Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis
Corresponding Author: Weitao Zheng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 158
Abstract
It is well known that two-dimensional (2D) MXene-derived quantum dots (MQDs) inherit the excellent physicochemical properties of the parental MXenes, as a Chinese proverb says, “Indigo blue is extracted from the indigo plant, but is bluer than the plant it comes from.” Therefore, 0D QDs harvest larger surface-to-volume ratio, outstanding optical properties, and vigorous quantum confinement effect. Currently, MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics, chemistry, biology, energy conversion, and storage. Since the surface properties of small-sized MQDs include the type of surface functional groups, the functionalized surface directly determines their performance. As the Nobel Laureate Wolfgang Pauli says, “God made the bulk, but the surface was invented by the devil,” and it is just on the basis of the abundant surface functional groups, there is lots of space to be thereof excavated from MQDs. We are witnessing such excellence and even more promising to be expected. Nowadays, MQDs have been widely applied to catalysis, whereas the related reviews are rarely reported. Herein, we provide a state-of-the-art overview of MQDs in catalysis over the past five years, ranging from the origin and development of MQDs, synthetic routes of MQDs, and functionalized MQDs to advanced characterization techniques. To explore the diversity of catalytic application and perspectives of MQDs, our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts.
Highlights:
1 All the synthesis routes and surfaced-modified strategy of MXene-derived quantum dots (MQDs), the synthesis of MQDs-based nanocomposites, and advanced characterization techniques of MQDs are fully covered.
2 Catalytic application is classified and discussed by judging the roles of MQDs.
3 Current challenge and prospect are proposed for promoting the development and catalytic application of MQDs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Winderlich, Jons Jakob Berzelius. J. Chem. Educ. 25(9), 500 (1948). https://doi.org/10.1021/ed025p500
- A.G. Morachevskii, Jons Jakob Berzelius (to 225th anniversary of his birthday). Russ. J. Appl. Chem. 77, 1388–1391 (2004). https://doi.org/10.1007/s11167-005-0037-1
- F.F. Rupert, The solid hydrates of ammonia II. J. Am. Chem. Soc. 32(6), 748–749 (1910). https://doi.org/10.1021/ja01924a004
- M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang et al., Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29(17), 1606550 (2017). https://doi.org/10.1002/adma.201606550
- C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 122, 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257
- F.P.G. Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373(6555), eaaz8541 (2021). https://doi.org/10.1126/science.aaz8541
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- D. Huang, Y. Xie, D. Lu, Z. Wang, J. Wang et al., Demonstration of a white laser with V2C MXene-based quantum dots. Adv. Mater. 31(24), 1901117 (2019). https://doi.org/10.1002/adma.201901117
- J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen et al., Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
- W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(7), 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
- A.J. Therrien, A.J.R. Hensley, M.D. Marcinkowski, R. Zhang, F.R. Lucci et al., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018). https://doi.org/10.1038/s41929-018-0028-2
- H. Xu, H. Shang, C. Wang, Y. Du, Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 30(28), 2000793 (2020). https://doi.org/10.1002/adfm.202000793
- M. Pagliaro, S. Campestrini, R. Ciriminna, Ru-based oxidation catalysis. Chem. Soc. Rev. 34(10), 837–845 (2005). https://doi.org/10.1039/B507094P
- S. Singha, E. Serrano, S. Mondal, C.G. Daniliuc, F. Glorius, Diastereodivergent synthesis of enantioenriched α, β-disubstituted γ-butyrolactones via cooperative N-heterocyclic carbene and Ir catalysis. Nat. Catal. 3, 48–54 (2020). https://doi.org/10.1038/s41929-019-0387-3
- L. Zhu, L.S. Wang, B. Li, B. Fu, C.P. Zhang et al., Operationally simple hydrotrifluoromethylation of alkenes with sodium triflinate enabled by Ir photoredox catalysis. Chem. Commun. 52, 6371–6374 (2016). https://doi.org/10.1039/C6CC01944G
- Y.R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer et al., Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022). https://doi.org/10.1038/s41560-021-00948-w
- S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
- P. Zhao, B. Zhang, X. Hao, W. Yi, J. Chen et al., Rational design and synthesis of adjustable Pt and Pt-based 3D-nanoframeworks. ACS Appl. Energy Mater. 5(1), 942–950 (2022). https://doi.org/10.1021/acsaem.1c03337
- D. Li, T. Li, G. Hao, W. Guo, S. Chen et al., IrO2 nanop-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chem. Eng. J. 399, 125738 (2020). https://doi.org/10.1016/j.cej.2020.125738
- H. Zhang, X. Qiu, Y. Chen, S. Wang, S.E. Skrabalak et al., Shape control of monodispersed sub-5 nm Pd tetrahedrons and laciniate Pd nanourchins by maneuvering the dispersed state of additives for boosting ORR performance. Small 16(6), 1906026 (2020). https://doi.org/10.1002/smll.201906026
- K. Song, Y. Feng, W. Zhang, W. Zheng, MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: spreading the synthesis strategies and advanced identification. J. Energy Chem. 67, 391–422 (2022). https://doi.org/10.1016/j.jechem.2021.10.011
- M. Fan, B. Zhang, L. Wang, Z. Li, X. Liang et al., Germanium-regulated adsorption site preference on ruthenium electrocatalyst for efficient hydrogen evolution. Chem. Commun. 57, 3889–3892 (2021). https://doi.org/10.1039/D1CC00559F
- W. Luo, H. Liu, X. Liu, L. Liu, W. Zhao, Biocompatibility nanoprobe of MXene N-Ti3C2 quantum dot/Fe3+ for detection and fluorescence imaging of glutathione in living cells. Colloids Surf. B Biointerf. 201, 111631 (2021). https://doi.org/10.1016/j.colsurfb.2021.111631
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
- M. Wang, L. Wang, H. Li, W. Du, M.U. Khan et al., Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity. J. Am. Chem. Soc. 137(44), 14027–14030 (2015). https://doi.org/10.1021/jacs.5b08289
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- H. Jiang, Y. Hu, S. Guo, C. Yan, P.S. Lee et al., Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8(6), 6038–6046 (2014). https://doi.org/10.1021/nn501310n
- X. Zhang, J. Li, Y. Yang, S. Zhang, H. Zhu et al., Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv. Mater. 30(45), 1803551 (2018). https://doi.org/10.1002/adma.201803551
- M.T. Noori, B.R. Tiwari, M.M. Ghangrekar, B. Min, Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustain. Energy Fuels 3, 3430–3440 (2019). https://doi.org/10.1039/C9SE00661C
- T. Favet, T. Cottineau, V. Keller, M.A.E. Khakani, Comparative study of the photocatalytic effects of pulsed laser deposited CoO and NiO nanops onto TiO2 nanotubes for the photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 217, 110703 (2020). https://doi.org/10.1016/j.solmat.2020.110703
- W. Liu, D. Zheng, T. Deng, Q. Chen, C. Zhu et al., Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angew. Chem. Int. Ed. 60(19), 10614–10619 (2021). https://doi.org/10.1002/anie.202100371
- L. Hu, M. Li, X. Wei, H. Wang, Y. Wu et al., Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chem. Eng. J. 398, 125605 (2020). https://doi.org/10.1016/j.cej.2020.125605
- Y. Feng, K. Song, W. Zhang, X. Zhou, S.J. Yoo et al., Efficient ORR catalysts for zinc-air battery: biomass-derived ultra-stable Co nanops wrapped with graphitic layers via optimizing electron transfer. J. Energy Chem. 70, 211–218 (2022). https://doi.org/10.1016/j.jechem.2022.01.047
- H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson et al., Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis. Mol. Catal. 435, 156–165 (2017). https://doi.org/10.1016/j.mcat.2017.04.003
- Y. Chen, Q. Zhou, G. Zhao, Z. Yu, X. Wang et al., Electrochemically inert g-C3N4 promotes water oxidation Catalysis. Adv. Funct. Mater. 28(5), 1705583 (2018). https://doi.org/10.1002/adfm.201705583
- C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
- S. Sinthika, E.M. Kumar, R. Thapa, Doped h-BN monolayer as efficient noble metal-free catalysts for CO oxidation: the role of dopant and water in activity and catalytic de-poisoning. J. Mater. Chem. A 2(32), 12812–12820 (2014). https://doi.org/10.1039/C4TA02434F
- Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/D1EE01487K
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3, 29–55 (2020). https://doi.org/10.1002/eem2.12058
- L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00604-8
- K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
- C. Fan, J. Shi, Y. Zhang, W. Quan, X. Chen et al., Fast and recoverable NO2 detection achieved by assembling ZnO on Ti3C2Tx MXene nanosheets under UV illumination at room temperature. Nanoscale 14, 3441–3451 (2022). https://doi.org/10.1039/D1NR06838E
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Y. Niu, C. Tian, J. Gao, F. Fan, Y. Zhang et al., Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 89, 106455 (2021). https://doi.org/10.1016/j.nanoen.2021.106455
- X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu et al., Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017). https://doi.org/10.1016/j.electacta.2017.07.084
- X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., Author correction: a general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 20, 571–571 (2021). https://doi.org/10.1038/s41563-021-00925-4
- M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53(19), 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
- S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
- Q. Xu, Y. Niu, J. Li, Z. Yang, J. Gao et al., Recent progress of quantum dots for energy storage applications. Carbon Neutrality 1, 13 (2022). https://doi.org/10.1007/s43979-022-00002-y
- Z. Wang, J. Xuan, Z. Zhao, Q. Li, F. Geng, Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 11(11), 11559–11565 (2017). https://doi.org/10.1021/acsnano.7b06476
- Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/d0cs00022a
- Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li et al., Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29(15), 1604847 (2017). https://doi.org/10.1002/adma.201604847
- S. Lu, L. Sui, Y. Liu, X. Yong, G. Xiao et al., White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv. Sci. 6(9), 1801470 (2019). https://doi.org/10.1002/advs.201801470
- G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
- J. Diao, M. Hu, Z. Lian, Z. Li, H. Zhang et al., Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects. ACS Catal. 8(11), 10051–10057 (2018). https://doi.org/10.1021/acscatal.8b02002
- H.R. Chen, W.M. Meng, R.Y. Wang, F.L. Chen, T. Li et al., Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon 190, 319–328 (2022). https://doi.org/10.1016/j.carbon.2022.01.028
- J. Li, S. Wang, Y. Du, W. Liao, Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. Int. J. Hydro. Energy 44, 6787–6794 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.189
- X. Yang, Q. Jia, F. Duan, B. Hu, M. Wang et al., Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 464, 78–87 (2019). https://doi.org/10.1016/j.apsusc.2018.09.069
- Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian et al., Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by mxene quantum dots. Adv. Funct. Mater. 29(2), 1806500 (2019). https://doi.org/10.1002/adfm.201806500
- X. Du, T. Zhao, Z. Xiu, Z. Xing, Z. Li et al., BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl. Mater. Today 20, 100719 (2020). https://doi.org/10.1016/j.apmt.2020.100719
- J. Qin, B. Liu, K.H. Lam, S. Song, X. Li et al., 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustain. Chem. Eng. 8(48), 17791–17799 (2020). https://doi.org/10.1021/acssuschemeng.0c06388
- Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
- H. Wang, R. Zhao, H. Hu, X. Fan, D. Zhang et al., 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 12(36), 40176–40185 (2020). https://doi.org/10.1021/acsami.0c01013
- R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang et al., Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 30(19), 2000637 (2020). https://doi.org/10.1002/adfm.202000637
- S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou et al., Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production. ACS Sustain. Chem. Eng. 9(1), 481–488 (2021). https://doi.org/10.1021/acssuschemeng.0c07753
- Z. Yuan, H. Huang, N. Li, D. Chen, Q. Xu et al., All-solid-state WO3/TQDs/In2S3 Z-scheme heterojunctions bridged by Ti3C2 quantum dots for efficient removal of hexavalent chromium and bisphenol A. J. Hazard. Mater. 409, 125027 (2021). https://doi.org/10.1016/j.jhazmat.2020.125027
- C. Lai, Z. An, H. Yi, X. Huo, L. Qin et al., Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots. J. Colloid Interface Sci. 600, 161–173 (2021). https://doi.org/10.1016/j.jcis.2021.05.022
- B. Chang, Y. Guo, H. Liu, L. Li, B. Yang, Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation. J. Mater. Chem. A 10(6), 3134–3145 (2022). https://doi.org/10.1039/D1TA09941H
- Y. Guo, Y. Cheng, X. Li, Q. Li, X. Li et al., MXene quantum dots decorated Ni nanoflowers for efficient Cr (VI) reduction. J. Hazard. Mater. 423, 127053 (2022). https://doi.org/10.1016/j.jhazmat.2021.127053
- L. Yang, Z. Chen, X. Wang, M. Jin, High-stability Ti3C2-QDs/ZnIn2S4/Ti(IV) flower-like heterojunction for boosted photocatalytic hydrogen evolution. Nanomaterials 12(3), 542 (2022). https://doi.org/10.3390/nano12030542
- Y. Cheng, X. Li, P. Shen, Y. Guo, K. Chu, MXene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12268
- S. Shen, J. Wang, Z. Wu, Z. Du, Z. Tang et al., Graphene quantum dots with high yield and high quality synthesized from low cost precursor of aphanitic graphite. Nanomaterials 10(2), 375 (2020). https://doi.org/10.3390/nano10020375
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- B. Yu, D. Chen, Z. Wang, F. Qi, X. Zhang et al., Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem. Eng. J. 399, 125837 (2020). https://doi.org/10.1016/j.cej.2020.125837
- S.J. Xiao, L.Z. Wang, M.Y. Yuan, X.H. Huang, J.H. Ding et al., Peroxidase-mimetic and Fenton-like activities of molybdenum oxide quantum dots. ChemistrySelect 5, 10149–10155 (2020). https://doi.org/10.1002/slct.202001566
- X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou et al., Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3), 1111–1118 (2018). https://doi.org/10.1039/c7nr06958h
- Y. Cao, T. Wu, K. Zhang, X. Meng, W. Dai et al., Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13(2), 1499–1510 (2019). https://doi.org/10.1021/acsnano.8b07224
- Q. Xu, J. Ma, W. Khan, X. Zeng, N. Li et al., Highly green fluorescent Nb2C MXene quantum dots. Chem. Commun. 56, 6648–6651 (2020). https://doi.org/10.1039/D0CC02131H
- J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
- Z. Jin, G. Xu, Y. Niu, X. Ding, Y. Han et al., Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 8(16), 3513–3518 (2020). https://doi.org/10.1039/c9tb02478f
- W. Kong, Y. Niu, M. Liu, K. Zhang, G. Xu et al., One-step hydrothermal synthesis of fluorescent MXene-like titanium chock for carbonitride quantum dots. Inorg. Chem. Commun. 105, 151–157 (2019). https://doi.org/10.1016/j.inoche.2019.04.033
- H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
- Y. Fan, L. Li, Y. Zhang, X. Zhang, D. Geng et al., Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 32(16), 2111357 (2022). https://doi.org/10.1002/adfm.202111357
- Y.M. Manawi, A. Ihsanullah, T. Samara, M.A.A. Al-Ansari, A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (2018). https://doi.org/10.3390/ma11050822
- K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide mxene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
- O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum et al., Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014). https://doi.org/10.1039/C4TA02638A
- R.F. Rolsten, Solution chemistry of the electrochemical machining of titanium, niobium and tantalum. J. Appl. Chem. 18(10), 292–296 (1968). https://doi.org/10.1002/jctb.5010181002
- G. Xu, Y. Niu, X. Yang, Z. Jin, Y. Wang et al., Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence Adv. Opt. Mater. 6(24), 1800951 (2018). https://doi.org/10.1002/adom.201800951
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- L. Hong, R.F. Klie, S. Öğüt, First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys. Rev. B 93, 115412 (2016). https://doi.org/10.1103/PhysRevB.93.115412
- P. Lian, Y. Dong, Z.S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- H. Zhou, Z. Chen, A.V. López, E.D. López, E. Lam et al., Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 4, 860–871 (2021). https://doi.org/10.1038/s41929-021-00684-0
- M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum et al., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5(15), 1500589 (2015). https://doi.org/10.1002/aenm.201500589
- A.D. Handoko, K.D. Fredrickson, B. Anasori, K.W. Convey, L.R. Johnson et al., Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1(1), 173–180 (2018). https://doi.org/10.1021/acsaem.7b00054
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
- M. Pandey, K.S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. J. Phys. Chem. C 121(25), 13593–13598 (2017). https://doi.org/10.1021/acs.jpcc.7b05270
- L. Wang, N. Zhang, Y. Li, W. Kong, J. Gou et al., Mechanism of nitrogen-doped Ti3C2 quantum dots for free-radical scavenging and the ultrasensitive H2O2 detection performance. ACS Appl. Mater. Interfaces 13(36), 42442–42450 (2021). https://doi.org/10.1021/acsami.1c11242
- N. Xu, H. Li, Y. Gan, H. Chen, W. Li et al., Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 7(22), 2002209 (2020). https://doi.org/10.1002/advs.202002209
- F. Yang, Y. Ge, T. Yin, J. Guo, F. Zhang et al., Ti3C2Tx MXene quantum dots with enhanced stability for ultrafast photonics. ACS Appl. Nano Mater. 3(12), 11850–11860 (2020). https://doi.org/10.1021/acsanm.0c02369
- X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9, 17859–17864 (2017). https://doi.org/10.1039/c7nr05997c
- G.P. Neupane, B. Wang, M. Tebyetekerwa, H.T. Nguyen, M. Taheri et al., Highly enhanced light-matter interaction in MXene quantum dots-monolayer WS2 heterostructure. Small 17(11), 2006309 (2021). https://doi.org/10.1002/smll.202006309
- X. Wang, X. Zhang, H. Cao, Y. Huang, A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J. Mater. Chem. B 8(47), 10837–10844 (2020). https://doi.org/10.1039/d0tb02078h
- M. Liu, Y. Bai, Y. He, J. Zhou, Y. Ge et al., Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim. Acta 188, 15 (2021). https://doi.org/10.1007/s00604-020-04668-y
- T. Zhang, X. Jiang, G. Li, Q. Yao, J.Y. Lee, A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) nanodot composite. ChemNanoMat 4, 56–60 (2018). https://doi.org/10.1002/cnma.201700232
- Y. Yuan, L. Jiang, X. Li, P. Zuo, X. Zhang et al., Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv. Mater. 34(12), 2110013 (2022). https://doi.org/10.1002/adma.202110013
- H. Alijani, A.R. Rezk, M.M.K. Farsani, H. Ahmed, J. Halim et al., Acoustomicrofluidic synthesis of pristine ultrathin Ti3C2Tz MXene nanosheets and quantum dots. ACS Nano 15(7), 12099–12108 (2021). https://doi.org/10.1021/acsnano.1c03428
- L. Zhao, Z. Wang, Y. Li, S. Wang, L. Wang et al., Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. J. Mater. Sci. Tech. 78, 30–37 (2021). https://doi.org/10.1016/j.jmst.2020.10.048
- B. Shao, Z. Liu, G. Zeng, H. Wang, Q. Liang et al., Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J. Mater. Chem. A 8(16), 7508–7535 (2020). https://doi.org/10.1039/d0ta01552k
- Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanop-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1(9), 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
- H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue et al., Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 30(46), 1803694 (2018). https://doi.org/10.1002/adma.201803694
- P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9(45), 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
- C.F. Du, X. Sun, H. Yu, Q. Liang, K.N. Dinh et al., Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene. Adv. Sci. 6(11), 1900116 (2019). https://doi.org/10.1002/advs.201900116
- J. Li, D. Yan, S. Hou, Y. Li, T. Lu et al., Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 6(3), 1234–1243 (2018). https://doi.org/10.1039/C7TA08261D
- V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), 1903841 (2019). https://doi.org/10.1002/adma.201903841
- C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- J. Guo, Y. Zhao, A. Liu, T. Ma, Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim. Acta 305, 164–174 (2019). https://doi.org/10.1016/j.electacta.2019.03.025
- Q. Xu, J. Gao, S. Wang, Y. Wang, D. Liu et al., Quantum dots in cell imaging and their safety issues. J. Mater. Chem. B 9(29), 5765–5779 (2021). https://doi.org/10.1039/D1TB00729G
- X. Yan, J. Ma, K. Yu, J. Li, L. Yang et al., Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging. Chin. Chem. Lett. 31, 3173–3177 (2020). https://doi.org/10.1016/j.cclet.2020.05.020
- W. Qiao, Z. Feng, 100 MHz frequency-spacing switchable single-dual-frequency laser based on MXene QDs and a phase-shifted FBG. Opt. Exp. 29, 43679–43686 (2021). https://doi.org/10.1364/OE.445539
- X. Liu, L. Ji, F. Zhu, Y. Gan, Q. Wen, Linear-cavity-based single frequency fiber laser with a loop mirror and Ti2CTx quantum dots. Opt. Mater. 122, 111686 (2021). https://doi.org/10.1016/j.optmat.2021.111686
- Q. Xu, W. Yang, Y. Wen, S. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
- X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
- J. Ge, W. Li, X. He, H. Chen, W. Fang et al., Charge behavior modulation by titanium-carbide quantum dots and nanosheets for efficient perovskite solar cells. Mater. Today Energy 18, 100562 (2020). https://doi.org/10.1016/j.mtener.2020.100562
- X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang et al., Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat 3(10), 1134–1144 (2021). https://doi.org/10.1002/inf2.12226
- P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
- Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14, 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
- X. Gao, X. Shao, L. Qin, Y. Li, S. Huang et al., N, N-dimethyl formamide regulating fluorescence of MXene quantum dots for the sensitive determination of Fe3+. Nanoscale Res. Lett. 16, 160 (2021). https://doi.org/10.1186/s11671-021-03617-9
- F. Ai, C. Fu, G. Cheng, H. Zhang, Y. Feng et al., Amino-functionalized Ti3C2 MXene quantum dots as photoluminescent sensors for diagnosing histidine in human serum. ACS Appl. Nano Mater. 4(8), 8192–8199 (2021). https://doi.org/10.1021/acsanm.1c01425
- X. Jiang, H. Wang, Y. Shen, N. Hu, W. Shi, Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens. Actuators B Chem. 350, 130891 (2022). https://doi.org/10.1016/j.snb.2021.130891
- Y. Bai, Y. He, Y. Wang, G. Song, Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+. Microchim. Acta 188, 401 (2021). https://doi.org/10.1007/s00604-021-05064-w
- Z. Zhao, X. Wu, C. Luo, Y. Wang, W. Chen, Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage. J. Colloid Interface Sci. 609, 393–402 (2022). https://doi.org/10.1016/j.jcis.2021.12.041
- Q. Guan, J. Ma, W. Yang, R. Zhang, X. Zhang et al., Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11, 14123–14133 (2019). https://doi.org/10.1039/C9NR04421C
- J. Gou, L. Zhao, Y. Li, J. Zhang, Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 4(11), 12308–12315 (2021). https://doi.org/10.1021/acsanm.1c02783
- C. Fu, F. Ai, J. Huang, Z. Shi, X. Yan et al., Eu doped Ti3C2 quantum dots to form a ratiometric fluorescence platform for visual and quantitative point-of-care testing of tetracycline derivatives. Spectrochim. Acta Part A Mol Biomol. Spectrosco. 272, 120956 (2022). https://doi.org/10.1016/j.saa.2022.120956
- Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou et al., High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 6(24), 6360–6369 (2018). https://doi.org/10.1039/c8tc02156b
- F. Yan, J. Sun, Y. Zang, Z. Sun, H. Zhang et al., Solvothermal synthesis of nitrogen-doped MXene quantum dots for the detection of alizarin red based on inner filter effect. Dyes Pigments 195, 109720 (2021). https://doi.org/10.1016/j.dyepig.2021.109720
- Y. Feng, F. Zhou, Q. Deng, C. Peng, Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram. Int. 46, 8320–8327 (2020). https://doi.org/10.1016/j.ceramint.2019.12.063
- D. Huang, Y. Wu, F. Ai, X. Zhou, G. Zhu, Fluorescent nitrogen-doped Ti3C2 MXene quantum dots as a unique “on-off-on” nanoprobe for chrominum (VI) and ascorbic acid based on inner filter effect. Sens. Actuators B Chem. 342, 130074 (2021). https://doi.org/10.1016/j.snb.2021.130074
- M. Liu, J. Zhou, Y. He, Z. Cai, Y. Ge et al., ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim. Acta 186, 770 (2019). https://doi.org/10.1007/s00604-019-3945-0
- M. Liu, Y. He, J. Zhou, Y. Ge, J. Zhou et al., A ’’naked-eye’’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal. Chim. Acta 1103, 134–142 (2020). https://doi.org/10.1016/j.aca.2019.12.069
- Q. Lu, J. Wang, B. Li, C. Weng, X. Li et al., Dual-emission reverse change ratio photoluminescence sensor based on a probe of nitrogen-doped Ti3C2 quantum dots@DAP to detect H2O2 and xanthine. Anal. Chem. 92, 7770–7777 (2020). https://doi.org/10.1021/acs.analchem.0c00895
- M.A. Al-Duais, Z.M. Mohammedsaleh, H.S. Al-Shehri, Y.S. Al-Awthan, S.A. Bani-Atta et al., Bovine serum albumin functionalized blue emitting Ti3C2 MXene quantum dots as a sensitive fluorescence probe for Fe3+ ion detection and its toxicity analysis. Luminescence 37, 633–641 (2022). https://doi.org/10.1002/bio.4204
- H. Mao, C. Gu, S. Yan, Q. Xin, S. Cheng et al., MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron. Mater. 6(1), 1900493 (2020). https://doi.org/10.1002/aelm.201900493
- P. Pandey, A. Sengupta, S. Parmar, U. Bansode, S. Gosavi et al., CsPbBr3-Ti3C2Tx MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl. Nano Mater. 3(4), 3305–3314 (2020). https://doi.org/10.1021/acsanm.0c00051
- X. Chen, W. Xu, Z. Shi, Y. Ji, J. Lyu et al., Plasmonic gold nanorods decorated Ti3C2 MXene quantum dots-interspersed nanosheet for full-spectrum photoelectrochemical water splitting. Chem. Eng. J. 426, 130818 (2021). https://doi.org/10.1016/j.cej.2021.130818
- Y. Nie, Z. Liang, P. Wang, Q. Ma, X. Su, MXene-derived quantum dot@gold nanobones heterostructure-based electrochemiluminescence sensor for triple-negative breast cancer diagnosis. Anal. Chem. 93, 17086–17093 (2021). https://doi.org/10.1021/acs.analchem.1c04184
- F. He, B. Zhu, B. Cheng, J. Yu, W. Ho et al., 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 272, 119006 (2020). https://doi.org/10.1016/j.apcatb.2020.119006
- Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui et al., Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl. Mater. Interfaces 11, 41440–41447 (2019). https://doi.org/10.1021/acsami.9b14985
- Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), 202200946 (2022). https://doi.org/10.1002/anie.202200946
- L. Song, S. Zhu, L. Tong, W. Wang, C. Ouyang et al., MXene quantum dot rivet reinforced Ni-Co LDH for boosting electrochemical activity and cycling stability. Mater. Adv. 2(17), 5622–5628 (2021). https://doi.org/10.1039/D1MA00474C
- X. Chen, J. Li, G. Pan, W. Xu, J. Zhu et al., Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. 289, 131–137 (2019). https://doi.org/10.1016/j.snb.2019.03.052
- Y. Liu, X. Zhang, W. Zhang, X. Ge, Y. Wang et al., MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O-terminated surface groups. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12438
- J. Sun, H. Du, Z. Chen, L. Wang, G. Shen, MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 15, 3653–3659 (2021). https://doi.org/10.1007/s12274-021-3967-x
- S.J. Clarke, C.A. Hollmann, Z. Zhang, D. Suffern, S.E. Bradforth et al., Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater. 5, 409–417 (2006). https://doi.org/10.1038/nmat1631
- M.Q. Zhu, E. Chang, J. Sun, R.A. Drezek, Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 17(8), 800–805 (2007). https://doi.org/10.1039/B614432B
- Z. Yue, F. Lisdat, W.J. Parak, S.G. Hickey, L. Tu et al., Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 5(8), 2800–2814 (2013). https://doi.org/10.1021/am3028662
- B. Yu, B. Tawiah, L.Q. Wang, A.C.Y. Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
- S.E. Zhu, F.D. Wang, J.J. Liu, L.L. Wang, C. Wang et al., BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Compos. Part B Eng. 223, 109130 (2021). https://doi.org/10.1016/j.compositesb.2021.109130
- J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
- Z.F. Huang, J. Song, Y. Du, S. Dou, L. Sun et al., Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. Carbon Energy 1, 77–84 (2019). https://doi.org/10.1002/cey2.3
- Y. Wu, J. Cai, Y. Xie, S. Niu, Y. Zang et al., Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 32(26), 1904346 (2020). https://doi.org/10.1002/adma.201904346
- D.W. Su, J. Ran, Z.W. Zhuang, C. Chen, S.Z. Qiao et al., Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Sci. Adv. 6(33), eaaz8447 (2020). https://doi.org/10.1126/sciadv.aaz8447
- Q. Wang, J. Li, X. Tu, H. Liu, M. Shu et al., Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem. Mater. 32, 734–743 (2020). https://doi.org/10.1021/acs.chemmater.9b03708
- S. Jin, Y. Ni, Z. Hao, K. Zhang, Y. Lu et al., A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem. Int. Ed. 59(49), 21885–21889 (2020). https://doi.org/10.1002/anie.202008422
- C. Xia, Y. Qiu, Y. Xia, P. Zhu, G. King et al., General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021). https://doi.org/10.1038/s41557-021-00734-x
- Y. Cai, J. Fu, Y. Zhou, Y.C. Chang, Q. Min et al., Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x
- A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
- J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30(1), 1704548 (2018). https://doi.org/10.1002/adma.201704548
- H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong et al., Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
- Z. Du, S. Yang, S. Li, J. Lou, S. Zhang et al., Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492–496 (2020). https://doi.org/10.1038/s41586-019-1904-x
- K. Xu, P. Cao, J.R. Heath, Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329(5996), 1188–1191 (2010). https://doi.org/10.1126/science.1192907
- H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26(48), 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
- X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L.V. Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- J. Hong, C. Jin, J. Yuan, Z. Zhang, Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29(14), 1606434 (2017). https://doi.org/10.1002/adma.201606434
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and Shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1, 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- E.J. Yang, O.S. Jeon, J.U. Yang, M.K. Shin, Y.J. Yoo et al., Room temperature manufacturing photoluminescent graphene quantum dots based on MXene. Carbon 167, 863–869 (2020). https://doi.org/10.1016/j.carbon.2020.05.063
- X. Shi, H. Meng, Y. Sun, L. Qu, Y. Lin et al., Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small 15(48), 1901507 (2019). https://doi.org/10.1002/smll.201901507
- Z. Liu, B. Li, Y. Feng, D. Jia, C. Li et al., Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction. Small 17(41), 2102496 (2021). https://doi.org/10.1002/smll.202102496
- T.C. Wareing, P. Gentile, A.N. Phan, Biomass-based carbon dots: current development and future perspectives. ACS Nano 15(10), 15471–15501 (2021). https://doi.org/10.1021/acsnano.1c03886
- Y. Liu, S. Huang, J. Li, M. Wang, C. Wang et al., 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16–F10 cells. Microchim. Acta 188, 69 (2021). https://doi.org/10.1007/s00604-021-04726-z
- N.E. Lee, S.Y. Lee, H.S. Lim, S.H. Yoo, S.O. Cho, A novel route to high-quality graphene quantum dots by hydrogen-assisted pyrolysis of silicon carbide. Nanomaterials 10(2), 277 (2020). https://doi.org/10.3390/nano10020277
- L. Zhou, F. Wu, J. Yu, Q. Deng, F. Zhang et al., Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/j.carbon.2017.03.023
- A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
- Z. Guo, X. Zhu, S. Wang, C. Lei, Y. Huang et al., Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 10(41), 19579–19585 (2018). https://doi.org/10.1039/c8nr05767b
- G. Cai, Z. Yu, P. Tong, D. Tang, Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 11(33), 15659–15667 (2019). https://doi.org/10.1039/c9nr05797h
- G. Yang, J. Zhao, S. Yi, X. Wan, J. Tang, Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 309, 127735 (2020). https://doi.org/10.1016/j.snb.2020.127735
- D.S. Su, B. Zhang, R. Schlögl, Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem. Rev. 115(8), 2818–2882 (2015). https://doi.org/10.1021/cr500084c
- C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
- K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
- W. Zhang, W. Zheng, Single atom excels as the smallest functional material. Adv. Funct. Mater. 26(18), 2988–2993 (2016). https://doi.org/10.1002/adfm.201600240
- L. Hu, H. Wu, Annealing-induced bimodal size distribution of small CdSe quantum dots with white-light emission. Phys. Status Solidi A 210, 1726–1733 (2013). https://doi.org/10.1002/pssa.201228872
- L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- L. Chen, Y. Huang, R. Zou, J. Ma, Y. Yang et al., Regulating TiO2/MXenes catalysts to promote photocatalytic performance of highly selective oxidation of d-xylose. Green Chem. 23, 1382–1388 (2021). https://doi.org/10.1039/D0GC03628E
- Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han et al., High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 10(29), 14000–14004 (2018). https://doi.org/10.1039/C8NR03903H
- Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han et al., High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 9(16), 1803406 (2019). https://doi.org/10.1002/aenm.201803406
- Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang et al., Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7(2), 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
- T. Deng, W. Zhang, O. Arcelus, J.G. Kim, J. Carrasco et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 8, 15194 (2017). https://doi.org/10.1038/ncomms15194
- W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), 1800396 (2018). https://doi.org/10.1002/adma.201800396
- J. Nordgren, J. Guo, Instrumentation for soft X-ray emission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 110–111, 1–13 (2000). https://doi.org/10.1016/S0368-2048(00)00154-7
- T. Qin, W. Zhang, Y. Ma, W. Zhang, T. Dong et al., Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Mater. 45, 33–39 (2022). https://doi.org/10.1016/j.ensm.2021.11.032
- M. Terauchi, Y. Sato, H. Hyodo, K. Kimura, Soft X-ray emission spectroscopy study of the valence electron states of α-rhombohedral boron. J. Phys. Conf. Series 176, 012025 (2009). https://doi.org/10.1088/1742-6596/176/1/012025
- A.S. Sharbirin, S. Akhtar, J. Kim, Light-emitting MXene quantum dots. Opto-Electron. Adv. 4(3), 03200077 (2021). https://doi.org/10.29026/oea.2021.200077
- B. Mohanty, L. Giri, B.K. Jena, MXene-derived quantum dots for energy conversion and storage applications. Energy Fuels 35, 14304–14324 (2021). https://doi.org/10.1021/acs.energyfuels.1c01923
- X. Xu, H. Zhang, Q. Diao, Y. Zhu, G. Yang et al., Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. J. Mater. Sci. Mater. Electron. 31, 175–181 (2020). https://doi.org/10.1007/s10854-019-02682-2
- Y. Yang, M. Yao, X. Wang, H. Huang, Theoretical prediction of catalytic activity of Ti2C MXene as cathode for Li–O2 batteries. J. Phys. Chem. C 123(28), 17466–17471 (2019). https://doi.org/10.1021/acs.jpcc.9b05698
- B. Wei, Z. Fu, D. Legut, T.C. Germann, S. Du et al., Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 33(40), 2102595 (2021). https://doi.org/10.1002/adma.202102595
- A. Liu, X. Liang, H. Zhu, X. Ren, L. Gao et al., Two-dimensional MXene supported bismuth for efficient electrocatalytic nitrogen reduction. ChemCatChem 14(7), 202101683 (2022). https://doi.org/10.1002/cctc.202101683
- Y. Guo, T. Wang, Q. Yang, X. Li, H. Li et al., Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx MXene nanosheets. ACS Nano 14(7), 9089–9097 (2020). https://doi.org/10.1021/acsnano.0c04284
- J. Chatt, J.R. Dilworth, R.L. Richards, Recent advances in the chemistry of nitrogen fixation. Chem. Rev. 78, 589–625 (1978). https://doi.org/10.1021/cr60316a001
- T. Wang, S. Li, B. He, X. Zhu, Y. Luo et al., Commercial indium-tin oxide glass: a catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 42, 1024–1029 (2021). https://doi.org/10.1016/S1872-2067(20)63704-4
- Y. Luo, G.F. Chen, L. Ding, X. Chen, L.X. Ding et al., Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3, 279–289 (2019). https://doi.org/10.1016/j.joule.2018.09.011
- C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
- C. Cheng, B. He, J. Fan, B. Cheng, S. Cao et al., An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 33(22), 2100317 (2021). https://doi.org/10.1002/adma.202100317
- F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydro. Energy 32, 3797–3810 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.027
- Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
- L. Zhou, J.M.P. Martirez, J. Finzel, C. Zhang, D.F. Swearer et al., Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020). https://doi.org/10.1038/s41560-019-0517-9
- R. Malik, V.K. Tomer, State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sustain. Energy Rev. 135, 110235 (2021). https://doi.org/10.1016/j.rser.2020.110235
- I.M. Otto, J.F. Donges, R. Cremades, A. Bhowmik, R.J. Hewitt et al., Social tipping dynamics for stabilizing earth’s climate by 2050. PNAS 117, 2354–2365 (2020). https://doi.org/10.1073/pnas.1900577117
- E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
- T. Kandemir, M.E. Schuster, A. Senyshyn, M. Behrens, R. Schlögl, The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52(48), 12723–12726 (2013). https://doi.org/10.1002/anie.201305812
- L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10(15), 2000214 (2020). https://doi.org/10.1002/aenm.202000214
References
R. Winderlich, Jons Jakob Berzelius. J. Chem. Educ. 25(9), 500 (1948). https://doi.org/10.1021/ed025p500
A.G. Morachevskii, Jons Jakob Berzelius (to 225th anniversary of his birthday). Russ. J. Appl. Chem. 77, 1388–1391 (2004). https://doi.org/10.1007/s11167-005-0037-1
F.F. Rupert, The solid hydrates of ammonia II. J. Am. Chem. Soc. 32(6), 748–749 (1910). https://doi.org/10.1021/ja01924a004
M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang et al., Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29(17), 1606550 (2017). https://doi.org/10.1002/adma.201606550
C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 122, 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257
F.P.G. Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373(6555), eaaz8541 (2021). https://doi.org/10.1126/science.aaz8541
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
D. Huang, Y. Xie, D. Lu, Z. Wang, J. Wang et al., Demonstration of a white laser with V2C MXene-based quantum dots. Adv. Mater. 31(24), 1901117 (2019). https://doi.org/10.1002/adma.201901117
J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen et al., Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(7), 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
A.J. Therrien, A.J.R. Hensley, M.D. Marcinkowski, R. Zhang, F.R. Lucci et al., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018). https://doi.org/10.1038/s41929-018-0028-2
H. Xu, H. Shang, C. Wang, Y. Du, Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 30(28), 2000793 (2020). https://doi.org/10.1002/adfm.202000793
M. Pagliaro, S. Campestrini, R. Ciriminna, Ru-based oxidation catalysis. Chem. Soc. Rev. 34(10), 837–845 (2005). https://doi.org/10.1039/B507094P
S. Singha, E. Serrano, S. Mondal, C.G. Daniliuc, F. Glorius, Diastereodivergent synthesis of enantioenriched α, β-disubstituted γ-butyrolactones via cooperative N-heterocyclic carbene and Ir catalysis. Nat. Catal. 3, 48–54 (2020). https://doi.org/10.1038/s41929-019-0387-3
L. Zhu, L.S. Wang, B. Li, B. Fu, C.P. Zhang et al., Operationally simple hydrotrifluoromethylation of alkenes with sodium triflinate enabled by Ir photoredox catalysis. Chem. Commun. 52, 6371–6374 (2016). https://doi.org/10.1039/C6CC01944G
Y.R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer et al., Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022). https://doi.org/10.1038/s41560-021-00948-w
S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
P. Zhao, B. Zhang, X. Hao, W. Yi, J. Chen et al., Rational design and synthesis of adjustable Pt and Pt-based 3D-nanoframeworks. ACS Appl. Energy Mater. 5(1), 942–950 (2022). https://doi.org/10.1021/acsaem.1c03337
D. Li, T. Li, G. Hao, W. Guo, S. Chen et al., IrO2 nanop-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chem. Eng. J. 399, 125738 (2020). https://doi.org/10.1016/j.cej.2020.125738
H. Zhang, X. Qiu, Y. Chen, S. Wang, S.E. Skrabalak et al., Shape control of monodispersed sub-5 nm Pd tetrahedrons and laciniate Pd nanourchins by maneuvering the dispersed state of additives for boosting ORR performance. Small 16(6), 1906026 (2020). https://doi.org/10.1002/smll.201906026
K. Song, Y. Feng, W. Zhang, W. Zheng, MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: spreading the synthesis strategies and advanced identification. J. Energy Chem. 67, 391–422 (2022). https://doi.org/10.1016/j.jechem.2021.10.011
M. Fan, B. Zhang, L. Wang, Z. Li, X. Liang et al., Germanium-regulated adsorption site preference on ruthenium electrocatalyst for efficient hydrogen evolution. Chem. Commun. 57, 3889–3892 (2021). https://doi.org/10.1039/D1CC00559F
W. Luo, H. Liu, X. Liu, L. Liu, W. Zhao, Biocompatibility nanoprobe of MXene N-Ti3C2 quantum dot/Fe3+ for detection and fluorescence imaging of glutathione in living cells. Colloids Surf. B Biointerf. 201, 111631 (2021). https://doi.org/10.1016/j.colsurfb.2021.111631
M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
M. Wang, L. Wang, H. Li, W. Du, M.U. Khan et al., Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity. J. Am. Chem. Soc. 137(44), 14027–14030 (2015). https://doi.org/10.1021/jacs.5b08289
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
H. Jiang, Y. Hu, S. Guo, C. Yan, P.S. Lee et al., Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8(6), 6038–6046 (2014). https://doi.org/10.1021/nn501310n
X. Zhang, J. Li, Y. Yang, S. Zhang, H. Zhu et al., Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv. Mater. 30(45), 1803551 (2018). https://doi.org/10.1002/adma.201803551
M.T. Noori, B.R. Tiwari, M.M. Ghangrekar, B. Min, Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustain. Energy Fuels 3, 3430–3440 (2019). https://doi.org/10.1039/C9SE00661C
T. Favet, T. Cottineau, V. Keller, M.A.E. Khakani, Comparative study of the photocatalytic effects of pulsed laser deposited CoO and NiO nanops onto TiO2 nanotubes for the photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 217, 110703 (2020). https://doi.org/10.1016/j.solmat.2020.110703
W. Liu, D. Zheng, T. Deng, Q. Chen, C. Zhu et al., Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angew. Chem. Int. Ed. 60(19), 10614–10619 (2021). https://doi.org/10.1002/anie.202100371
L. Hu, M. Li, X. Wei, H. Wang, Y. Wu et al., Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chem. Eng. J. 398, 125605 (2020). https://doi.org/10.1016/j.cej.2020.125605
Y. Feng, K. Song, W. Zhang, X. Zhou, S.J. Yoo et al., Efficient ORR catalysts for zinc-air battery: biomass-derived ultra-stable Co nanops wrapped with graphitic layers via optimizing electron transfer. J. Energy Chem. 70, 211–218 (2022). https://doi.org/10.1016/j.jechem.2022.01.047
H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson et al., Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis. Mol. Catal. 435, 156–165 (2017). https://doi.org/10.1016/j.mcat.2017.04.003
Y. Chen, Q. Zhou, G. Zhao, Z. Yu, X. Wang et al., Electrochemically inert g-C3N4 promotes water oxidation Catalysis. Adv. Funct. Mater. 28(5), 1705583 (2018). https://doi.org/10.1002/adfm.201705583
C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
S. Sinthika, E.M. Kumar, R. Thapa, Doped h-BN monolayer as efficient noble metal-free catalysts for CO oxidation: the role of dopant and water in activity and catalytic de-poisoning. J. Mater. Chem. A 2(32), 12812–12820 (2014). https://doi.org/10.1039/C4TA02434F
Y. Luo, Z. Zhang, F. Yang, J. Li, Z. Liu et al., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 14(8), 4610–4619 (2021). https://doi.org/10.1039/D1EE01487K
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3, 29–55 (2020). https://doi.org/10.1002/eem2.12058
L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00604-8
K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
C. Fan, J. Shi, Y. Zhang, W. Quan, X. Chen et al., Fast and recoverable NO2 detection achieved by assembling ZnO on Ti3C2Tx MXene nanosheets under UV illumination at room temperature. Nanoscale 14, 3441–3451 (2022). https://doi.org/10.1039/D1NR06838E
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Y. Niu, C. Tian, J. Gao, F. Fan, Y. Zhang et al., Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy 89, 106455 (2021). https://doi.org/10.1016/j.nanoen.2021.106455
X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu et al., Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017). https://doi.org/10.1016/j.electacta.2017.07.084
X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., Author correction: a general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 20, 571–571 (2021). https://doi.org/10.1038/s41563-021-00925-4
M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53(19), 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
Q. Xu, Y. Niu, J. Li, Z. Yang, J. Gao et al., Recent progress of quantum dots for energy storage applications. Carbon Neutrality 1, 13 (2022). https://doi.org/10.1007/s43979-022-00002-y
Z. Wang, J. Xuan, Z. Zhao, Q. Li, F. Geng, Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 11(11), 11559–11565 (2017). https://doi.org/10.1021/acsnano.7b06476
Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/d0cs00022a
Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li et al., Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29(15), 1604847 (2017). https://doi.org/10.1002/adma.201604847
S. Lu, L. Sui, Y. Liu, X. Yong, G. Xiao et al., White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv. Sci. 6(9), 1801470 (2019). https://doi.org/10.1002/advs.201801470
G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
J. Diao, M. Hu, Z. Lian, Z. Li, H. Zhang et al., Ti3C2Tx MXene catalyzed ethylbenzene dehydrogenation: active sites and mechanism exploration from both experimental and theoretical aspects. ACS Catal. 8(11), 10051–10057 (2018). https://doi.org/10.1021/acscatal.8b02002
H.R. Chen, W.M. Meng, R.Y. Wang, F.L. Chen, T. Li et al., Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon 190, 319–328 (2022). https://doi.org/10.1016/j.carbon.2022.01.028
J. Li, S. Wang, Y. Du, W. Liao, Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. Int. J. Hydro. Energy 44, 6787–6794 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.189
X. Yang, Q. Jia, F. Duan, B. Hu, M. Wang et al., Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 464, 78–87 (2019). https://doi.org/10.1016/j.apsusc.2018.09.069
Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian et al., Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by mxene quantum dots. Adv. Funct. Mater. 29(2), 1806500 (2019). https://doi.org/10.1002/adfm.201806500
X. Du, T. Zhao, Z. Xiu, Z. Xing, Z. Li et al., BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl. Mater. Today 20, 100719 (2020). https://doi.org/10.1016/j.apmt.2020.100719
J. Qin, B. Liu, K.H. Lam, S. Song, X. Li et al., 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustain. Chem. Eng. 8(48), 17791–17799 (2020). https://doi.org/10.1021/acssuschemeng.0c06388
Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
H. Wang, R. Zhao, H. Hu, X. Fan, D. Zhang et al., 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 12(36), 40176–40185 (2020). https://doi.org/10.1021/acsami.0c01013
R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang et al., Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 30(19), 2000637 (2020). https://doi.org/10.1002/adfm.202000637
S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou et al., Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production. ACS Sustain. Chem. Eng. 9(1), 481–488 (2021). https://doi.org/10.1021/acssuschemeng.0c07753
Z. Yuan, H. Huang, N. Li, D. Chen, Q. Xu et al., All-solid-state WO3/TQDs/In2S3 Z-scheme heterojunctions bridged by Ti3C2 quantum dots for efficient removal of hexavalent chromium and bisphenol A. J. Hazard. Mater. 409, 125027 (2021). https://doi.org/10.1016/j.jhazmat.2020.125027
C. Lai, Z. An, H. Yi, X. Huo, L. Qin et al., Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots. J. Colloid Interface Sci. 600, 161–173 (2021). https://doi.org/10.1016/j.jcis.2021.05.022
B. Chang, Y. Guo, H. Liu, L. Li, B. Yang, Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation. J. Mater. Chem. A 10(6), 3134–3145 (2022). https://doi.org/10.1039/D1TA09941H
Y. Guo, Y. Cheng, X. Li, Q. Li, X. Li et al., MXene quantum dots decorated Ni nanoflowers for efficient Cr (VI) reduction. J. Hazard. Mater. 423, 127053 (2022). https://doi.org/10.1016/j.jhazmat.2021.127053
L. Yang, Z. Chen, X. Wang, M. Jin, High-stability Ti3C2-QDs/ZnIn2S4/Ti(IV) flower-like heterojunction for boosted photocatalytic hydrogen evolution. Nanomaterials 12(3), 542 (2022). https://doi.org/10.3390/nano12030542
Y. Cheng, X. Li, P. Shen, Y. Guo, K. Chu, MXene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12268
S. Shen, J. Wang, Z. Wu, Z. Du, Z. Tang et al., Graphene quantum dots with high yield and high quality synthesized from low cost precursor of aphanitic graphite. Nanomaterials 10(2), 375 (2020). https://doi.org/10.3390/nano10020375
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
B. Yu, D. Chen, Z. Wang, F. Qi, X. Zhang et al., Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem. Eng. J. 399, 125837 (2020). https://doi.org/10.1016/j.cej.2020.125837
S.J. Xiao, L.Z. Wang, M.Y. Yuan, X.H. Huang, J.H. Ding et al., Peroxidase-mimetic and Fenton-like activities of molybdenum oxide quantum dots. ChemistrySelect 5, 10149–10155 (2020). https://doi.org/10.1002/slct.202001566
X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou et al., Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3), 1111–1118 (2018). https://doi.org/10.1039/c7nr06958h
Y. Cao, T. Wu, K. Zhang, X. Meng, W. Dai et al., Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13(2), 1499–1510 (2019). https://doi.org/10.1021/acsnano.8b07224
Q. Xu, J. Ma, W. Khan, X. Zeng, N. Li et al., Highly green fluorescent Nb2C MXene quantum dots. Chem. Commun. 56, 6648–6651 (2020). https://doi.org/10.1039/D0CC02131H
J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
Z. Jin, G. Xu, Y. Niu, X. Ding, Y. Han et al., Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 8(16), 3513–3518 (2020). https://doi.org/10.1039/c9tb02478f
W. Kong, Y. Niu, M. Liu, K. Zhang, G. Xu et al., One-step hydrothermal synthesis of fluorescent MXene-like titanium chock for carbonitride quantum dots. Inorg. Chem. Commun. 105, 151–157 (2019). https://doi.org/10.1016/j.inoche.2019.04.033
H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
Y. Fan, L. Li, Y. Zhang, X. Zhang, D. Geng et al., Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 32(16), 2111357 (2022). https://doi.org/10.1002/adfm.202111357
Y.M. Manawi, A. Ihsanullah, T. Samara, M.A.A. Al-Ansari, A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (2018). https://doi.org/10.3390/ma11050822
K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide mxene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum et al., Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014). https://doi.org/10.1039/C4TA02638A
R.F. Rolsten, Solution chemistry of the electrochemical machining of titanium, niobium and tantalum. J. Appl. Chem. 18(10), 292–296 (1968). https://doi.org/10.1002/jctb.5010181002
G. Xu, Y. Niu, X. Yang, Z. Jin, Y. Wang et al., Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence Adv. Opt. Mater. 6(24), 1800951 (2018). https://doi.org/10.1002/adom.201800951
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
L. Hong, R.F. Klie, S. Öğüt, First-principles study of size- and edge-dependent properties of MXene nanoribbons. Phys. Rev. B 93, 115412 (2016). https://doi.org/10.1103/PhysRevB.93.115412
P. Lian, Y. Dong, Z.S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
H. Zhou, Z. Chen, A.V. López, E.D. López, E. Lam et al., Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 4, 860–871 (2021). https://doi.org/10.1038/s41929-021-00684-0
M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum et al., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5(15), 1500589 (2015). https://doi.org/10.1002/aenm.201500589
A.D. Handoko, K.D. Fredrickson, B. Anasori, K.W. Convey, L.R. Johnson et al., Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1(1), 173–180 (2018). https://doi.org/10.1021/acsaem.7b00054
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
M. Pandey, K.S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. J. Phys. Chem. C 121(25), 13593–13598 (2017). https://doi.org/10.1021/acs.jpcc.7b05270
L. Wang, N. Zhang, Y. Li, W. Kong, J. Gou et al., Mechanism of nitrogen-doped Ti3C2 quantum dots for free-radical scavenging and the ultrasensitive H2O2 detection performance. ACS Appl. Mater. Interfaces 13(36), 42442–42450 (2021). https://doi.org/10.1021/acsami.1c11242
N. Xu, H. Li, Y. Gan, H. Chen, W. Li et al., Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 7(22), 2002209 (2020). https://doi.org/10.1002/advs.202002209
F. Yang, Y. Ge, T. Yin, J. Guo, F. Zhang et al., Ti3C2Tx MXene quantum dots with enhanced stability for ultrafast photonics. ACS Appl. Nano Mater. 3(12), 11850–11860 (2020). https://doi.org/10.1021/acsanm.0c02369
X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu et al., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9, 17859–17864 (2017). https://doi.org/10.1039/c7nr05997c
G.P. Neupane, B. Wang, M. Tebyetekerwa, H.T. Nguyen, M. Taheri et al., Highly enhanced light-matter interaction in MXene quantum dots-monolayer WS2 heterostructure. Small 17(11), 2006309 (2021). https://doi.org/10.1002/smll.202006309
X. Wang, X. Zhang, H. Cao, Y. Huang, A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J. Mater. Chem. B 8(47), 10837–10844 (2020). https://doi.org/10.1039/d0tb02078h
M. Liu, Y. Bai, Y. He, J. Zhou, Y. Ge et al., Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim. Acta 188, 15 (2021). https://doi.org/10.1007/s00604-020-04668-y
T. Zhang, X. Jiang, G. Li, Q. Yao, J.Y. Lee, A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) nanodot composite. ChemNanoMat 4, 56–60 (2018). https://doi.org/10.1002/cnma.201700232
Y. Yuan, L. Jiang, X. Li, P. Zuo, X. Zhang et al., Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv. Mater. 34(12), 2110013 (2022). https://doi.org/10.1002/adma.202110013
H. Alijani, A.R. Rezk, M.M.K. Farsani, H. Ahmed, J. Halim et al., Acoustomicrofluidic synthesis of pristine ultrathin Ti3C2Tz MXene nanosheets and quantum dots. ACS Nano 15(7), 12099–12108 (2021). https://doi.org/10.1021/acsnano.1c03428
L. Zhao, Z. Wang, Y. Li, S. Wang, L. Wang et al., Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. J. Mater. Sci. Tech. 78, 30–37 (2021). https://doi.org/10.1016/j.jmst.2020.10.048
B. Shao, Z. Liu, G. Zeng, H. Wang, Q. Liang et al., Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J. Mater. Chem. A 8(16), 7508–7535 (2020). https://doi.org/10.1039/d0ta01552k
Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanop-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1(9), 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue et al., Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 30(46), 1803694 (2018). https://doi.org/10.1002/adma.201803694
P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9(45), 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
C.F. Du, X. Sun, H. Yu, Q. Liang, K.N. Dinh et al., Synergy of Nb doping and surface alloy enhanced on water-alkali electrocatalytic hydrogen generation performance in Ti-based MXene. Adv. Sci. 6(11), 1900116 (2019). https://doi.org/10.1002/advs.201900116
J. Li, D. Yan, S. Hou, Y. Li, T. Lu et al., Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 6(3), 1234–1243 (2018). https://doi.org/10.1039/C7TA08261D
V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), 1903841 (2019). https://doi.org/10.1002/adma.201903841
C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
J. Guo, Y. Zhao, A. Liu, T. Ma, Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim. Acta 305, 164–174 (2019). https://doi.org/10.1016/j.electacta.2019.03.025
Q. Xu, J. Gao, S. Wang, Y. Wang, D. Liu et al., Quantum dots in cell imaging and their safety issues. J. Mater. Chem. B 9(29), 5765–5779 (2021). https://doi.org/10.1039/D1TB00729G
X. Yan, J. Ma, K. Yu, J. Li, L. Yang et al., Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging. Chin. Chem. Lett. 31, 3173–3177 (2020). https://doi.org/10.1016/j.cclet.2020.05.020
W. Qiao, Z. Feng, 100 MHz frequency-spacing switchable single-dual-frequency laser based on MXene QDs and a phase-shifted FBG. Opt. Exp. 29, 43679–43686 (2021). https://doi.org/10.1364/OE.445539
X. Liu, L. Ji, F. Zhu, Y. Gan, Q. Wen, Linear-cavity-based single frequency fiber laser with a loop mirror and Ti2CTx quantum dots. Opt. Mater. 122, 111686 (2021). https://doi.org/10.1016/j.optmat.2021.111686
Q. Xu, W. Yang, Y. Wen, S. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
J. Ge, W. Li, X. He, H. Chen, W. Fang et al., Charge behavior modulation by titanium-carbide quantum dots and nanosheets for efficient perovskite solar cells. Mater. Today Energy 18, 100562 (2020). https://doi.org/10.1016/j.mtener.2020.100562
X. Han, N. Li, P. Xiong, M.G. Jung, Y. Kang et al., Electronically coupled layered double hydroxide/MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat 3(10), 1134–1144 (2021). https://doi.org/10.1002/inf2.12226
P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14, 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
X. Gao, X. Shao, L. Qin, Y. Li, S. Huang et al., N, N-dimethyl formamide regulating fluorescence of MXene quantum dots for the sensitive determination of Fe3+. Nanoscale Res. Lett. 16, 160 (2021). https://doi.org/10.1186/s11671-021-03617-9
F. Ai, C. Fu, G. Cheng, H. Zhang, Y. Feng et al., Amino-functionalized Ti3C2 MXene quantum dots as photoluminescent sensors for diagnosing histidine in human serum. ACS Appl. Nano Mater. 4(8), 8192–8199 (2021). https://doi.org/10.1021/acsanm.1c01425
X. Jiang, H. Wang, Y. Shen, N. Hu, W. Shi, Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens. Actuators B Chem. 350, 130891 (2022). https://doi.org/10.1016/j.snb.2021.130891
Y. Bai, Y. He, Y. Wang, G. Song, Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+. Microchim. Acta 188, 401 (2021). https://doi.org/10.1007/s00604-021-05064-w
Z. Zhao, X. Wu, C. Luo, Y. Wang, W. Chen, Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage. J. Colloid Interface Sci. 609, 393–402 (2022). https://doi.org/10.1016/j.jcis.2021.12.041
Q. Guan, J. Ma, W. Yang, R. Zhang, X. Zhang et al., Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11, 14123–14133 (2019). https://doi.org/10.1039/C9NR04421C
J. Gou, L. Zhao, Y. Li, J. Zhang, Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 4(11), 12308–12315 (2021). https://doi.org/10.1021/acsanm.1c02783
C. Fu, F. Ai, J. Huang, Z. Shi, X. Yan et al., Eu doped Ti3C2 quantum dots to form a ratiometric fluorescence platform for visual and quantitative point-of-care testing of tetracycline derivatives. Spectrochim. Acta Part A Mol Biomol. Spectrosco. 272, 120956 (2022). https://doi.org/10.1016/j.saa.2022.120956
Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou et al., High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 6(24), 6360–6369 (2018). https://doi.org/10.1039/c8tc02156b
F. Yan, J. Sun, Y. Zang, Z. Sun, H. Zhang et al., Solvothermal synthesis of nitrogen-doped MXene quantum dots for the detection of alizarin red based on inner filter effect. Dyes Pigments 195, 109720 (2021). https://doi.org/10.1016/j.dyepig.2021.109720
Y. Feng, F. Zhou, Q. Deng, C. Peng, Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram. Int. 46, 8320–8327 (2020). https://doi.org/10.1016/j.ceramint.2019.12.063
D. Huang, Y. Wu, F. Ai, X. Zhou, G. Zhu, Fluorescent nitrogen-doped Ti3C2 MXene quantum dots as a unique “on-off-on” nanoprobe for chrominum (VI) and ascorbic acid based on inner filter effect. Sens. Actuators B Chem. 342, 130074 (2021). https://doi.org/10.1016/j.snb.2021.130074
M. Liu, J. Zhou, Y. He, Z. Cai, Y. Ge et al., ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim. Acta 186, 770 (2019). https://doi.org/10.1007/s00604-019-3945-0
M. Liu, Y. He, J. Zhou, Y. Ge, J. Zhou et al., A ’’naked-eye’’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal. Chim. Acta 1103, 134–142 (2020). https://doi.org/10.1016/j.aca.2019.12.069
Q. Lu, J. Wang, B. Li, C. Weng, X. Li et al., Dual-emission reverse change ratio photoluminescence sensor based on a probe of nitrogen-doped Ti3C2 quantum dots@DAP to detect H2O2 and xanthine. Anal. Chem. 92, 7770–7777 (2020). https://doi.org/10.1021/acs.analchem.0c00895
M.A. Al-Duais, Z.M. Mohammedsaleh, H.S. Al-Shehri, Y.S. Al-Awthan, S.A. Bani-Atta et al., Bovine serum albumin functionalized blue emitting Ti3C2 MXene quantum dots as a sensitive fluorescence probe for Fe3+ ion detection and its toxicity analysis. Luminescence 37, 633–641 (2022). https://doi.org/10.1002/bio.4204
H. Mao, C. Gu, S. Yan, Q. Xin, S. Cheng et al., MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron. Mater. 6(1), 1900493 (2020). https://doi.org/10.1002/aelm.201900493
P. Pandey, A. Sengupta, S. Parmar, U. Bansode, S. Gosavi et al., CsPbBr3-Ti3C2Tx MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl. Nano Mater. 3(4), 3305–3314 (2020). https://doi.org/10.1021/acsanm.0c00051
X. Chen, W. Xu, Z. Shi, Y. Ji, J. Lyu et al., Plasmonic gold nanorods decorated Ti3C2 MXene quantum dots-interspersed nanosheet for full-spectrum photoelectrochemical water splitting. Chem. Eng. J. 426, 130818 (2021). https://doi.org/10.1016/j.cej.2021.130818
Y. Nie, Z. Liang, P. Wang, Q. Ma, X. Su, MXene-derived quantum dot@gold nanobones heterostructure-based electrochemiluminescence sensor for triple-negative breast cancer diagnosis. Anal. Chem. 93, 17086–17093 (2021). https://doi.org/10.1021/acs.analchem.1c04184
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho et al., 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 272, 119006 (2020). https://doi.org/10.1016/j.apcatb.2020.119006
Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui et al., Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl. Mater. Interfaces 11, 41440–41447 (2019). https://doi.org/10.1021/acsami.9b14985
Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), 202200946 (2022). https://doi.org/10.1002/anie.202200946
L. Song, S. Zhu, L. Tong, W. Wang, C. Ouyang et al., MXene quantum dot rivet reinforced Ni-Co LDH for boosting electrochemical activity and cycling stability. Mater. Adv. 2(17), 5622–5628 (2021). https://doi.org/10.1039/D1MA00474C
X. Chen, J. Li, G. Pan, W. Xu, J. Zhu et al., Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. 289, 131–137 (2019). https://doi.org/10.1016/j.snb.2019.03.052
Y. Liu, X. Zhang, W. Zhang, X. Ge, Y. Wang et al., MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O-terminated surface groups. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12438
J. Sun, H. Du, Z. Chen, L. Wang, G. Shen, MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 15, 3653–3659 (2021). https://doi.org/10.1007/s12274-021-3967-x
S.J. Clarke, C.A. Hollmann, Z. Zhang, D. Suffern, S.E. Bradforth et al., Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater. 5, 409–417 (2006). https://doi.org/10.1038/nmat1631
M.Q. Zhu, E. Chang, J. Sun, R.A. Drezek, Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 17(8), 800–805 (2007). https://doi.org/10.1039/B614432B
Z. Yue, F. Lisdat, W.J. Parak, S.G. Hickey, L. Tu et al., Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 5(8), 2800–2814 (2013). https://doi.org/10.1021/am3028662
B. Yu, B. Tawiah, L.Q. Wang, A.C.Y. Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
S.E. Zhu, F.D. Wang, J.J. Liu, L.L. Wang, C. Wang et al., BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Compos. Part B Eng. 223, 109130 (2021). https://doi.org/10.1016/j.compositesb.2021.109130
J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
Z.F. Huang, J. Song, Y. Du, S. Dou, L. Sun et al., Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. Carbon Energy 1, 77–84 (2019). https://doi.org/10.1002/cey2.3
Y. Wu, J. Cai, Y. Xie, S. Niu, Y. Zang et al., Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 32(26), 1904346 (2020). https://doi.org/10.1002/adma.201904346
D.W. Su, J. Ran, Z.W. Zhuang, C. Chen, S.Z. Qiao et al., Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Sci. Adv. 6(33), eaaz8447 (2020). https://doi.org/10.1126/sciadv.aaz8447
Q. Wang, J. Li, X. Tu, H. Liu, M. Shu et al., Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem. Mater. 32, 734–743 (2020). https://doi.org/10.1021/acs.chemmater.9b03708
S. Jin, Y. Ni, Z. Hao, K. Zhang, Y. Lu et al., A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem. Int. Ed. 59(49), 21885–21889 (2020). https://doi.org/10.1002/anie.202008422
C. Xia, Y. Qiu, Y. Xia, P. Zhu, G. King et al., General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021). https://doi.org/10.1038/s41557-021-00734-x
Y. Cai, J. Fu, Y. Zhou, Y.C. Chang, Q. Min et al., Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x
A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30(1), 1704548 (2018). https://doi.org/10.1002/adma.201704548
H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong et al., Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
Z. Du, S. Yang, S. Li, J. Lou, S. Zhang et al., Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492–496 (2020). https://doi.org/10.1038/s41586-019-1904-x
K. Xu, P. Cao, J.R. Heath, Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329(5996), 1188–1191 (2010). https://doi.org/10.1126/science.1192907
H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26(48), 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L.V. Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
J. Hong, C. Jin, J. Yuan, Z. Zhang, Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29(14), 1606434 (2017). https://doi.org/10.1002/adma.201606434
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and Shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1, 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
E.J. Yang, O.S. Jeon, J.U. Yang, M.K. Shin, Y.J. Yoo et al., Room temperature manufacturing photoluminescent graphene quantum dots based on MXene. Carbon 167, 863–869 (2020). https://doi.org/10.1016/j.carbon.2020.05.063
X. Shi, H. Meng, Y. Sun, L. Qu, Y. Lin et al., Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small 15(48), 1901507 (2019). https://doi.org/10.1002/smll.201901507
Z. Liu, B. Li, Y. Feng, D. Jia, C. Li et al., Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction. Small 17(41), 2102496 (2021). https://doi.org/10.1002/smll.202102496
T.C. Wareing, P. Gentile, A.N. Phan, Biomass-based carbon dots: current development and future perspectives. ACS Nano 15(10), 15471–15501 (2021). https://doi.org/10.1021/acsnano.1c03886
Y. Liu, S. Huang, J. Li, M. Wang, C. Wang et al., 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16–F10 cells. Microchim. Acta 188, 69 (2021). https://doi.org/10.1007/s00604-021-04726-z
N.E. Lee, S.Y. Lee, H.S. Lim, S.H. Yoo, S.O. Cho, A novel route to high-quality graphene quantum dots by hydrogen-assisted pyrolysis of silicon carbide. Nanomaterials 10(2), 277 (2020). https://doi.org/10.3390/nano10020277
L. Zhou, F. Wu, J. Yu, Q. Deng, F. Zhang et al., Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). https://doi.org/10.1016/j.carbon.2017.03.023
A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
Z. Guo, X. Zhu, S. Wang, C. Lei, Y. Huang et al., Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 10(41), 19579–19585 (2018). https://doi.org/10.1039/c8nr05767b
G. Cai, Z. Yu, P. Tong, D. Tang, Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 11(33), 15659–15667 (2019). https://doi.org/10.1039/c9nr05797h
G. Yang, J. Zhao, S. Yi, X. Wan, J. Tang, Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 309, 127735 (2020). https://doi.org/10.1016/j.snb.2020.127735
D.S. Su, B. Zhang, R. Schlögl, Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem. Rev. 115(8), 2818–2882 (2015). https://doi.org/10.1021/cr500084c
C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
W. Zhang, W. Zheng, Single atom excels as the smallest functional material. Adv. Funct. Mater. 26(18), 2988–2993 (2016). https://doi.org/10.1002/adfm.201600240
L. Hu, H. Wu, Annealing-induced bimodal size distribution of small CdSe quantum dots with white-light emission. Phys. Status Solidi A 210, 1726–1733 (2013). https://doi.org/10.1002/pssa.201228872
L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
L. Chen, Y. Huang, R. Zou, J. Ma, Y. Yang et al., Regulating TiO2/MXenes catalysts to promote photocatalytic performance of highly selective oxidation of d-xylose. Green Chem. 23, 1382–1388 (2021). https://doi.org/10.1039/D0GC03628E
Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han et al., High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 10(29), 14000–14004 (2018). https://doi.org/10.1039/C8NR03903H
Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han et al., High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 9(16), 1803406 (2019). https://doi.org/10.1002/aenm.201803406
Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang et al., Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7(2), 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
T. Deng, W. Zhang, O. Arcelus, J.G. Kim, J. Carrasco et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 8, 15194 (2017). https://doi.org/10.1038/ncomms15194
W. Chen, J. Pei, C.T. He, J. Wan, H. Ren et al., Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30(30), 1800396 (2018). https://doi.org/10.1002/adma.201800396
J. Nordgren, J. Guo, Instrumentation for soft X-ray emission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 110–111, 1–13 (2000). https://doi.org/10.1016/S0368-2048(00)00154-7
T. Qin, W. Zhang, Y. Ma, W. Zhang, T. Dong et al., Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Mater. 45, 33–39 (2022). https://doi.org/10.1016/j.ensm.2021.11.032
M. Terauchi, Y. Sato, H. Hyodo, K. Kimura, Soft X-ray emission spectroscopy study of the valence electron states of α-rhombohedral boron. J. Phys. Conf. Series 176, 012025 (2009). https://doi.org/10.1088/1742-6596/176/1/012025
A.S. Sharbirin, S. Akhtar, J. Kim, Light-emitting MXene quantum dots. Opto-Electron. Adv. 4(3), 03200077 (2021). https://doi.org/10.29026/oea.2021.200077
B. Mohanty, L. Giri, B.K. Jena, MXene-derived quantum dots for energy conversion and storage applications. Energy Fuels 35, 14304–14324 (2021). https://doi.org/10.1021/acs.energyfuels.1c01923
X. Xu, H. Zhang, Q. Diao, Y. Zhu, G. Yang et al., Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. J. Mater. Sci. Mater. Electron. 31, 175–181 (2020). https://doi.org/10.1007/s10854-019-02682-2
Y. Yang, M. Yao, X. Wang, H. Huang, Theoretical prediction of catalytic activity of Ti2C MXene as cathode for Li–O2 batteries. J. Phys. Chem. C 123(28), 17466–17471 (2019). https://doi.org/10.1021/acs.jpcc.9b05698
B. Wei, Z. Fu, D. Legut, T.C. Germann, S. Du et al., Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 33(40), 2102595 (2021). https://doi.org/10.1002/adma.202102595
A. Liu, X. Liang, H. Zhu, X. Ren, L. Gao et al., Two-dimensional MXene supported bismuth for efficient electrocatalytic nitrogen reduction. ChemCatChem 14(7), 202101683 (2022). https://doi.org/10.1002/cctc.202101683
Y. Guo, T. Wang, Q. Yang, X. Li, H. Li et al., Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx MXene nanosheets. ACS Nano 14(7), 9089–9097 (2020). https://doi.org/10.1021/acsnano.0c04284
J. Chatt, J.R. Dilworth, R.L. Richards, Recent advances in the chemistry of nitrogen fixation. Chem. Rev. 78, 589–625 (1978). https://doi.org/10.1021/cr60316a001
T. Wang, S. Li, B. He, X. Zhu, Y. Luo et al., Commercial indium-tin oxide glass: a catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 42, 1024–1029 (2021). https://doi.org/10.1016/S1872-2067(20)63704-4
Y. Luo, G.F. Chen, L. Ding, X. Chen, L.X. Ding et al., Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 3, 279–289 (2019). https://doi.org/10.1016/j.joule.2018.09.011
C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120(21), 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao et al., An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 33(22), 2100317 (2021). https://doi.org/10.1002/adma.202100317
F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydro. Energy 32, 3797–3810 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.027
Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
L. Zhou, J.M.P. Martirez, J. Finzel, C. Zhang, D.F. Swearer et al., Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020). https://doi.org/10.1038/s41560-019-0517-9
R. Malik, V.K. Tomer, State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sustain. Energy Rev. 135, 110235 (2021). https://doi.org/10.1016/j.rser.2020.110235
I.M. Otto, J.F. Donges, R. Cremades, A. Bhowmik, R.J. Hewitt et al., Social tipping dynamics for stabilizing earth’s climate by 2050. PNAS 117, 2354–2365 (2020). https://doi.org/10.1073/pnas.1900577117
E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
T. Kandemir, M.E. Schuster, A. Senyshyn, M. Behrens, R. Schlögl, The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52(48), 12723–12726 (2013). https://doi.org/10.1002/anie.201305812
L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10(15), 2000214 (2020). https://doi.org/10.1002/aenm.202000214