3012
M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu et al., Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12, 178–185 (2015). https://doi.org/10.1016/j.nanoen.2014.12.011
G.G. Kresse, J.J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 1396 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P. Blochl, E. Blöchl, P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
MathSciNet
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
M.H.M.A. Shibraen, O.M. Ibrahim, R.A.M. Asad, S. Yang, M.R. El-Aassar, Interpenetration of metal cations into polyelectrolyte-multilayer-films via layer-by-layer assembly: selective antibacterial functionality of cationic guar gum/polyacrylic acid-Ag+ nanofilm against resistant E. coli. Colloids Surf. A Physicochem. Eng. Asp. 610, 125921 (2021). https://doi.org/10.1016/j.colsurfa.2020.125921
M. Tian, X. Chen, S. Sun, D. Yang, P. Wu, A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon p-based lithium-ion battery. Nano Res. 12, 1121–1127 (2019). https://doi.org/10.1007/s12274-019-2359-y
S. Wu, Y. Yang, C. Liu, T. Liu, Y. Zhang et al., In-situ polymerized binder: a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett. 6(1), 290–297 (2020). https://doi.org/10.1021/acsenergylett.0c02342
H.H. Haeri, V. Jerschabek, A. Sadeghi, D. Hinderberger, Copper–calcium poly(acrylic acid) composite hydrogels as studied by electron paramagnetic resonance (EPR) spectroscopy. Macromol. Chem. Phys. 221(23), 2000262 (2020). https://doi.org/10.1002/macp.202000262
K.J. You, J.W. Choi, Mussel-inspired self-healing metallopolymers for silicon nanop anodes. ACS Nano 13(7), 8364–8373 (2019). https://doi.org/10.1021/acsnano.9b03837
C. Ye, W. Tu, L. Yin, Q. Zheng, C. Wang et al., Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 6(36), 17642–17652 (2018). https://doi.org/10.1039/C8TA06150E
W.J. Tang, W.J. Peng, G.C. Yan, H.J. Guo, X.H. Li et al., Effect of fluoroethylene carbonate as an electrolyte additive on the cycle performance of silicon-carbon composite anode in lithium-ion battery. Ionics 23, 3281–3288 (2017). https://doi.org/10.1007/s11581-017-2143-5
S. Li, Y.M. Chen, W. Liang, Y. Shao, K. Liu et al., A superionic conductive, electrochemically stable dual-salt polymer electrolyte. Joule 2(9), 1838–1856 (2018). https://doi.org/10.1016/j.joule.2018.06.008
H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin et al., Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 18(11), 7414–7418 (2018). https://doi.org/10.1021/acs.nanolett.8b03902
B. Tang, H. Wu, X. Du, X. Cheng, X. Liu et al., Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium–sulfur batteries. Small 16(5), 1905737 (2020). https://doi.org/10.1002/smll.201905737
U.V. Alpen, Li3N: a promising Li ionic conductor. J. Solid State Chem. 29(3), 379–392 (1979). https://doi.org/10.1016/0022-4596(79)90195-6