Ultrafast Synthesis of Metal-Layered Hydroxides in a Dozen Seconds for High-Performance Aqueous Zn (Micro-) Battery
Corresponding Author: Yang Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 32
Abstract
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field. However, most of the synthetic routes at present mainly rely on traditional bottom-up method, which involves tedious steps, time-consuming treatments, or additional alkaline media, and is unfavorable for high-efficiency production. Herein, we present a facile, ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method. With high reaction kinetics caused by the instantaneous high temperature, seven kinds of transition metal-layered hydroxides (TM-LDHs) are formed on carbon cloth. Therein, the fastest synthesis rate reaches ~ 0.46 cm2 s−1. Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates. This efficient approach avoids the use of extra agents, multiple steps, and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability, showing practical advantages in both common and micro-zinc ion-based energy storage devices. To prove its utility, as a cathode in rechargeable aqueous alkaline Zn (micro-) battery, the NiCo LDH@carbon cloth exhibits a high energy density, superior to most transition metal LDH materials reported so far.
Highlights:
1 An efficient and general strategy for ultrafast synthesis of seven transition metal layered hydroxides on conductive substrates is proposed, which avoids the use of additional reagents, multiple steps and long production time in the traditional bottom-up method.
2 The whole synthesis process only takes as fast as approximately 13 s, and its synthesis rate reaches ~ 0.46 cm2 s−1.
3 The NiCo LDH@CC as a demonstration example is selected as cathode material for aqueous alkaline Zn (micro-) battery, which exhibits an outstanding performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
- C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517), 708–711 (2020). https://doi.org/10.1126/science.aay9972
- N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
- X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34(15), 2109450 (2022). https://doi.org/10.1002/adma.202109450
- C. Dai, X. Jin, H. Ma, L. Hu, G. Sun et al., Maximizing energy storage of flexible aqueous batteries through decoupling charge carriers. Adv. Energy Mater. 11(14), 2003982 (2021). https://doi.org/10.1002/aenm.202003982
- Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang, A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy. (2022). https://doi.org/10.26599/NRE.2022.9120025
- H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5(12), 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
- B. Ji, H. He, W. Yao, Y. Tang, Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 33(2), 2005501 (2021). https://doi.org/10.1002/adma.202005501
- X. Li, Y. Wang, Y. Zhao, J. Zhang, L. Qu, Graphene materials for miniaturized energy harvest and storage devices. Small Struct. 3(1), 2270004 (2022). https://doi.org/10.1002/sstr.202270004
- Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8(21), eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
- G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang et al., Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 1, e9120002 (2022). https://doi.org/10.26599/NRE.2022.9120002
- M. Zhu, Cryogenic electrolytes and catalysts for zinc air batteries. Nano Res. Energy 2, e9120038 (2023). https://doi.org/10.26599/NRE.2023.9120038
- Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012). https://doi.org/10.1039/c2ee22982j
- Z. Liu, Z. Chen, C. Wang, H.I. Wang, M. Wuttke et al., Bottom-up, on-surface-synthesized armchair graphene nanoribbons for ultra-high-power micro-supercapacitors. J. Am. Chem. Soc. 142(42), 17881–17886 (2020). https://doi.org/10.1021/jacs.0c06109
- X. Tan, L. Liu, H. Xiang, G.F. Du, A. Lou et al., One-dimensional transition metal dihalide nanowires as robust bipolar magnetic semiconductors. Nanoscale 12(16), 8942–8948 (2020). https://doi.org/10.1039/C9NR10849A
- L. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori et al., Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), 1900440 (2019). https://doi.org/10.1002/adma.201900440
- L. Wang, H. Yao, F. Chi, J. Yan, H. Cheng et al., Spatial-interleaving graphene supercapacitor with high area energy density and mechanical flexibility. ACS Nano 16(8), 12813–12821 (2022). https://doi.org/10.1021/acsnano.2c04989
- X. Li, J. Zhou, X. Li, Collapse-resistant large-sized 2D metal-organic-framework-derived nitrogen-doped porous ultrathin carbon nanosheets for high-performance supercapacitors. ChemElectroChem 6(17), 4653–4659 (2019). https://doi.org/10.1002/celc.201901293
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang et al., Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017). https://doi.org/10.1002/adfm.201605784
- H. Chi, J. Dong, T. Li, S. Bai, L. Tan et al., Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction. Green Energy Environ. 7(5), 975–982 (2022). https://doi.org/10.1016/j.gee.2020.12.013
- P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- Y. Zeng, Z. Lai, Y. Han, H. Zhang et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30(33), 1802396 (2018). https://doi.org/10.1002/adma.201802396
- X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu et al., Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 268, 251–259 (2015). https://doi.org/10.1016/j.cej.2015.01.072
- Z. Yuan, H. Wang, J. Shen, P. Ye, J. Ning et al., Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 8(42), 22163–22174 (2020). https://doi.org/10.1039/D0TA08006C
- C. Chen, S.C. Wang, D. Xiong, M. Gu, F. Yi et al., Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors. Dalton Trans. 49(12), 3706–3714 (2020). https://doi.org/10.1039/C9DT02598G
- K.Q. Lu, Y.H. Li, F. Zhang, M.Y. Qi, X. Chen et al., Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 11, 5181 (2020). https://doi.org/10.1038/s41467-020-18944-1
- X. He, R. Li, J. Liu, Q. Liu, R. Chen et al., Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018). https://doi.org/10.1016/j.cej.2017.11.089
- X. Gao, Z. Jia, B. Wang, X. Wu, T. Sun et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 419, 130019 (2021). https://doi.org/10.1016/j.cej.2021.130019
- L. Wu, L. Yu, Q. Zhu, B. McElhenny, F. Zhang et al., Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 83, 105838 (2021). https://doi.org/10.1016/j.nanoen.2021.105838
- D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi et al., NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8(9), 1701905 (2018). https://doi.org/10.1002/aenm.201701905
- X. Han, J. Li, J. Lu, S. Luo, J. Wan et al., High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 86, 106079 (2021). https://doi.org/10.1016/j.nanoen.2021.106079
- D.P. Sahoo, K.K. Das, S. Mansingh, S. Sultana, K. Parida, Recent progress in first row transition metal layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis. Coord. Chem. Rev. 469, 214666 (2022). https://doi.org/10.1016/j.ccr.2022.214666
- H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han et al., Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 12, 162 (2020). https://doi.org/10.1007/s40820-020-00505-2
- Y. Chen, G.C. Egan, J. Wan, S. Zhu, R.J. Jacob et al., Ultra-fast self-assembly and stabilization of reactive nanops in reduced graphene oxide films. Nat. Commun. 7, 12332 (2016). https://doi.org/10.1038/ncomms12332
- S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34(2), 2106973 (2022). https://doi.org/10.1002/adma.202106973
- S. Dou, J. Xu, X. Cui, W. Liu, Z. Zhang et al., High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 10(33), 2001331 (2020). https://doi.org/10.1002/aenm.202001331
- C. Liu, W. Zhou, J. Zhang, Z. Chen, S. Liu et al., Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 10(46), 2001397 (2020). https://doi.org/10.1002/aenm.202001397
- H. Kuang, H. Zhang, X. Liu, Y. Chen, W. Zhang et al., Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 190, 57–67 (2022). https://doi.org/10.1016/j.carbon.2021.12.097
- Y. Lu, J. Guo, Z. He, Z. Gao, Y. Song, Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Mater. 48, 487–496 (2022). https://doi.org/10.1016/j.ensm.2022.03.050
- H. Luo, B. Wang, T. Liu, F. Jin, R. Liu et al., Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Mater. 19, 370–378 (2019). https://doi.org/10.1016/j.ensm.2018.10.016
- Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
- G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32(17), 2000455 (2020). https://doi.org/10.1002/adma.202000455
- X.L. Guo, J.M. Zhang, W.N. Xu, C.G. Hu, L. Sun et al., Growth of NiMn LDH nanosheet arrays on KCu7S4 microwires for hybrid supercapacitors with enhanced electrochemical performance. J. Mater. Chem. A 5(39), 20579–20587 (2017). https://doi.org/10.1039/C7TA04382A
- J. Cai, J. Liu, Z. Gao, A. Navrotsky, S.L. Suib, Synthesis and anion exchange of tunnel structure akaganeite. Chem. Mater. 13(12), 4595–4602 (2001). https://doi.org/10.1021/cm010310w
- C. Dai, L. Hu, H. Chen, X. Jin, Y. Han et al., Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 13, 1863 (2022). https://doi.org/10.1038/s41467-022-29537-5
- F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
- X. Li, Y. Tang, H. Lv, W. Wang, F. Mo et al., Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale 11(39), 17992–18008 (2019). https://doi.org/10.1039/C9NR06721C
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
- Q. Li, Q. Zhang, C. Liu, Z. Zhou, C. Li et al., Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J. Mater. Chem. A 7(21), 12997–13006 (2019). https://doi.org/10.1039/C9TA03330K
- W. Shang, W. Yu, Y. Liu, R. Li, W. Dai et al., Rechargeable alkaline zinc batteries: progress and challenges. Energy Storage Mater. 31, 44–57 (2020). https://doi.org/10.1016/j.ensm.2020.05.028
- Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co-Zn alkaline microbattery with high energy density and excellent reliability. Small 16(16), 2000293 (2020). https://doi.org/10.1002/smll.202000293
- Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29(16), 1808470 (2019). https://doi.org/10.1002/adfm.201808470
- C. Lai, Y. Wang, L. Fu, H. Song, B. Liu et al., Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv. Compos. Hybrid. Mater. 5(1), 536–546 (2022). https://doi.org/10.1007/s42114-021-00375-1
- Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo et al., An intrinsically self-healing NiCo-Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
- M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7(6), 2025–2032 (2014). https://doi.org/10.1039/c4ee00317a
- Y. Wang, T. Wang, J. Lei, K. Chen, Optimization of metal-organic framework derived transition metal hydroxide hierarchical arrays for high performance hybrid supercapacitors and alkaline Zn-ion batteries. Inorg. Chem. Front. 8, 3325–3335 (2021). https://doi.org/10.1039/D1QI00191D
- C. Xu, J. Liao, C. Yang, R. Wang, D. Wu et al., An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy 30, 900–908 (2016). https://doi.org/10.1016/j.nanoen.2016.07.035
- T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi et al., Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8(7), 1702294 (2018). https://doi.org/10.1002/aenm.201702294
- Z. Ren, J. Yu, Y. Li, C. Zhi, Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries. Adv. Energy Mater. 8(12), 1702467 (2018). https://doi.org/10.1002/aenm.201702467
- Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu et al., Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 28(41), 9188–9195 (2016). https://doi.org/10.1002/adma.201603304
- Z. Chen, C. Li, Q. Yang, D. Wang, X. Li et al., Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater. 33(51), 2105426 (2021). https://doi.org/10.1002/adma.202105426
- M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg-1 and 506 W h L-1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
- J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan et al., A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14(12), 7180–7187 (2014). https://doi.org/10.1021/nl503852m
- C. Teng, C. Zhang, K. Yin, M. Zhao, Y. Du et al., A new high-performance rechargeable alkaline Zn battery based on mesoporous nitrogen-doped oxygen-deficient hematite. Sci. China Mater. 65(4), 920–928 (2022). https://doi.org/10.1007/s40843-021-1830-2
- J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9(37), 1901957 (2019). https://doi.org/10.1002/aenm.201901957
- D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen et al., Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29(5), 1602802 (2017). https://doi.org/10.1002/adma.201602802
- P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng et al., Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/C8CS00561C
References
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370(6517), 708–711 (2020). https://doi.org/10.1126/science.aay9972
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34(15), 2109450 (2022). https://doi.org/10.1002/adma.202109450
C. Dai, X. Jin, H. Ma, L. Hu, G. Sun et al., Maximizing energy storage of flexible aqueous batteries through decoupling charge carriers. Adv. Energy Mater. 11(14), 2003982 (2021). https://doi.org/10.1002/aenm.202003982
Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang, A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy. (2022). https://doi.org/10.26599/NRE.2022.9120025
H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5(12), 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
B. Ji, H. He, W. Yao, Y. Tang, Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 33(2), 2005501 (2021). https://doi.org/10.1002/adma.202005501
X. Li, Y. Wang, Y. Zhao, J. Zhang, L. Qu, Graphene materials for miniaturized energy harvest and storage devices. Small Struct. 3(1), 2270004 (2022). https://doi.org/10.1002/sstr.202270004
Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8(21), eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang et al., Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 1, e9120002 (2022). https://doi.org/10.26599/NRE.2022.9120002
M. Zhu, Cryogenic electrolytes and catalysts for zinc air batteries. Nano Res. Energy 2, e9120038 (2023). https://doi.org/10.26599/NRE.2023.9120038
Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012). https://doi.org/10.1039/c2ee22982j
Z. Liu, Z. Chen, C. Wang, H.I. Wang, M. Wuttke et al., Bottom-up, on-surface-synthesized armchair graphene nanoribbons for ultra-high-power micro-supercapacitors. J. Am. Chem. Soc. 142(42), 17881–17886 (2020). https://doi.org/10.1021/jacs.0c06109
X. Tan, L. Liu, H. Xiang, G.F. Du, A. Lou et al., One-dimensional transition metal dihalide nanowires as robust bipolar magnetic semiconductors. Nanoscale 12(16), 8942–8948 (2020). https://doi.org/10.1039/C9NR10849A
L. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori et al., Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), 1900440 (2019). https://doi.org/10.1002/adma.201900440
L. Wang, H. Yao, F. Chi, J. Yan, H. Cheng et al., Spatial-interleaving graphene supercapacitor with high area energy density and mechanical flexibility. ACS Nano 16(8), 12813–12821 (2022). https://doi.org/10.1021/acsnano.2c04989
X. Li, J. Zhou, X. Li, Collapse-resistant large-sized 2D metal-organic-framework-derived nitrogen-doped porous ultrathin carbon nanosheets for high-performance supercapacitors. ChemElectroChem 6(17), 4653–4659 (2019). https://doi.org/10.1002/celc.201901293
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang et al., Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017). https://doi.org/10.1002/adfm.201605784
H. Chi, J. Dong, T. Li, S. Bai, L. Tan et al., Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction. Green Energy Environ. 7(5), 975–982 (2022). https://doi.org/10.1016/j.gee.2020.12.013
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
Y. Zeng, Z. Lai, Y. Han, H. Zhang et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30(33), 1802396 (2018). https://doi.org/10.1002/adma.201802396
X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu et al., Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 268, 251–259 (2015). https://doi.org/10.1016/j.cej.2015.01.072
Z. Yuan, H. Wang, J. Shen, P. Ye, J. Ning et al., Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 8(42), 22163–22174 (2020). https://doi.org/10.1039/D0TA08006C
C. Chen, S.C. Wang, D. Xiong, M. Gu, F. Yi et al., Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors. Dalton Trans. 49(12), 3706–3714 (2020). https://doi.org/10.1039/C9DT02598G
K.Q. Lu, Y.H. Li, F. Zhang, M.Y. Qi, X. Chen et al., Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 11, 5181 (2020). https://doi.org/10.1038/s41467-020-18944-1
X. He, R. Li, J. Liu, Q. Liu, R. Chen et al., Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018). https://doi.org/10.1016/j.cej.2017.11.089
X. Gao, Z. Jia, B. Wang, X. Wu, T. Sun et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 419, 130019 (2021). https://doi.org/10.1016/j.cej.2021.130019
L. Wu, L. Yu, Q. Zhu, B. McElhenny, F. Zhang et al., Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 83, 105838 (2021). https://doi.org/10.1016/j.nanoen.2021.105838
D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi et al., NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8(9), 1701905 (2018). https://doi.org/10.1002/aenm.201701905
X. Han, J. Li, J. Lu, S. Luo, J. Wan et al., High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 86, 106079 (2021). https://doi.org/10.1016/j.nanoen.2021.106079
D.P. Sahoo, K.K. Das, S. Mansingh, S. Sultana, K. Parida, Recent progress in first row transition metal layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis. Coord. Chem. Rev. 469, 214666 (2022). https://doi.org/10.1016/j.ccr.2022.214666
H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han et al., Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 12, 162 (2020). https://doi.org/10.1007/s40820-020-00505-2
Y. Chen, G.C. Egan, J. Wan, S. Zhu, R.J. Jacob et al., Ultra-fast self-assembly and stabilization of reactive nanops in reduced graphene oxide films. Nat. Commun. 7, 12332 (2016). https://doi.org/10.1038/ncomms12332
S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34(2), 2106973 (2022). https://doi.org/10.1002/adma.202106973
S. Dou, J. Xu, X. Cui, W. Liu, Z. Zhang et al., High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 10(33), 2001331 (2020). https://doi.org/10.1002/aenm.202001331
C. Liu, W. Zhou, J. Zhang, Z. Chen, S. Liu et al., Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 10(46), 2001397 (2020). https://doi.org/10.1002/aenm.202001397
H. Kuang, H. Zhang, X. Liu, Y. Chen, W. Zhang et al., Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 190, 57–67 (2022). https://doi.org/10.1016/j.carbon.2021.12.097
Y. Lu, J. Guo, Z. He, Z. Gao, Y. Song, Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Mater. 48, 487–496 (2022). https://doi.org/10.1016/j.ensm.2022.03.050
H. Luo, B. Wang, T. Liu, F. Jin, R. Liu et al., Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Mater. 19, 370–378 (2019). https://doi.org/10.1016/j.ensm.2018.10.016
Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32(17), 2000455 (2020). https://doi.org/10.1002/adma.202000455
X.L. Guo, J.M. Zhang, W.N. Xu, C.G. Hu, L. Sun et al., Growth of NiMn LDH nanosheet arrays on KCu7S4 microwires for hybrid supercapacitors with enhanced electrochemical performance. J. Mater. Chem. A 5(39), 20579–20587 (2017). https://doi.org/10.1039/C7TA04382A
J. Cai, J. Liu, Z. Gao, A. Navrotsky, S.L. Suib, Synthesis and anion exchange of tunnel structure akaganeite. Chem. Mater. 13(12), 4595–4602 (2001). https://doi.org/10.1021/cm010310w
C. Dai, L. Hu, H. Chen, X. Jin, Y. Han et al., Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 13, 1863 (2022). https://doi.org/10.1038/s41467-022-29537-5
F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
X. Li, Y. Tang, H. Lv, W. Wang, F. Mo et al., Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale 11(39), 17992–18008 (2019). https://doi.org/10.1039/C9NR06721C
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
Q. Li, Q. Zhang, C. Liu, Z. Zhou, C. Li et al., Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J. Mater. Chem. A 7(21), 12997–13006 (2019). https://doi.org/10.1039/C9TA03330K
W. Shang, W. Yu, Y. Liu, R. Li, W. Dai et al., Rechargeable alkaline zinc batteries: progress and challenges. Energy Storage Mater. 31, 44–57 (2020). https://doi.org/10.1016/j.ensm.2020.05.028
Y. Wang, X. Hong, Y. Guo, Y. Zhao, X. Liao et al., Wearable textile-based Co-Zn alkaline microbattery with high energy density and excellent reliability. Small 16(16), 2000293 (2020). https://doi.org/10.1002/smll.202000293
Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29(16), 1808470 (2019). https://doi.org/10.1002/adfm.201808470
C. Lai, Y. Wang, L. Fu, H. Song, B. Liu et al., Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv. Compos. Hybrid. Mater. 5(1), 536–546 (2022). https://doi.org/10.1007/s42114-021-00375-1
Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo et al., An intrinsically self-healing NiCo-Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7(6), 2025–2032 (2014). https://doi.org/10.1039/c4ee00317a
Y. Wang, T. Wang, J. Lei, K. Chen, Optimization of metal-organic framework derived transition metal hydroxide hierarchical arrays for high performance hybrid supercapacitors and alkaline Zn-ion batteries. Inorg. Chem. Front. 8, 3325–3335 (2021). https://doi.org/10.1039/D1QI00191D
C. Xu, J. Liao, C. Yang, R. Wang, D. Wu et al., An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy 30, 900–908 (2016). https://doi.org/10.1016/j.nanoen.2016.07.035
T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi et al., Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8(7), 1702294 (2018). https://doi.org/10.1002/aenm.201702294
Z. Ren, J. Yu, Y. Li, C. Zhi, Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries. Adv. Energy Mater. 8(12), 1702467 (2018). https://doi.org/10.1002/aenm.201702467
Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu et al., Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 28(41), 9188–9195 (2016). https://doi.org/10.1002/adma.201603304
Z. Chen, C. Li, Q. Yang, D. Wang, X. Li et al., Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater. 33(51), 2105426 (2021). https://doi.org/10.1002/adma.202105426
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg-1 and 506 W h L-1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
M.C. Lin, M. Gong, B. Lu, Y. Wu, D. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan et al., A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14(12), 7180–7187 (2014). https://doi.org/10.1021/nl503852m
C. Teng, C. Zhang, K. Yin, M. Zhao, Y. Du et al., A new high-performance rechargeable alkaline Zn battery based on mesoporous nitrogen-doped oxygen-deficient hematite. Sci. China Mater. 65(4), 920–928 (2022). https://doi.org/10.1007/s40843-021-1830-2
J. Shi, S. Wang, X. Chen, Z. Chen, X. Du et al., An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv. Energy Mater. 9(37), 1901957 (2019). https://doi.org/10.1002/aenm.201901957
D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen et al., Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29(5), 1602802 (2017). https://doi.org/10.1002/adma.201602802
P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng et al., Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018). https://doi.org/10.1039/C8CS00561C