Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2
Corresponding Author: Xiaoqiang Cui
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 102
Abstract
The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co–MoS2 (SA Co–MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co–MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co–MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co–MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
Highlights:
1 Single-atom Co–MoS2 (SA Co–MoS2) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes.
2 The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Garcia-Viloca, J.L. Gao, M. Karplus, D.G. Truhlar, How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655), 186–195 (2004). https://doi.org/10.1126/science.1088172
- H. Wei, E.K. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
- X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- J.J. Wu, X.Y. Wang, Q. Wang, Z.P. Lou, S. Li, Y.Y. Zhu, L. Qin, H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
- D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan, W. Cai, Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00718G
- M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140(36), 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
- H. Wang, K.W. Wan, X.H. Shi, Recent advances in nanozyme research. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805368
- J.N. Li, W.Q. Liu, X.C. Wu, X.F. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
- G. Fang, W.F. Li, X.M. Shen, J.M. Perez-Aguilar, Y. Chong et al., Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun. 9(1), 129 (2018). https://doi.org/10.1038/s41467-017-02502-3
- Y. Chong, X. Dai, G. Fang, R.F. Wu, L. Zhao et al., Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nat. Commun. 9(1), 4861 (2018). https://doi.org/10.1038/s41467-018-07257-z
- S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. 130(17), 4600–4605 (2018). https://doi.org/10.1002/ange.201800681
- H. Wang, P.H. Li, D.Q. Yu, Y. Zhang, Z.Z. Wang et al., Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 18(6), 3344–3351 (2018). https://doi.org/10.1021/acs.nanolett.7b05095
- H.J. Sun, Y. Zhou, J.S. Ren, X.G. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
- L. Han, H.J. Zhang, D.Y. Chen, F. Li, Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 28(17), 1800018 (2018). https://doi.org/10.1002/adfm.201800018
- P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 940 (2019). https://doi.org/10.1038/s41467-019-08731-y
- N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3), 249–259 (2004). https://doi.org/10.1016/j.phytochem.2003.10.022
- MathSciNet
- X.J. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1(6), 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9
- A.Q. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
- Y. Wang, J. Mao, X.G. Meng, L. Yu, D.H. Deng, X.H. Bao, Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- C. Zhao, C. Xiong, X.K. Liu, M. Qiao, Z.J. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55(16), 2285–2288 (2019). https://doi.org/10.1039/c9cc00199a
- B.L. Xu, H. Wang, W.W. Wang, L.Z. Gao, S.S. Li et al., Single-atom nanozyme for wound antibacterial applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
- Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao, X. Cui, Elucidating the mechanism of the structure-dependent enzymatic activity of fe-n/c oxidase mimics. Chem. Commun. 55(36), 5271–5274 (2019). https://doi.org/10.1039/C9CC01503E
- M. Huo, L. Wang, Y. Wang, Y. Chen, J. Shi, Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13(2), 2643–2653 (2019). https://doi.org/10.1021/acsnano.9b00457
- L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. (Accepted Article, 2019). https://doi.org/10.1002/anie.201905645
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
- C.T. Black, C.B. Murray, R.L. Sandstrom, S. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290(5494), 1131–1134 (2000). https://doi.org/10.1126/science.290.5494.1131
- K. Qi, X.Q. Cui, L. Gu, S.S. Yu, X.F. Fan et al., Single-atom cobalt array bound to distorted 1T-MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-12997-7
- B. Jiang, D.M. Duan, L.Z. Gao, M.J. Zhou, K.L. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13(7), 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
- B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990). https://doi.org/10.1063/1.458452
- B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- B. Delley, Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66(15), 155125 (2002). https://doi.org/10.1103/PhysRevB.66.155125
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
- N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu et al., Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(23), 7448–7455 (2015). https://doi.org/10.1021/jacs.5b03545
- X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15(9), 5956–5960 (2015). https://doi.org/10.1021/acs.nanolett.5b02091
- Y. Wang, X.Q. Cui, J.X. Zhao, G.R. Jia, L. Gu et al., Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9(1), 336–344 (2019). https://doi.org/10.1021/acscatal.8b03802
- G.L. Liu, A.W. Robertson, M.M.-J. Li, W.C.H. Kuo, M.T. Darby et al., MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017). https://doi.org/10.1038/nchem.2740
- L. Jiao, L. Zhang, W. Du, H. Li, D. Yang, C. Zhu, Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay. Nanoscale 10(46), 21893–21897 (2018). https://doi.org/10.1039/C8NR07096B
- X.H. Xia, J.T. Zhang, N. Lu, M.J. Kim, K. Ghale et al., Pd-ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10), 9994–10004 (2015). https://doi.org/10.1021/acsnano.5b03525
- N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee, P.S. Saxena, A. Srivastava, Different shades of cholesterol: gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 74, 207–213 (2015). https://doi.org/10.1016/j.bios.2015.06.043
- K.-I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 134(1), 139–142 (2000). https://doi.org/10.1016/S1010-6030(00)00264-1
- J.L. Dong, L.N. Song, J.J. Yin, W.W. He, Y.H. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 6(3), 1959–1970 (2014). https://doi.org/10.1021/am405009f
- H.M. Jia, D.F. Yang, X.N. Han, J.H. Cai, H.Y. Liu, W.W. He, Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale 8(11), 5938–5945 (2016). https://doi.org/10.1039/C6NR00860G
- W.Y. Li, J.Y. Wang, J.C. Zhu, Y.Q. Zheng, Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. J. Mater. Chem. B 6(42), 6858–6864 (2018). https://doi.org/10.1039/C8TB01948G
- Q.Q. Wang, L.L. Zhang, C.S. Shang, Z.Q. Zhang, S.J. Dong, Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/C6CC00194G
- J.S. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
- M.S. Thorum, J.M. Hankett, A.A. Gewirth, Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity. J. Phys. Chem. Lett. 2(4), 295–298 (2011). https://doi.org/10.1021/jz1016284
- Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136(31), 10882–10885 (2014). https://doi.org/10.1021/ja505777v
- H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56(3), 658–666 (1934). https://doi.org/10.1021/ja01318a036
- S.S. Fan, M.G. Zhao, L.J. Ding, H. Li, S.G. Chen, Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 89, 846–852 (2017). https://doi.org/10.1016/j.bios.2016.09.108
- C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55(16), 2285–2288 (2019). https://doi.org/10.1039/C9CC00199A
- Y. Hu, X.J. Gao, Y. Zhu, F. Muhammad, S. Tan et al., Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 30(18), 6431–6439 (2018). https://doi.org/10.1021/acs.chemmater.8b02726
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- L. Jiao, W. Xu, H. Yan, Y. Wu, W. Gu, H. Li, D. Du, Y. Lin, C. Zhu, A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chem. Commun. 55(66), 9865–9868 (2019). https://doi.org/10.1039/C9CC04436A
- A.A. Balandin, in Modern State of the Multiplet Theory of Heterogeneous Catalysis. The paper was prepared for publication by e.I. Klabunovskii, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic Press; 1969), pp. 1–210
References
M. Garcia-Viloca, J.L. Gao, M. Karplus, D.G. Truhlar, How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655), 186–195 (2004). https://doi.org/10.1126/science.1088172
H. Wei, E.K. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
J.J. Wu, X.Y. Wang, Q. Wang, Z.P. Lou, S. Li, Y.Y. Zhu, L. Qin, H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan, W. Cai, Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00718G
M.A. Komkova, E.E. Karyakina, A.A. Karyakin, Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 140(36), 11302–11307 (2018). https://doi.org/10.1021/jacs.8b05223
H. Wang, K.W. Wan, X.H. Shi, Recent advances in nanozyme research. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805368
J.N. Li, W.Q. Liu, X.C. Wu, X.F. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.012
G. Fang, W.F. Li, X.M. Shen, J.M. Perez-Aguilar, Y. Chong et al., Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun. 9(1), 129 (2018). https://doi.org/10.1038/s41467-017-02502-3
Y. Chong, X. Dai, G. Fang, R.F. Wu, L. Zhao et al., Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nat. Commun. 9(1), 4861 (2018). https://doi.org/10.1038/s41467-018-07257-z
S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. 130(17), 4600–4605 (2018). https://doi.org/10.1002/ange.201800681
H. Wang, P.H. Li, D.Q. Yu, Y. Zhang, Z.Z. Wang et al., Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 18(6), 3344–3351 (2018). https://doi.org/10.1021/acs.nanolett.7b05095
H.J. Sun, Y. Zhou, J.S. Ren, X.G. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
L. Han, H.J. Zhang, D.Y. Chen, F. Li, Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 28(17), 1800018 (2018). https://doi.org/10.1002/adfm.201800018
P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 940 (2019). https://doi.org/10.1038/s41467-019-08731-y
N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3), 249–259 (2004). https://doi.org/10.1016/j.phytochem.2003.10.022
MathSciNet
X.J. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1(6), 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9
A.Q. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2(6), 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
Y. Wang, J. Mao, X.G. Meng, L. Yu, D.H. Deng, X.H. Bao, Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
C. Zhao, C. Xiong, X.K. Liu, M. Qiao, Z.J. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55(16), 2285–2288 (2019). https://doi.org/10.1039/c9cc00199a
B.L. Xu, H. Wang, W.W. Wang, L.Z. Gao, S.S. Li et al., Single-atom nanozyme for wound antibacterial applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao, X. Cui, Elucidating the mechanism of the structure-dependent enzymatic activity of fe-n/c oxidase mimics. Chem. Commun. 55(36), 5271–5274 (2019). https://doi.org/10.1039/C9CC01503E
M. Huo, L. Wang, Y. Wang, Y. Chen, J. Shi, Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13(2), 2643–2653 (2019). https://doi.org/10.1021/acsnano.9b00457
L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. (Accepted Article, 2019). https://doi.org/10.1002/anie.201905645
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
C.T. Black, C.B. Murray, R.L. Sandstrom, S. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290(5494), 1131–1134 (2000). https://doi.org/10.1126/science.290.5494.1131
K. Qi, X.Q. Cui, L. Gu, S.S. Yu, X.F. Fan et al., Single-atom cobalt array bound to distorted 1T-MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-12997-7
B. Jiang, D.M. Duan, L.Z. Gao, M.J. Zhou, K.L. Fan et al., Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13(7), 1506–1520 (2018). https://doi.org/10.1038/s41596-018-0001-1
B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990). https://doi.org/10.1063/1.458452
B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
B. Delley, Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66(15), 155125 (2002). https://doi.org/10.1103/PhysRevB.66.155125
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu et al., Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137(23), 7448–7455 (2015). https://doi.org/10.1021/jacs.5b03545
X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15(9), 5956–5960 (2015). https://doi.org/10.1021/acs.nanolett.5b02091
Y. Wang, X.Q. Cui, J.X. Zhao, G.R. Jia, L. Gu et al., Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9(1), 336–344 (2019). https://doi.org/10.1021/acscatal.8b03802
G.L. Liu, A.W. Robertson, M.M.-J. Li, W.C.H. Kuo, M.T. Darby et al., MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017). https://doi.org/10.1038/nchem.2740
L. Jiao, L. Zhang, W. Du, H. Li, D. Yang, C. Zhu, Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay. Nanoscale 10(46), 21893–21897 (2018). https://doi.org/10.1039/C8NR07096B
X.H. Xia, J.T. Zhang, N. Lu, M.J. Kim, K. Ghale et al., Pd-ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10), 9994–10004 (2015). https://doi.org/10.1021/acsnano.5b03525
N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee, P.S. Saxena, A. Srivastava, Different shades of cholesterol: gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 74, 207–213 (2015). https://doi.org/10.1016/j.bios.2015.06.043
K.-I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 134(1), 139–142 (2000). https://doi.org/10.1016/S1010-6030(00)00264-1
J.L. Dong, L.N. Song, J.J. Yin, W.W. He, Y.H. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 6(3), 1959–1970 (2014). https://doi.org/10.1021/am405009f
H.M. Jia, D.F. Yang, X.N. Han, J.H. Cai, H.Y. Liu, W.W. He, Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale 8(11), 5938–5945 (2016). https://doi.org/10.1039/C6NR00860G
W.Y. Li, J.Y. Wang, J.C. Zhu, Y.Q. Zheng, Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. J. Mater. Chem. B 6(42), 6858–6864 (2018). https://doi.org/10.1039/C8TB01948G
Q.Q. Wang, L.L. Zhang, C.S. Shang, Z.Q. Zhang, S.J. Dong, Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. 52(31), 5410–5413 (2016). https://doi.org/10.1039/C6CC00194G
J.S. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 48(19), 2540–2542 (2012). https://doi.org/10.1039/C2CC17013B
M.S. Thorum, J.M. Hankett, A.A. Gewirth, Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity. J. Phys. Chem. Lett. 2(4), 295–298 (2011). https://doi.org/10.1021/jz1016284
Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu et al., Phenylenediamine based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136(31), 10882–10885 (2014). https://doi.org/10.1021/ja505777v
H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56(3), 658–666 (1934). https://doi.org/10.1021/ja01318a036
S.S. Fan, M.G. Zhao, L.J. Ding, H. Li, S.G. Chen, Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 89, 846–852 (2017). https://doi.org/10.1016/j.bios.2016.09.108
C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li et al., Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 55(16), 2285–2288 (2019). https://doi.org/10.1039/C9CC00199A
Y. Hu, X.J. Gao, Y. Zhu, F. Muhammad, S. Tan et al., Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 30(18), 6431–6439 (2018). https://doi.org/10.1021/acs.chemmater.8b02726
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
L. Jiao, W. Xu, H. Yan, Y. Wu, W. Gu, H. Li, D. Du, Y. Lin, C. Zhu, A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chem. Commun. 55(66), 9865–9868 (2019). https://doi.org/10.1039/C9CC04436A
A.A. Balandin, in Modern State of the Multiplet Theory of Heterogeneous Catalysis. The paper was prepared for publication by e.I. Klabunovskii, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic Press; 1969), pp. 1–210