Recent Progress on Zinc-Ion Rechargeable Batteries
Corresponding Author: Ying Wang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 90
Abstract
The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems, due to the environmental pollution and energy crisis caused by traditional energy storage technologies. As one of the new and most promising alternative energy storage technologies, zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources, intrinsic safety, and cost effectiveness, when compared with the popular, but unsafe and expensive lithium-ion batteries. In particular, the use of mild aqueous electrolytes in zinc-ion batteries (ZIBs) demonstrates high potential for portable electronic applications and large-scale energy storage systems. Moreover, the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments, such as aerospace, airplanes, or submarines. However, there are still many existing challenges that need to be resolved. This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes (aqueous, organic, and solid-state electrolytes) in ZIBs. Design and synthesis of zinc-based anode materials and separators are also briefly discussed.
Highlights:
1 The recent progress about zinc-ion batteries was systematically summarized in detail, including the merits and limits of aqueous and nonaqueous electrolytes, various cathode materials, zinc anode, and solid-state zinc-ion batteries.
2 Current challenges and perspectives to future research directions are also provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3(1), 1800272 (2018). https://doi.org/10.1002/smtd.201800272
- J. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842–852 (2002). https://doi.org/10.1016/S0025-326X(02)00220-5
- M. Torres, M. Barros, S. Campos, E. Pinto, S. Rajamani, R. Sayre, P. Colepicolo, Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol. Environ. Saf. 71(1), 1–15 (2008). https://doi.org/10.1016/j.ecoenv.2008.05.009
- I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
- C. McGlade, P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533), 187–190 (2015). https://doi.org/10.1038/nature14016
- N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015). https://doi.org/10.1016/j.futures.2015.03.003
- V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control—a review. Renew. Sustain. Energy Rev. 73, 10–18 (2017). https://doi.org/10.1016/j.rser.2017.01.148
- P. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990
- J. Lelieveld, J. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367–371 (2015). https://doi.org/10.1038/nature15371
- M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
- S. Yusoff, Renewable energy from palm oil—innovation on effective utilization of waste. J. Clean. Prod. 14(1), 87–93 (2006). https://doi.org/10.1016/j.jclepro.2004.07.005
- F. Diaz-Gonzalez, A. Sumper, O. Bellmunt, R. Robles, A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012). https://doi.org/10.1016/j.rser.2012.01.029
- F. Wan, Z.Q. Niu, Design strategies of vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 2–12 (2019). https://doi.org/10.1002/anie.201903941
- H. Chen, T. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
- G. Ren, G. Ma, N. Cong, Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003
- J. Goodenough, K. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- Z. Ma, D.R. MacFarlane, M. Kar, Mg cathode materials and electrolytes for rechargeable Mg batteries: a Review. Batter. Supercaps 2(2), 115–127 (2019). https://doi.org/10.1002/batt.201800102
- Z.Q. Xie, J.W. Lai, X.P. Zhu, Y. Wang, Green synthesis of vanadate nanobelts at room temperature for superior aqueous rechargeable zinc-ion batteries. ACS Appl. Energy Mater. 1(11), 6401–6408 (2018). https://doi.org/10.1021/acsaem.8b01378
- N. Zhang, F.Y. Cheng, Y.C. Liu, Q. Zhao, K.X. Lei, C.C. Chen, X.S. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- C.J. Rydh, M. Karlström, Life cycle inventory of recycling portable nickel–cadmium batteries. Resour. Conserv. Recycl. 34(4), 289–309 (2002). https://doi.org/10.1016/S0921-3449(01)00114-8
- G. Majeau-Bettez, T.R. Hawkins, A. Strømman, Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45(10), 4548–4554 (2011). https://doi.org/10.1021/es103607c
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
- L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
- M. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/C4EE03192J
- J. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7(24), 1602911 (2017). https://doi.org/10.1002/aenm.201602911
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- Q. Yang, Z.D. Huang, X.L. Li, Z.X. Liu, H.F. Li et al., A wholly degradable, rechargeable Zn–Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
- Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Batteries: recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9(1), 1970001 (2019). https://doi.org/10.1002/aenm.201970001
- J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51(45), 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
- Q. Yang, F.N. Mo, Z.X. Liu, L.T. Ma, X.L. Li et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31(32), 1901521 (2019). https://doi.org/10.1002/adma.201901521
- W.N. Xu, K.N. Zhao, W.C. Huo, Y.Z. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- F. Cheng, J. Chen, X. Gou, P. Shen, High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17(22), 2753–2756 (2005). https://doi.org/10.1002/adma.200500663
- C. Yang, S. Lin, Improvement of high-rate capability of alkaline Zn–MnO2 battery. J. Power Sources 112(1), 174–183 (2002). https://doi.org/10.1016/S0378-7753(02)00354-3
- T. Yamamoto, T. Shoji, Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg. Chim. Acta 117(2), L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
- C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014). https://doi.org/10.1016/j.electacta.2013.11.090
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-Coated-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
- X. Dai, F. Wan, L. Zhang, H. Cao, Z. Niu, Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 17, 143–150 (2019). https://doi.org/10.1016/j.ensm.2018.07.022
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), 1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- J. Kim, R. Kumar, A. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3(1), 1600260 (2017). https://doi.org/10.1002/aelm.201600260
- Z.Q. Wang, J.T. Hu, L. Han, Z.J. Wang, H.B. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
- Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018). https://doi.org/10.1002/smtd.201800124
- W. Lu, C. Xie, H. Zhang, X. Li, Zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
- Z. Peng, Q.L. Wei, S.S. Tan, P. He, W. Luo, Q.Y. An, L.Q. Mai, Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54(32), 4041–4044 (2018). https://doi.org/10.1039/C8CC00987B
- M. Silva, M.J. Smith, P. Lightfoot, Characterisation of a Zn triflate-based polymer electrolyte. Portugaliae Electrochim. Acta 17, 3–10 (1999)
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu, J. Chen, An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- N. Alias, A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 274, 237–251 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.009
- H. Kim, J. Hong, K. Park, H. Kim, S. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- F. Beck, P. Rüetschi, Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45(15–16), 2467–2482 (2000). https://doi.org/10.1016/S0013-4686(00)00344-3
- M. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- C. Xu, H. Du, B. Li, F. Kang, Y. Zeng, Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem. Solid-State Lett. 12(4), A61–A65 (2009). https://doi.org/10.1149/1.3065967
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- G.Z. Fang, C.Y. Zhu, M.H. Chen, J. Zhou, B.Y. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29(15), 1808375 (2019). https://doi.org/10.1002/adfm.201808375
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2908 (2018). https://doi.org/10.1038/s41467-018-04949-4
- J. Knight, S. Therese, A. Manthiram, Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 3(42), 21077–21082 (2015). https://doi.org/10.1039/C5TA06482A
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- D. Kundu, B. Adams, V. Duffort, S. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy. 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30(26), 1800762 (2018). https://doi.org/10.1002/adma.201800762
- T. Wei, Q. Li, G. Yang, C.J. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 6(17), 8006–8012 (2018). https://doi.org/10.1039/C8TA02090F
- J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for advanced rechargeable aqueous zinc ion battery. ACS Appl. Energy Mater. 2(3), 1988–1996 (2019). https://doi.org/10.1021/acsaem.8b02054
- J. Shin, D. Choi, H. Lee, Y. Jung, J. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019). https://doi.org/10.1002/aenm.201900083
- C. Shen, X. Li, N. Li, K. Xie, J. Wang, X. Liu, B. Wei, Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
- P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
- Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
- M. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29(4), 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
- B. Sambandam, V. Soundharrajan, S. Kim, M. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. Sun, J. Kim, K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 6(32), 15530–15539 (2018). https://doi.org/10.1039/C8TA02018C
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
- C.F. Liu, Z. Neale, J.Q. Zheng, X.X. Jia, J.J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
- C. Xia, J. Guo, P. Li, X. Zhang, H. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
- B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A. 7(3), 940–945 (2019). https://doi.org/10.1039/C8TA09338E
- R. Trócoli, F. Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- Z. Jia, B. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149, 601–606 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
- G. Kasiri, R. Trócoli, A. Hashemi, F. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/C8EE01883A
- G.L. Li, Z. Yang, Y. Jiang, W.X. Zhang, Y.H. Huang, Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.058
- H. Zhao, C. Hu, H. Cheng, J. Fang, Y. Xie et al., Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci. Rep. 6, 25809 (2016). https://doi.org/10.1038/srep25809
- W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
- W. Liu, J. Hao, C. Xu, J. Mou, L. Dong et al., Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 53(51), 6872–6874 (2017). https://doi.org/10.1039/C7CC01064H
- W. Xu, K. Zhao, Y. Wang, Electrochemical activated MoO2/Mo2N heterostructured nanobelts as superior zinc rechargeable battery cathode. Energy Storage Mater. 15, 374–379 (2018). https://doi.org/10.1016/j.ensm.2018.06.028
- J.J. Wang, J.G. Wang, H.Y. Liu, Z.Y. You, C.G. Wei, F.Y. Kang, Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 438, 226951 (2019). https://doi.org/10.1016/j.jpowsour.2019.226951
- W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu, Y. Wang, Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy Storage Mater. 16, 527–534 (2019). https://doi.org/10.1016/j.ensm.2018.09.009
- H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu et al., MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 19, 94–101 (2018). https://doi.org/10.1016/j.ensm.2018.10.005
- C.X. Xie, H.M. Zhang, W.B. Xu, W. Wang, X.F. Li, A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew. Chem. Int. Ed. 130(35), 11341–11346 (2018). https://doi.org/10.1002/ange.201803122
- B. Li, Z.M. Nie, M. Vijayakumar, G.S. Li, J. Liu, V. Sprenkle, W. Wang, Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
- H.L. Pan, B. Li, D.H. Mei, Z.M. Nie, Y.Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
- C. Bai, F. Cai, L. Wang, S. Guo, X. Liu, Z. Yuan, A sustainable aqueous Zn–I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
- M. Chae, J.W. Heo, H.H. Kwak, H. Lee, S. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
- C. Pan, R. Zhang, R. Nuzzo, A. Gewirth, ZnNixMnxCo2−2xO4 spinel as a high-voltage and high-capacity cathode material for nonaqueous Zn-ion batteries. Adv. Energy Mater. 8(22), 1800589 (2018). https://doi.org/10.1002/aenm.201800589
- C.S. Pan, R.G. Nuzzo, A.A. Gewirth, ZnAlxCo2−xO4 Spinels as cathode materials for non-aqueous Zn batteries with an open circuit voltage of ≤ 2 V. Chem. Mater. 29(21), 9351–9359 (2017). https://doi.org/10.1021/acs.chemmater.7b03340
- D.P. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- Y.X. Zeng, X.Y. Zhang, Y. Meng, M.H. Yu, J.N. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
- Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6(18), 8549–8557 (2018). https://doi.org/10.1039/C8TA01172A
- S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen, J. Di, Q. Li, An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 6(26), 12237–12243 (2018). https://doi.org/10.1039/C8TA04298E
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo, G. Liang, C. Zhi, An intrinsically self-healing NiCo||Zn rechargeable battery with a self-Healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
- M.C.H. McKubre, D.D. Macdonald, The dissolution and passivation of zinc in concentrated aqueous hydroxide. J. Electrochem. Soc. 128(3), 524–530 (1981). https://doi.org/10.1149/1.2127450
- P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H.G. Xue, H. Pang, Rechargeable zinc–air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/C7TA01693J
- H.F. Li, Z.X. Liu, G.J. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- Y. Yan, Y.M. Zhang, Y.T. Wu, Z.Z. Wang, A. Mathur et al., A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries. ACS Appl. Energy Mater. 1(11), 6345–6351 (2018). https://doi.org/10.1021/acsaem.8b01321
- L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo, C.R. Wang, Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
- A.B. Hashemi, G. Kasiri, F.L. Mantia, The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochim. Acta 258, 703–708 (2017). https://doi.org/10.1016/j.electacta.2017.11.116
- T.K.A. Hoang, T.N.L. Doan, J.H. Cho, J.Y.J. Su, C. Lee, C.Y. Lu, P. Chen, Sustainable gel electrolyte containing pyrazole as corrosion inhibitor and dendrite suppressor for aqueous Zn/LiMn2O4 battery. Chemsuschem 10(13), 2816–2822 (2017). https://doi.org/10.1002/cssc.201700441
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- F. Wan, Y. Zhang, L.L. Zhang, D.B. Liu, C.D. Wang, L. Song, Z.Q. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
- K.N. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1007/s10008-017-3589-0
- L.T. Kang, M.W. Cui, F.Y. Jiang, Y.F. Gao, H.J. Luo, J.J. Liu, W. Liang, C.Y. Zhi, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang et al., Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chem. Eng. Sci. 194, 142–147 (2019). https://doi.org/10.1016/j.ces.2018.06.048
- K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, X. Zhu, Y. Tian, P. Chen, Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
- B. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H. Lim, R. Chen, P. Liu, Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10(45), 38928–38935 (2018). https://doi.org/10.1021/acsami.8b14022
References
J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3(1), 1800272 (2018). https://doi.org/10.1002/smtd.201800272
J. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842–852 (2002). https://doi.org/10.1016/S0025-326X(02)00220-5
M. Torres, M. Barros, S. Campos, E. Pinto, S. Rajamani, R. Sayre, P. Colepicolo, Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol. Environ. Saf. 71(1), 1–15 (2008). https://doi.org/10.1016/j.ecoenv.2008.05.009
I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
C. McGlade, P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533), 187–190 (2015). https://doi.org/10.1038/nature14016
N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015). https://doi.org/10.1016/j.futures.2015.03.003
V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control—a review. Renew. Sustain. Energy Rev. 73, 10–18 (2017). https://doi.org/10.1016/j.rser.2017.01.148
P. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990
J. Lelieveld, J. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367–371 (2015). https://doi.org/10.1038/nature15371
M. Kampa, E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012
S. Yusoff, Renewable energy from palm oil—innovation on effective utilization of waste. J. Clean. Prod. 14(1), 87–93 (2006). https://doi.org/10.1016/j.jclepro.2004.07.005
F. Diaz-Gonzalez, A. Sumper, O. Bellmunt, R. Robles, A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012). https://doi.org/10.1016/j.rser.2012.01.029
F. Wan, Z.Q. Niu, Design strategies of vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 2–12 (2019). https://doi.org/10.1002/anie.201903941
H. Chen, T. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
G. Ren, G. Ma, N. Cong, Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 41, 225–236 (2015). https://doi.org/10.1016/j.rser.2014.08.003
J. Goodenough, K. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Z. Ma, D.R. MacFarlane, M. Kar, Mg cathode materials and electrolytes for rechargeable Mg batteries: a Review. Batter. Supercaps 2(2), 115–127 (2019). https://doi.org/10.1002/batt.201800102
Z.Q. Xie, J.W. Lai, X.P. Zhu, Y. Wang, Green synthesis of vanadate nanobelts at room temperature for superior aqueous rechargeable zinc-ion batteries. ACS Appl. Energy Mater. 1(11), 6401–6408 (2018). https://doi.org/10.1021/acsaem.8b01378
N. Zhang, F.Y. Cheng, Y.C. Liu, Q. Zhao, K.X. Lei, C.C. Chen, X.S. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
C.J. Rydh, M. Karlström, Life cycle inventory of recycling portable nickel–cadmium batteries. Resour. Conserv. Recycl. 34(4), 289–309 (2002). https://doi.org/10.1016/S0921-3449(01)00114-8
G. Majeau-Bettez, T.R. Hawkins, A. Strømman, Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45(10), 4548–4554 (2011). https://doi.org/10.1021/es103607c
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
M. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/C4EE03192J
J. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7(24), 1602911 (2017). https://doi.org/10.1002/aenm.201602911
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
Q. Yang, Z.D. Huang, X.L. Li, Z.X. Liu, H.F. Li et al., A wholly degradable, rechargeable Zn–Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Batteries: recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 9(1), 1970001 (2019). https://doi.org/10.1002/aenm.201970001
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51(45), 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
Q. Yang, F.N. Mo, Z.X. Liu, L.T. Ma, X.L. Li et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31(32), 1901521 (2019). https://doi.org/10.1002/adma.201901521
W.N. Xu, K.N. Zhao, W.C. Huo, Y.Z. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
F. Cheng, J. Chen, X. Gou, P. Shen, High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17(22), 2753–2756 (2005). https://doi.org/10.1002/adma.200500663
C. Yang, S. Lin, Improvement of high-rate capability of alkaline Zn–MnO2 battery. J. Power Sources 112(1), 174–183 (2002). https://doi.org/10.1016/S0378-7753(02)00354-3
T. Yamamoto, T. Shoji, Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg. Chim. Acta 117(2), L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014). https://doi.org/10.1016/j.electacta.2013.11.090
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-Coated-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1002/smll.201703850
L. Zhang, L. Chen, X. Zhou, Z. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
X. Dai, F. Wan, L. Zhang, H. Cao, Z. Niu, Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 17, 143–150 (2019). https://doi.org/10.1016/j.ensm.2018.07.022
G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), 1761 (2018). https://doi.org/10.1126/sciadv.aao1761
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
J. Kim, R. Kumar, A. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3(1), 1600260 (2017). https://doi.org/10.1002/aelm.201600260
Z.Q. Wang, J.T. Hu, L. Han, Z.J. Wang, H.B. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018). https://doi.org/10.1002/smtd.201800124
W. Lu, C. Xie, H. Zhang, X. Li, Zinc dendrite growth in zinc-based batteries. Chemsuschem 11(23), 3996–4006 (2018). https://doi.org/10.1002/cssc.201801657
Z. Peng, Q.L. Wei, S.S. Tan, P. He, W. Luo, Q.Y. An, L.Q. Mai, Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54(32), 4041–4044 (2018). https://doi.org/10.1039/C8CC00987B
M. Silva, M.J. Smith, P. Lightfoot, Characterisation of a Zn triflate-based polymer electrolyte. Portugaliae Electrochim. Acta 17, 3–10 (1999)
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu, J. Chen, An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
N. Alias, A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 274, 237–251 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.009
H. Kim, J. Hong, K. Park, H. Kim, S. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
F. Beck, P. Rüetschi, Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45(15–16), 2467–2482 (2000). https://doi.org/10.1016/S0013-4686(00)00344-3
M. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
C. Xu, H. Du, B. Li, F. Kang, Y. Zeng, Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem. Solid-State Lett. 12(4), A61–A65 (2009). https://doi.org/10.1149/1.3065967
H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
G.Z. Fang, C.Y. Zhu, M.H. Chen, J. Zhou, B.Y. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29(15), 1808375 (2019). https://doi.org/10.1002/adfm.201808375
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2908 (2018). https://doi.org/10.1038/s41467-018-04949-4
J. Knight, S. Therese, A. Manthiram, Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 3(42), 21077–21082 (2015). https://doi.org/10.1039/C5TA06482A
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
D. Kundu, B. Adams, V. Duffort, S. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy. 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30(26), 1800762 (2018). https://doi.org/10.1002/adma.201800762
T. Wei, Q. Li, G. Yang, C.J. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 6(17), 8006–8012 (2018). https://doi.org/10.1039/C8TA02090F
J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V6O13·nH2O architecture constructed for advanced rechargeable aqueous zinc ion battery. ACS Appl. Energy Mater. 2(3), 1988–1996 (2019). https://doi.org/10.1021/acsaem.8b02054
J. Shin, D. Choi, H. Lee, Y. Jung, J. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019). https://doi.org/10.1002/aenm.201900083
C. Shen, X. Li, N. Li, K. Xie, J. Wang, X. Liu, B. Wei, Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
M. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29(4), 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
B. Sambandam, V. Soundharrajan, S. Kim, M. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. Sun, J. Kim, K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 6(32), 15530–15539 (2018). https://doi.org/10.1039/C8TA02018C
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
C.F. Liu, Z. Neale, J.Q. Zheng, X.X. Jia, J.J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
C. Xia, J. Guo, P. Li, X. Zhang, H. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 18, 10–14 (2019). https://doi.org/10.1016/j.ensm.2018.08.008
B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A. 7(3), 940–945 (2019). https://doi.org/10.1039/C8TA09338E
R. Trócoli, F. Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
Z. Jia, B. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149, 601–606 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
G. Kasiri, R. Trócoli, A. Hashemi, F. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/C8EE01883A
G.L. Li, Z. Yang, Y. Jiang, W.X. Zhang, Y.H. Huang, Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.058
H. Zhao, C. Hu, H. Cheng, J. Fang, Y. Xie et al., Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci. Rep. 6, 25809 (2016). https://doi.org/10.1038/srep25809
W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
W. Liu, J. Hao, C. Xu, J. Mou, L. Dong et al., Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 53(51), 6872–6874 (2017). https://doi.org/10.1039/C7CC01064H
W. Xu, K. Zhao, Y. Wang, Electrochemical activated MoO2/Mo2N heterostructured nanobelts as superior zinc rechargeable battery cathode. Energy Storage Mater. 15, 374–379 (2018). https://doi.org/10.1016/j.ensm.2018.06.028
J.J. Wang, J.G. Wang, H.Y. Liu, Z.Y. You, C.G. Wei, F.Y. Kang, Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 438, 226951 (2019). https://doi.org/10.1016/j.jpowsour.2019.226951
W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu, Y. Wang, Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy Storage Mater. 16, 527–534 (2019). https://doi.org/10.1016/j.ensm.2018.09.009
H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu et al., MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 19, 94–101 (2018). https://doi.org/10.1016/j.ensm.2018.10.005
C.X. Xie, H.M. Zhang, W.B. Xu, W. Wang, X.F. Li, A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew. Chem. Int. Ed. 130(35), 11341–11346 (2018). https://doi.org/10.1002/ange.201803122
B. Li, Z.M. Nie, M. Vijayakumar, G.S. Li, J. Liu, V. Sprenkle, W. Wang, Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
H.L. Pan, B. Li, D.H. Mei, Z.M. Nie, Y.Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
C. Bai, F. Cai, L. Wang, S. Guo, X. Liu, Z. Yuan, A sustainable aqueous Zn–I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9
M. Chae, J.W. Heo, H.H. Kwak, H. Lee, S. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
C. Pan, R. Zhang, R. Nuzzo, A. Gewirth, ZnNixMnxCo2−2xO4 spinel as a high-voltage and high-capacity cathode material for nonaqueous Zn-ion batteries. Adv. Energy Mater. 8(22), 1800589 (2018). https://doi.org/10.1002/aenm.201800589
C.S. Pan, R.G. Nuzzo, A.A. Gewirth, ZnAlxCo2−xO4 Spinels as cathode materials for non-aqueous Zn batteries with an open circuit voltage of ≤ 2 V. Chem. Mater. 29(21), 9351–9359 (2017). https://doi.org/10.1021/acs.chemmater.7b03340
D.P. Kundu, S.H. Vajargah, L.W. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
Y.X. Zeng, X.Y. Zhang, Y. Meng, M.H. Yu, J.N. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang et al., A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J. Mater. Chem. A 6(18), 8549–8557 (2018). https://doi.org/10.1039/C8TA01172A
S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen, J. Di, Q. Li, An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 6(26), 12237–12243 (2018). https://doi.org/10.1039/C8TA04298E
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
Y. Huang, J. Liu, J. Wang, M. Hu, F. Mo, G. Liang, C. Zhi, An intrinsically self-healing NiCo||Zn rechargeable battery with a self-Healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed. 57(31), 9810–9813 (2018). https://doi.org/10.1002/anie.201805618
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
M.C.H. McKubre, D.D. Macdonald, The dissolution and passivation of zinc in concentrated aqueous hydroxide. J. Electrochem. Soc. 128(3), 524–530 (1981). https://doi.org/10.1149/1.2127450
P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H.G. Xue, H. Pang, Rechargeable zinc–air batteries: a promising way to green energy. J. Mater. Chem. A 5(17), 7651–7666 (2017). https://doi.org/10.1039/C7TA01693J
H.F. Li, Z.X. Liu, G.J. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
Y. Yan, Y.M. Zhang, Y.T. Wu, Z.Z. Wang, A. Mathur et al., A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries. ACS Appl. Energy Mater. 1(11), 6345–6351 (2018). https://doi.org/10.1021/acsaem.8b01321
L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo, C.R. Wang, Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
A.B. Hashemi, G. Kasiri, F.L. Mantia, The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochim. Acta 258, 703–708 (2017). https://doi.org/10.1016/j.electacta.2017.11.116
T.K.A. Hoang, T.N.L. Doan, J.H. Cho, J.Y.J. Su, C. Lee, C.Y. Lu, P. Chen, Sustainable gel electrolyte containing pyrazole as corrosion inhibitor and dendrite suppressor for aqueous Zn/LiMn2O4 battery. Chemsuschem 10(13), 2816–2822 (2017). https://doi.org/10.1002/cssc.201700441
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
F. Wan, Y. Zhang, L.L. Zhang, D.B. Liu, C.D. Wang, L. Song, Z.Q. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
K.N. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1007/s10008-017-3589-0
L.T. Kang, M.W. Cui, F.Y. Jiang, Y.F. Gao, H.J. Luo, J.J. Liu, W. Liang, C.Y. Zhi, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang et al., Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chem. Eng. Sci. 194, 142–147 (2019). https://doi.org/10.1016/j.ces.2018.06.048
K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, X. Zhu, Y. Tian, P. Chen, Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
B. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H. Lim, R. Chen, P. Liu, Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10(45), 38928–38935 (2018). https://doi.org/10.1021/acsami.8b14022