Poly(Glycidyl Methacrylates)-grafted Zinc Oxide Nanowire by Surface-initiated Atom Transfer Radical Polymerization
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 2 No. 4 (2010), Article Number: 285-289
Abstract
Poly(glycidyl methacrylates) (PGMA) was grafted from zinc oxide (ZnO) nanowires via surface-initiated atom transfer radical polymerization (SI-ATRP) technique. Firstly, the ZnO nanowires were synthesized by the one-pot hydrothermal technique. Subsequently, the ZnO was functionalized with 3-aminopropyl triethoxysilane, which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide. PGMA grafted ZnO nanowires (PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2, 2`-bipyridine as the catalyst system. Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time, indicating that the polymerization process owned some “living” character. The structure and composition of PGMA-ZnO were characterized with scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectrometer, fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Cao, H. F. Lui and C. Surya, Appl. Phys. Lett. 83, 141 (2003). doi:10.1063/1.1589184
- S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal. Growth 225, 110 (2001). doi:10.1016/S0022-0248(01)00830-2
- N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater. 14, 418 (2002). doi:10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K
- K. S. Weissenrieder and J. Muller, Thin Solid Film 300, 30 (1997). doi:10.1016/S0040-6090(96)09471-0
- N. Golego, S. A. Studenikin, and M. J. Cocivera, Electrochem. Soc. 147, 1592 (2000). doi:10.1149/1.1393400
- J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park and S. Im, Thin Solid Films 403, 553 (2002). doi:10.1016/S0040-6090(01)01550-4
- R. K. Joshi, Q. Hu, F. Alvi, N. Joshi and A. Kumar, J. Phys. Chem. C 113, 16199 (2009). doi:10.1021/jp906458b
- G. Kwak, and K. Yong, J. Phys. Chem. C 112, 3036 (2008). doi:10.1021/jp7103819
- R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, and H. A. Klok, Chem. Rev. 109, 5437 (2009). doi:10.1021/cr900045a
- Y. Z. Jin, C. Gao, H. W. Kroto, and T. Maekawa, Macromol. Rapid Commun. 26, 1133 (2005). doi:10.1002/marc200500218
- F. J. Xu, Q. J. Cai, E. T. Kang and K. G. Neoh, Organometallics 24, 1768 (2005). doi:10.1021/om049095u
- K. Zhang, H. T. Li, H. W. Zhang, S. Zhao, D. Wang and J. Y. Wang, Mater. Chem. Phys. 96, 477 (2006). doi:10.1016/j.matchemphys.2005.07.070
- K. Matyjaszewski, P. J. Miller, N. Shukla, B. B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick and T. Vallant, H. Hoffmann, T. Pakula, Macromolecules 32, 8716 (1999). doi:10.1021/ma991146p
- J. Pyun, T. Kowalewski, K. Matyjaszewski, Macromol. Rapid Commun. 24, 1043 (2003). doi:10.1002/marc.200300078
- W. X. Huang, J. B. Kim, M. L. Bruening and G. L. Baker, Macromolecules 35, 1175 (2002). doi:10.1021/ma011159e
- E. L. Brantley, T. C. Holmes and G. K. Jennings, J. Phys. Chem. B 108, 16077 (2004). doi:10.1021/jp0476038
- M. J. Mulvihill, B. L. Rupert, R. R. He, A. Hochbaum, J. Arnold and P. D. Yang, J. Am. Chem. Soc. 127, 16040 (2005). doi:10.1021/ja056242m
- F. Zhou, L. Jiang, W. M. Liu, Q. J. Xue, Macromol. Rapid Commun. 25, 1979 (2004). doi:10.1002/marc.200400397
- D. J. Li, G. L. Jones, J. R. Dunlap, F. J. Hua and B. Zhao, Langmuir 22, 3344 (2006). doi:10.1021/la053103+
- K. Ohno, K. Koh, Y. Tsujii and T. Fukuda, Macromolecules 35, 8989 (2002). doi:10.1021/ma0209491
- Y. Zhou, S. X. Wang, B. J. Ding and Z. M. Yang, Chem. Eng. J. 138, 578 (2008). doi:10.1016/j.cej.2007.07.030
- Y. L. Liu and W. H. Chen, Macromolecules 40, 8881 (2007). doi:10.1021/ma071700s
- P. Liu and T. M. Wang, Curr. Appl. Phys. 8, 66 (2008). doi:10.1016/j.cap.2007.05.001
- B. L. Rupert, M. J. Mulvihill and J. Arnold, Chem. Mater. 18, 5045 (2006). doi:10.1021/cm061387t
References
V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Cao, H. F. Lui and C. Surya, Appl. Phys. Lett. 83, 141 (2003). doi:10.1063/1.1589184
S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal. Growth 225, 110 (2001). doi:10.1016/S0022-0248(01)00830-2
N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater. 14, 418 (2002). doi:10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K
K. S. Weissenrieder and J. Muller, Thin Solid Film 300, 30 (1997). doi:10.1016/S0040-6090(96)09471-0
N. Golego, S. A. Studenikin, and M. J. Cocivera, Electrochem. Soc. 147, 1592 (2000). doi:10.1149/1.1393400
J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park and S. Im, Thin Solid Films 403, 553 (2002). doi:10.1016/S0040-6090(01)01550-4
R. K. Joshi, Q. Hu, F. Alvi, N. Joshi and A. Kumar, J. Phys. Chem. C 113, 16199 (2009). doi:10.1021/jp906458b
G. Kwak, and K. Yong, J. Phys. Chem. C 112, 3036 (2008). doi:10.1021/jp7103819
R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, and H. A. Klok, Chem. Rev. 109, 5437 (2009). doi:10.1021/cr900045a
Y. Z. Jin, C. Gao, H. W. Kroto, and T. Maekawa, Macromol. Rapid Commun. 26, 1133 (2005). doi:10.1002/marc200500218
F. J. Xu, Q. J. Cai, E. T. Kang and K. G. Neoh, Organometallics 24, 1768 (2005). doi:10.1021/om049095u
K. Zhang, H. T. Li, H. W. Zhang, S. Zhao, D. Wang and J. Y. Wang, Mater. Chem. Phys. 96, 477 (2006). doi:10.1016/j.matchemphys.2005.07.070
K. Matyjaszewski, P. J. Miller, N. Shukla, B. B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick and T. Vallant, H. Hoffmann, T. Pakula, Macromolecules 32, 8716 (1999). doi:10.1021/ma991146p
J. Pyun, T. Kowalewski, K. Matyjaszewski, Macromol. Rapid Commun. 24, 1043 (2003). doi:10.1002/marc.200300078
W. X. Huang, J. B. Kim, M. L. Bruening and G. L. Baker, Macromolecules 35, 1175 (2002). doi:10.1021/ma011159e
E. L. Brantley, T. C. Holmes and G. K. Jennings, J. Phys. Chem. B 108, 16077 (2004). doi:10.1021/jp0476038
M. J. Mulvihill, B. L. Rupert, R. R. He, A. Hochbaum, J. Arnold and P. D. Yang, J. Am. Chem. Soc. 127, 16040 (2005). doi:10.1021/ja056242m
F. Zhou, L. Jiang, W. M. Liu, Q. J. Xue, Macromol. Rapid Commun. 25, 1979 (2004). doi:10.1002/marc.200400397
D. J. Li, G. L. Jones, J. R. Dunlap, F. J. Hua and B. Zhao, Langmuir 22, 3344 (2006). doi:10.1021/la053103+
K. Ohno, K. Koh, Y. Tsujii and T. Fukuda, Macromolecules 35, 8989 (2002). doi:10.1021/ma0209491
Y. Zhou, S. X. Wang, B. J. Ding and Z. M. Yang, Chem. Eng. J. 138, 578 (2008). doi:10.1016/j.cej.2007.07.030
Y. L. Liu and W. H. Chen, Macromolecules 40, 8881 (2007). doi:10.1021/ma071700s
P. Liu and T. M. Wang, Curr. Appl. Phys. 8, 66 (2008). doi:10.1016/j.cap.2007.05.001
B. L. Rupert, M. J. Mulvihill and J. Arnold, Chem. Mater. 18, 5045 (2006). doi:10.1021/cm061387t