Separator Wettability Enhanced by Electrolyte Additive to Boost the Electrochemical Performance of Lithium Metal Batteries
Corresponding Author: Ying Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 210
Abstract
Lithium (Li) metal has been regarded as one of the most promising candidates to replace graphite anode due to its high theoretical specific capacity and the lowest electrochemical potential [1,2,3]. However, the immoderate growth of Li dendrite during Li plating/stripping causes serious safety problem and poor performance that severely impedes the practical application of lithium metal batteries (LMBs) [4,5,6]. Until now, there have been numerous kinds of strategies be proposed to inhibit Li dendrites growth and protect lithium metal anode such as high concentration electrolytes [7], construction of the solid electrolyte interface layer [8], structural design of anode materials [9], regulation of Li+ solvation [10], and solid-state electrolytes [11]. As an important part of battery structure, separator plays a vital role in the performance of battery [12]. The main function of separator is to divide the anode and cathode that prevents internal short circuit caused by direct contact between anode and cathode. So, the separator needs to be electrically insulated. At the same time, the separator also needs to ensure that the electrolyte is conductive between anode and cathode [13]. Therefore, it is necessary to render the separator fully wetted. Nevertheless, there are few researches on enhancing the wettability of the separator especially functional electrolyte additives.
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4), 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
- X. Shen, H. Liu, X. Cheng, C. Yan, J. Huang, Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Stor. Mater. 12, 161–175 (2018). https://doi.org/10.1016/j.ensm.2017.12.002
- X. Cheng, R. Zhang, C. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- N. Wu, Y. Li, A. Dolocan, W. Li, H. Xu et al., In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater. 30(22), 2000831 (2020). https://doi.org/10.1002/adfm.202000831
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(12), 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
- Y. Feng, C. Zhang, B. Li, B. Li, S. Xiong et al., Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. J. Mater. Chem. A 7(11), 6090–6098 (2019). https://doi.org/10.1039/C8TA10779C
- H. Wang, J. He, J. Liu, S. Qi, M. Wu et al., Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31(2), 2002578 (2020). https://doi.org/10.1002/adfm.202002578
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- M. Ryou, D.J. Lee, J. Lee, Y.M. Lee, J.K. Park et al., Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2(6), 645–650 (2012). https://doi.org/10.1002/aenm.201100687
- H. Zheng, Y. Xie, H. Xiang, P. Shi, X. Liang et al., A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries. Electrochim. Acta 270, 62–69 (2018). https://doi.org/10.1016/j.electacta.2018.03.089
- J. Huang, J. Liu, J. He, M. Wu, S. Qi et al., Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem. Int. Ed. 60(38), 20717–20722 (2021). https://doi.org/10.1002/anie.202107957
References
S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4), 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
X. Shen, H. Liu, X. Cheng, C. Yan, J. Huang, Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Stor. Mater. 12, 161–175 (2018). https://doi.org/10.1016/j.ensm.2017.12.002
X. Cheng, R. Zhang, C. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
N. Wu, Y. Li, A. Dolocan, W. Li, H. Xu et al., In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater. 30(22), 2000831 (2020). https://doi.org/10.1002/adfm.202000831
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60(12), 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
Y. Feng, C. Zhang, B. Li, B. Li, S. Xiong et al., Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. J. Mater. Chem. A 7(11), 6090–6098 (2019). https://doi.org/10.1039/C8TA10779C
H. Wang, J. He, J. Liu, S. Qi, M. Wu et al., Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31(2), 2002578 (2020). https://doi.org/10.1002/adfm.202002578
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
M. Ryou, D.J. Lee, J. Lee, Y.M. Lee, J.K. Park et al., Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2(6), 645–650 (2012). https://doi.org/10.1002/aenm.201100687
H. Zheng, Y. Xie, H. Xiang, P. Shi, X. Liang et al., A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries. Electrochim. Acta 270, 62–69 (2018). https://doi.org/10.1016/j.electacta.2018.03.089
J. Huang, J. Liu, J. He, M. Wu, S. Qi et al., Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem. Int. Ed. 60(38), 20717–20722 (2021). https://doi.org/10.1002/anie.202107957