Screening Anionic Groups Within Zwitterionic Additives for Eliminating Hydrogen Evolution and Dendrites in Aqueous Zinc Ion Batteries
Corresponding Author: Cheng Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 314
Abstract
Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Zn-ion batteries (AZIBs) owing to their appealing intrinsic characteristics and merits. However, the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood. Herein, three zwitterions, namely carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and 2-methacryloyloxyethyl phosphorylcholine (MPC), were selected as additives to investigate their different action mechanisms in AZIBs. All three zwitterions have the same quaternary ammonium as the positively charged group, but having different negatively charged segments, i.e., carboxylate, sulfonate, and phosphate for CBMA, SBMA, and MPC, respectively. By systematical electrochemical analysis, these zwitterions all contribute to enhanced cycling life of Zn anode, with MPC having the most pronounced effect, which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups. As a result, the Zn//Zn cell with MPC as additive in ZnSO4 electrolyte exhibits an ultralong lifespan over 5000 h. This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs.
Highlights:
1 Three zwitterions with identical quaternary ammonium cations but distinct anionic groups, i.e. carboxylate, sulfonate and phosphate, show distinct impact in aqueous zinc ion batteries.
2 The zwitterion with phosphate group (2-methacryloyloxyethyl phosphorylcholine, MPC) uniquely promotes oriented Zn (002) plane deposition and provides pH buffering capability, effectively suppressing dendrite formation and side reactions.
3 The Zn//NaVO full cell with MPC additive delivers an ultralong cycling life of 4000 cycles with an exceptionally low capacity decay of 0.014% per cycle.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Feng, Y. Feng, F. Fan, D. Deng, H. Dong et al., Functionalization design of zinc anode for advanced aqueous zinc-ion batteries. SusMat 4(2), e184 (2024). https://doi.org/10.1002/sus2.184
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14(1), 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
- Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
- S. Deng, B. Xu, J. Zhao, C.W. Kan, X. Liu, Unlocking double redox reaction of metal–organic framework for aqueous zinc-ion battery. Angew. Chem. Int. Ed. 63(17), e202401996 (2024). https://doi.org/10.1002/anie.202401996
- M. Kim, J. Lee, Y. Kim, Y. Park, H. Kim et al., Surface overpotential as a key metric for the discharge-charge reversibility of aqueous zinc-ion batteries. J. Am. Chem. Soc. 145(29), 15776–15787 (2023). https://doi.org/10.1021/jacs.3c01614
- Y. Lv, Y. Xiao, S. Xu, F. Huo, Y. Chen et al., Multifunctional polyzwitterion ionic liquid coating for long-lifespan and dendrite-free Zn metal anodes. J. Mater. Chem. A 10(32), 16952–16961 (2022). https://doi.org/10.1039/D2TA04779A
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- S. Tao, C. Zhang, J. Zhang, Y. Jiao, M. Li et al., A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chem. Eng. J. 446, 136607 (2022). https://doi.org/10.1016/j.cej.2022.136607
- B. Hu, T. Chen, Y. Wang, X. Qian, Q. Zhang et al., Reconfiguring the electrolyte network structure with bio-inspired cryoprotective additive for low-temperature aqueous zinc batteries. Adv. Energy Mater. 14(31), 2401470 (2024). https://doi.org/10.1002/aenm.202401470
- S. Lin, W. Zhao, Y. Guo, N. Yu, K. Guo et al., Highly reversible zinc anode enabled by trifunctional diethylenetriaminepentaacetic acid additive. ACS Energy Lett. 9(9), 4614–4623 (2024). https://doi.org/10.1021/acsenergylett.4c01646
- X. Liu, B. Xu, S. Deng, J. Han, Y. An et al., Ion-sieving MXene flakes with quantum dots enable high plating capacity for dendrite-free Zn anodes. Carbon Energy 6(10), e603 (2024). https://doi.org/10.1002/cey2.603
- M.-J. Chen, S.-Y. Tian, Y.-X. Song, B.-A. Lu, Y. Tang et al., A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries. J. Cent. South Univ. 31(12), 4549–4559 (2024). https://doi.org/10.1007/s11771-024-5846-6
- D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
- C. Huang, J. Mao, S. Li, W. Zhang, X. Wang et al., Amphoteric polymer strategy with buffer-adsorption mechanism for long-life aqueous zinc ion batteries. Adv. Funct. Mater. 34(26), 2315855 (2024). https://doi.org/10.1002/adfm.202315855
- K. Qiu, G. Ma, Y. Wang, M. Liu, M. Zhang et al., Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries. Adv. Funct. Mater. 34(18), 2313358 (2024). https://doi.org/10.1002/adfm.202313358
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
- S. Cui, X. Wang, W. Miao, X. Wang, X. Li et al., Alleviating zinc dendrite growth by versatile sodium carboxymethyl cellulose electrolyte additive to boost long-life aqueous Zn ion capacitors. Energy Storage Mater. 68, 103356 (2024). https://doi.org/10.1016/j.ensm.2024.103356
- Y. Li, L. Liu, H. Zhang, H. Wang, Z. Sun et al., Bi-functional green additive anchoring interface enables stable zinc metal anodes for aqueous zinc-ions batteries. Adv. Funct. Mater. 35(1), 2410855 (2025). https://doi.org/10.1002/adfm.202410855
- Q. Li, C. Wen, J. Yang, X. Zhou, Y. Zhu et al., Zwitterionic biomaterials. Chem. Rev. 122(23), 17073–17154 (2022). https://doi.org/10.1021/acs.chemrev.2c00344
- H. Yu, Z. He, D. Chen, P. Liu, H. He et al., Zwitterionic materials for aqueous Zn-based energy storage devices: Current developments and perspective. Energy Rev. 4(1), 100107 (2025). https://doi.org/10.1016/j.enrev.2024.100107
- X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang et al., Transient zwitterions dynamics empowered adaptive interface for ultra-stable Zn plating/stripping. Small 20(8), e2306739 (2024). https://doi.org/10.1002/smll.202306739
- L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang et al., Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 63, 102981 (2023). https://doi.org/10.1016/j.ensm.2023.102981
- D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
- S. Zhou, X. Meng, Y. Chen, J. Li, S. Lin et al., Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 63(24), e202403050 (2024). https://doi.org/10.1002/anie.202403050
- Z. Zha, T. Sun, D. Li, T. Ma, W. Zhang et al., Zwitterion as electrical double layer regulator to in situ formation of fluorinated interphase towards stable zinc anode. Energy Storage Mater. 64, 103059 (2024). https://doi.org/10.1016/j.ensm.2023.103059
- C. Liu, D. Xie, W.-B. Jiang, W.-Y. Diao, F.-Y. Tao et al., Proton-driven bilateral interfacial chemistry and electrolyte structure reconstruction enable highly reversible zinc metal anodes. Energy Storage Mater. 70, 103497 (2024). https://doi.org/10.1016/j.ensm.2024.103497
- H. Yu, D. Chen, X. Ni, P. Qing, C. Yan et al., Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 16(6), 2684–2695 (2023). https://doi.org/10.1039/D3EE00982C
- B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan et al., Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. J. Energy Chem. 77, 632–641 (2023). https://doi.org/10.1016/j.jechem.2022.11.005
- J. Feng, X. Li, Y. Ouyang, H. Zhao, N. Li et al., Regulating Zn2+ migration-diffusion behavior by spontaneous cascade optimization strategy for long-life and low N/P ratio zinc ion batteries. Angew. Chem. Int. Ed. 63(41), e202407194 (2024). https://doi.org/10.1002/anie.202407194
- Q. Yan, Z. Hu, Z. Liu, F. Wu, Y. Zhao et al., Synergistic interaction between amphiphilic ion additive groups for stable long-life zinc ion batteries. Energy Storage Mater. 67, 103299 (2024). https://doi.org/10.1016/j.ensm.2024.103299
- Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
- J. Zhang, Y. Liu, Y. Wang, Z. Zhu, Z. Yang, Zwitterionic organic multifunctional additive stabilizes electrodes for reversible aqueous Zn-ion batteries. Adv. Funct. Mater. 34(34), 2401889 (2024). https://doi.org/10.1002/adfm.202401889
- Y. Wu, T. Zhang, L. Chen, Z. Zhu, L. Cheng et al., Polymer chain-guided ion transport in aqueous electrolytes of Zn-ion batteries. Adv. Energy Mater. 13(29), 2300719 (2023). https://doi.org/10.1002/aenm.202300719
- T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
- C. Li, X. Zhang, G. Qu, S. Zhao, H. Qin et al., Highly reversible Zn metal anode securing by functional electrolyte modulation. Adv. Energy Mater. 14(34), 2400872 (2024). https://doi.org/10.1002/aenm.202400872
- K. Ouyang, S. Chen, W. Ling, M. Cui, Q. Ma et al., Synergistic modulation of in situ hybrid interface construction and pH buffering enabled ultra-stable zinc anode at high current density and areal capacity. Angew. Chem. Int. Ed. 62(45), e202311988 (2023). https://doi.org/10.1002/anie.202311988
- Y. Zhou, X. Ni, B. Hao, X. Zhou, C. Yan et al., A mini review: How to select electrolyte additives for better Zn anode electrochemistry? Energy Storage Mater. 66, 103227 (2024). https://doi.org/10.1016/j.ensm.2024.103227
- J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
- T. Wei, H. Zhang, Y. Ren, L.-E. Mo, Y. He et al., Building near-unity stacked (002) texture for high-stable zinc anode. Adv. Funct. Mater. 34(14), 2312506 (2024). https://doi.org/10.1002/adfm.202312506
- M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261
References
Z. Feng, Y. Feng, F. Fan, D. Deng, H. Dong et al., Functionalization design of zinc anode for advanced aqueous zinc-ion batteries. SusMat 4(2), e184 (2024). https://doi.org/10.1002/sus2.184
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14(1), 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
S. Deng, B. Xu, J. Zhao, C.W. Kan, X. Liu, Unlocking double redox reaction of metal–organic framework for aqueous zinc-ion battery. Angew. Chem. Int. Ed. 63(17), e202401996 (2024). https://doi.org/10.1002/anie.202401996
M. Kim, J. Lee, Y. Kim, Y. Park, H. Kim et al., Surface overpotential as a key metric for the discharge-charge reversibility of aqueous zinc-ion batteries. J. Am. Chem. Soc. 145(29), 15776–15787 (2023). https://doi.org/10.1021/jacs.3c01614
Y. Lv, Y. Xiao, S. Xu, F. Huo, Y. Chen et al., Multifunctional polyzwitterion ionic liquid coating for long-lifespan and dendrite-free Zn metal anodes. J. Mater. Chem. A 10(32), 16952–16961 (2022). https://doi.org/10.1039/D2TA04779A
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
S. Tao, C. Zhang, J. Zhang, Y. Jiao, M. Li et al., A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chem. Eng. J. 446, 136607 (2022). https://doi.org/10.1016/j.cej.2022.136607
B. Hu, T. Chen, Y. Wang, X. Qian, Q. Zhang et al., Reconfiguring the electrolyte network structure with bio-inspired cryoprotective additive for low-temperature aqueous zinc batteries. Adv. Energy Mater. 14(31), 2401470 (2024). https://doi.org/10.1002/aenm.202401470
S. Lin, W. Zhao, Y. Guo, N. Yu, K. Guo et al., Highly reversible zinc anode enabled by trifunctional diethylenetriaminepentaacetic acid additive. ACS Energy Lett. 9(9), 4614–4623 (2024). https://doi.org/10.1021/acsenergylett.4c01646
X. Liu, B. Xu, S. Deng, J. Han, Y. An et al., Ion-sieving MXene flakes with quantum dots enable high plating capacity for dendrite-free Zn anodes. Carbon Energy 6(10), e603 (2024). https://doi.org/10.1002/cey2.603
M.-J. Chen, S.-Y. Tian, Y.-X. Song, B.-A. Lu, Y. Tang et al., A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries. J. Cent. South Univ. 31(12), 4549–4559 (2024). https://doi.org/10.1007/s11771-024-5846-6
D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
C. Huang, J. Mao, S. Li, W. Zhang, X. Wang et al., Amphoteric polymer strategy with buffer-adsorption mechanism for long-life aqueous zinc ion batteries. Adv. Funct. Mater. 34(26), 2315855 (2024). https://doi.org/10.1002/adfm.202315855
K. Qiu, G. Ma, Y. Wang, M. Liu, M. Zhang et al., Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries. Adv. Funct. Mater. 34(18), 2313358 (2024). https://doi.org/10.1002/adfm.202313358
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
S. Cui, X. Wang, W. Miao, X. Wang, X. Li et al., Alleviating zinc dendrite growth by versatile sodium carboxymethyl cellulose electrolyte additive to boost long-life aqueous Zn ion capacitors. Energy Storage Mater. 68, 103356 (2024). https://doi.org/10.1016/j.ensm.2024.103356
Y. Li, L. Liu, H. Zhang, H. Wang, Z. Sun et al., Bi-functional green additive anchoring interface enables stable zinc metal anodes for aqueous zinc-ions batteries. Adv. Funct. Mater. 35(1), 2410855 (2025). https://doi.org/10.1002/adfm.202410855
Q. Li, C. Wen, J. Yang, X. Zhou, Y. Zhu et al., Zwitterionic biomaterials. Chem. Rev. 122(23), 17073–17154 (2022). https://doi.org/10.1021/acs.chemrev.2c00344
H. Yu, Z. He, D. Chen, P. Liu, H. He et al., Zwitterionic materials for aqueous Zn-based energy storage devices: Current developments and perspective. Energy Rev. 4(1), 100107 (2025). https://doi.org/10.1016/j.enrev.2024.100107
X. Wu, Y. Xia, S. Chen, Z. Luo, X. Zhang et al., Transient zwitterions dynamics empowered adaptive interface for ultra-stable Zn plating/stripping. Small 20(8), e2306739 (2024). https://doi.org/10.1002/smll.202306739
L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang et al., Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 63, 102981 (2023). https://doi.org/10.1016/j.ensm.2023.102981
D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
S. Zhou, X. Meng, Y. Chen, J. Li, S. Lin et al., Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 63(24), e202403050 (2024). https://doi.org/10.1002/anie.202403050
Z. Zha, T. Sun, D. Li, T. Ma, W. Zhang et al., Zwitterion as electrical double layer regulator to in situ formation of fluorinated interphase towards stable zinc anode. Energy Storage Mater. 64, 103059 (2024). https://doi.org/10.1016/j.ensm.2023.103059
C. Liu, D. Xie, W.-B. Jiang, W.-Y. Diao, F.-Y. Tao et al., Proton-driven bilateral interfacial chemistry and electrolyte structure reconstruction enable highly reversible zinc metal anodes. Energy Storage Mater. 70, 103497 (2024). https://doi.org/10.1016/j.ensm.2024.103497
H. Yu, D. Chen, X. Ni, P. Qing, C. Yan et al., Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy Environ. Sci. 16(6), 2684–2695 (2023). https://doi.org/10.1039/D3EE00982C
B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan et al., Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. J. Energy Chem. 77, 632–641 (2023). https://doi.org/10.1016/j.jechem.2022.11.005
J. Feng, X. Li, Y. Ouyang, H. Zhao, N. Li et al., Regulating Zn2+ migration-diffusion behavior by spontaneous cascade optimization strategy for long-life and low N/P ratio zinc ion batteries. Angew. Chem. Int. Ed. 63(41), e202407194 (2024). https://doi.org/10.1002/anie.202407194
Q. Yan, Z. Hu, Z. Liu, F. Wu, Y. Zhao et al., Synergistic interaction between amphiphilic ion additive groups for stable long-life zinc ion batteries. Energy Storage Mater. 67, 103299 (2024). https://doi.org/10.1016/j.ensm.2024.103299
Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
J. Zhang, Y. Liu, Y. Wang, Z. Zhu, Z. Yang, Zwitterionic organic multifunctional additive stabilizes electrodes for reversible aqueous Zn-ion batteries. Adv. Funct. Mater. 34(34), 2401889 (2024). https://doi.org/10.1002/adfm.202401889
Y. Wu, T. Zhang, L. Chen, Z. Zhu, L. Cheng et al., Polymer chain-guided ion transport in aqueous electrolytes of Zn-ion batteries. Adv. Energy Mater. 13(29), 2300719 (2023). https://doi.org/10.1002/aenm.202300719
T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
C. Li, X. Zhang, G. Qu, S. Zhao, H. Qin et al., Highly reversible Zn metal anode securing by functional electrolyte modulation. Adv. Energy Mater. 14(34), 2400872 (2024). https://doi.org/10.1002/aenm.202400872
K. Ouyang, S. Chen, W. Ling, M. Cui, Q. Ma et al., Synergistic modulation of in situ hybrid interface construction and pH buffering enabled ultra-stable zinc anode at high current density and areal capacity. Angew. Chem. Int. Ed. 62(45), e202311988 (2023). https://doi.org/10.1002/anie.202311988
Y. Zhou, X. Ni, B. Hao, X. Zhou, C. Yan et al., A mini review: How to select electrolyte additives for better Zn anode electrochemistry? Energy Storage Mater. 66, 103227 (2024). https://doi.org/10.1016/j.ensm.2024.103227
J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
T. Wei, H. Zhang, Y. Ren, L.-E. Mo, Y. He et al., Building near-unity stacked (002) texture for high-stable zinc anode. Adv. Funct. Mater. 34(14), 2312506 (2024). https://doi.org/10.1002/adfm.202312506
M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261