Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective
Corresponding Author: Xiaohui Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 81
Abstract
Although their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction, Zn corrosion and passivation, and Zn dendrite formation on the anode. Despite numerous strategies to alleviate these side reactions have been demonstrated, they can only provide limited performance improvement from a single aspect. Herein, a triple-functional additive with trace amounts, ammonium hydroxide, was demonstrated to comprehensively protect zinc anodes. The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes. Moreover, cationic NH4+ can preferentially adsorb on the Zn anode surface to shield the “tip effect” and homogenize the electric field. Benefitting from this comprehensive protection, dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized. Besides, improved electrochemical performances can also be achieved in Zn//MnO2 full cells by taking the advantages of this triple-functional additive. This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.
Highlights:
1 A triple functional additive with a trace amount (1 mM) was proposed to protect Zn anodes.
2 The additive lowers the hydrogen evolution reaction potential, encourages the formation of an in situ solid electrolyte interphase and shields the “tip effect”
3 Dendrite free Zn deposition and highly reversible Zn plating/stripping behaviors were realized by the triple protections
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
- D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
- J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao et al., Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv. Energy Mater. 12(44), 2201840 (2022). https://doi.org/10.1002/aenm.202201840
- S. Zhu, Y. Dai, J. Li, C. Ye, W. Zhou et al., Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Sci. Bull. 67(18), 1882–1889 (2022). https://doi.org/10.1016/j.scib.2022.08.023
- Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
- Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34(4), 2106409 (2022). https://doi.org/10.1002/adma.202106409
- Y. Zhang, H. Dong, T. Wang, G. He, I.P. Parkin et al., Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries. J. Power Sour. 542, 231730 (2022). https://doi.org/10.1016/j.jpowsour.2022.231730
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
- W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, e202212695 (2022). https://doi.org/10.1002/anie.202212695
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- W. Kao-ian, A.A. Mohamad, W.R. Liu, R. Pornprasertsuk, S. Siwamogsatham et al., Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batteries Supercaps 5(5), 2100361 (2022). https://doi.org/10.1002/batt.202100361
- C.Y. Chan, Z. Wang, Y. Li, H. Yu, B. Fei et al., Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 13(26), 30594–30602 (2021). https://doi.org/10.1021/acsami.1c05941
- A. Abbasi, Y. Xu, E. Abouzari-Lotf, M. Etesami, R. Khezri et al., Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries. Electrochim. Acta 435, 141365 (2022). https://doi.org/10.1016/j.electacta.2022.141365
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
- M. Kim, S.J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 134(47), e202211589 (2022)
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
- A. Chen, C. Zhao, Z. Guo, X. Lu, N. Liu et al., Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Stor. Mater. 44, 353–359 (2022). https://doi.org/10.1016/j.ensm.2021.10.016
- Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), e2105133 (2022). https://doi.org/10.1002/adma.202105133
- J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF(2) interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14(1), 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Stor. Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
- H. Peng, Y. Fang, J. Wang, P. Ruan, Y. Tang et al., Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter 5, 4363–4378 (2022). https://doi.org/10.1016/j.matt.2022.08.025
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mAh cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- W. Yuan, G. Ma, X. Nie, Y. Wang, S. Di et al., In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem. Engin. J. 431, 134076 (2022). https://doi.org/10.1016/j.cej.2021.134076
- H. Ge, X. Feng, D. Liu, Y. Zhang, Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy (2022). https://doi.org/10.26599/nre.2023.9120039
- S. Chen, H. Wang, M. Zhu, F. You, W. Lin et al., Revitalizing zinc-ion batteries with advanced zinc anode design. Nanoscale Horizons 8(1), 29–54 (2022). https://doi.org/10.1039/d2nh00354f
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
- S. Guo, L. Qin, C. Hu, L. Li, Z. Luo et al., Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery. Adv. Energy Mater. 12(25), 2200730 (2022). https://doi.org/10.1002/aenm.202200730
- W. Xin, L. Miao, L. Zhang, H. Peng, Z. Yan et al., Turning the byproduct Zn4(OH)6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode. ACS Mater. Lett. 3(12), 1819–1825 (2021). https://doi.org/10.1021/acsmaterialslett.1c00566
- D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. 12(9), 2102982 (2022). https://doi.org/10.1002/aenm.202102982
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 1, e9120025 (2022). https://doi.org/10.26599/nre.2022.9120025
- S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang et al., Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 43, 375–382 (2021). https://doi.org/10.1016/j.ensm.2021.09.021
- H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34(15), 2109092 (2022). https://doi.org/10.1002/adma.202109092
- P. Shang, M. Liu, Y. Mei, Y. Liu, L. Wu et al., Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors. Small 18(16), 2108057 (2022). https://doi.org/10.1002/smll.202108057
- J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), 2206963 (2022). https://doi.org/10.1002/adma.202206963
- Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8(41), eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
- Q. Duan, Y. Wang, S. Dong, D.Y.W. Yu, Facile electrode additive stabilizes structure of electrolytic MnO2 for mild aqueous rechargeable zinc-ion battery. J. Power Sour. 528, 231194 (2022). https://doi.org/10.1016/j.jpowsour.2022.231194
- H. Dong, R. Liu, X. Hu, F. Zhao, L. Kang et al., Cathode-electrolyte interface modification by binder engineering for high-performance aqueous zinc-ion batteries. Adv. Sci. (2022). https://doi.org/10.1002/advs.202205084
- F. Zhao, Z. Jing, X. Guo, J. Li, H. Dong et al., Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries. Energy Storage Mater. 53, 638–645 (2022). https://doi.org/10.1016/j.ensm.2022.10.001
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient beta-MnO(2)@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- X. Gao, C. Zhang, Y. Dai, S. Zhao, X. Hu et al., Three-dimensional manganese oxide@carbon networks as free-standing, high-loading cathodes for high-performance zinc-ion batteries. Small Struct. (2023). https://doi.org/10.1002/sstr.202200316
- Y. Zhao, R. Zhou, Z. Song, X. Zhang, T. Zhang et al., Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(49), 2212231 (2022). https://doi.org/10.1002/anie.202212231
- C. Guo, J. Zhou, Y. Chen, H. Zhuang, Q. Li et al., Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed. 61(41), 2210871 (2022). https://doi.org/10.1002/anie.202210871
- J. Yang, G. Yao, Z. Li, Y. Zhang, L. Wei et al., Highly flexible K-intercalated MnO2/carbon membrane for high-performance aqueous zinc-ion battery cathode. Small 19(1), 2205544 (2022). https://doi.org/10.1002/smll.202205544
- Y. Dai, X. Liao, R. Yu, J. Li, J. Li et al., Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 33(26), 2100359 (2021). https://doi.org/10.1002/adma.202100359
- Y. Kim, Y. Park, M. Kim, J. Lee, K.J. Kim et al., Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 13(1), 2371 (2022). https://doi.org/10.1038/s41467-022-29987-x
References
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao et al., Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries. Adv. Energy Mater. 12(44), 2201840 (2022). https://doi.org/10.1002/aenm.202201840
S. Zhu, Y. Dai, J. Li, C. Ye, W. Zhou et al., Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Sci. Bull. 67(18), 1882–1889 (2022). https://doi.org/10.1016/j.scib.2022.08.023
Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34(4), 2106409 (2022). https://doi.org/10.1002/adma.202106409
Y. Zhang, H. Dong, T. Wang, G. He, I.P. Parkin et al., Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries. J. Power Sour. 542, 231730 (2022). https://doi.org/10.1016/j.jpowsour.2022.231730
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, e202212695 (2022). https://doi.org/10.1002/anie.202212695
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
W. Kao-ian, A.A. Mohamad, W.R. Liu, R. Pornprasertsuk, S. Siwamogsatham et al., Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batteries Supercaps 5(5), 2100361 (2022). https://doi.org/10.1002/batt.202100361
C.Y. Chan, Z. Wang, Y. Li, H. Yu, B. Fei et al., Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 13(26), 30594–30602 (2021). https://doi.org/10.1021/acsami.1c05941
A. Abbasi, Y. Xu, E. Abouzari-Lotf, M. Etesami, R. Khezri et al., Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries. Electrochim. Acta 435, 141365 (2022). https://doi.org/10.1016/j.electacta.2022.141365
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
M. Kim, S.J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 134(47), e202211589 (2022)
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
A. Chen, C. Zhao, Z. Guo, X. Lu, N. Liu et al., Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Stor. Mater. 44, 353–359 (2022). https://doi.org/10.1016/j.ensm.2021.10.016
Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), e2105133 (2022). https://doi.org/10.1002/adma.202105133
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF(2) interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14(1), 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Stor. Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
H. Peng, Y. Fang, J. Wang, P. Ruan, Y. Tang et al., Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter 5, 4363–4378 (2022). https://doi.org/10.1016/j.matt.2022.08.025
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mAh cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
W. Yuan, G. Ma, X. Nie, Y. Wang, S. Di et al., In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem. Engin. J. 431, 134076 (2022). https://doi.org/10.1016/j.cej.2021.134076
H. Ge, X. Feng, D. Liu, Y. Zhang, Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy (2022). https://doi.org/10.26599/nre.2023.9120039
S. Chen, H. Wang, M. Zhu, F. You, W. Lin et al., Revitalizing zinc-ion batteries with advanced zinc anode design. Nanoscale Horizons 8(1), 29–54 (2022). https://doi.org/10.1039/d2nh00354f
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
S. Guo, L. Qin, C. Hu, L. Li, Z. Luo et al., Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery. Adv. Energy Mater. 12(25), 2200730 (2022). https://doi.org/10.1002/aenm.202200730
W. Xin, L. Miao, L. Zhang, H. Peng, Z. Yan et al., Turning the byproduct Zn4(OH)6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode. ACS Mater. Lett. 3(12), 1819–1825 (2021). https://doi.org/10.1021/acsmaterialslett.1c00566
D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. 12(9), 2102982 (2022). https://doi.org/10.1002/aenm.202102982
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 1, e9120025 (2022). https://doi.org/10.26599/nre.2022.9120025
S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang et al., Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 43, 375–382 (2021). https://doi.org/10.1016/j.ensm.2021.09.021
H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34(15), 2109092 (2022). https://doi.org/10.1002/adma.202109092
P. Shang, M. Liu, Y. Mei, Y. Liu, L. Wu et al., Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors. Small 18(16), 2108057 (2022). https://doi.org/10.1002/smll.202108057
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), 2206963 (2022). https://doi.org/10.1002/adma.202206963
Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8(41), eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
Q. Duan, Y. Wang, S. Dong, D.Y.W. Yu, Facile electrode additive stabilizes structure of electrolytic MnO2 for mild aqueous rechargeable zinc-ion battery. J. Power Sour. 528, 231194 (2022). https://doi.org/10.1016/j.jpowsour.2022.231194
H. Dong, R. Liu, X. Hu, F. Zhao, L. Kang et al., Cathode-electrolyte interface modification by binder engineering for high-performance aqueous zinc-ion batteries. Adv. Sci. (2022). https://doi.org/10.1002/advs.202205084
F. Zhao, Z. Jing, X. Guo, J. Li, H. Dong et al., Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries. Energy Storage Mater. 53, 638–645 (2022). https://doi.org/10.1016/j.ensm.2022.10.001
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient beta-MnO(2)@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
X. Gao, C. Zhang, Y. Dai, S. Zhao, X. Hu et al., Three-dimensional manganese oxide@carbon networks as free-standing, high-loading cathodes for high-performance zinc-ion batteries. Small Struct. (2023). https://doi.org/10.1002/sstr.202200316
Y. Zhao, R. Zhou, Z. Song, X. Zhang, T. Zhang et al., Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(49), 2212231 (2022). https://doi.org/10.1002/anie.202212231
C. Guo, J. Zhou, Y. Chen, H. Zhuang, Q. Li et al., Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed. 61(41), 2210871 (2022). https://doi.org/10.1002/anie.202210871
J. Yang, G. Yao, Z. Li, Y. Zhang, L. Wei et al., Highly flexible K-intercalated MnO2/carbon membrane for high-performance aqueous zinc-ion battery cathode. Small 19(1), 2205544 (2022). https://doi.org/10.1002/smll.202205544
Y. Dai, X. Liao, R. Yu, J. Li, J. Li et al., Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 33(26), 2100359 (2021). https://doi.org/10.1002/adma.202100359
Y. Kim, Y. Park, M. Kim, J. Lee, K.J. Kim et al., Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 13(1), 2371 (2022). https://doi.org/10.1038/s41467-022-29987-x