A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications
Corresponding Author: Liying Zhang
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 95-119
Abstract
Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc. Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH3, NO2, H2, CO, SO2, H2S, as well as vapor of volatile organic compounds. The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.G. Stevens, L.H. Bowen, K.M. Whatley, Moessbauer spectroscopy. Anal. Chem. 62(12), 125R–139R (1990). doi:10.1021/ac00211a003
- J. Janata, Chemical sensors. Anal. Chem. 64(12), 196–219 (1992). doi:10.1021/ac00036a012
- J. Janata, M. Josowicz, D.M. DeVaney, Chemical sensors. Anal. Chem. 66(12), 207R–228R (1994). doi:10.1021/ac00084a010
- J. Janata, M. Josowicz, P. Vanýsek, D.M. DeVaney, Chemical sensors. Anal. Chem. 70(12), 179–208 (1998). doi:10.1021/a1980010w
- F. Zee, J.W. Judy, Micromachined polymer-based chemical gas sensor array. Sens. Actuators B 72(2), 120–128 (2001). doi:10.1016/S0925-4005(00)00638-9
- Y. Itagaki, K. Deki, S. Nakashima, Y. Sadaoka, Toxic gas detection using porphyrin dispersed polymer composites. Sens. Actuators B 108(1–2), 393–397 (2005). doi:10.1016/j.snb.2004.10.055
- H.K. Imad, H.A. Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 7(2), 97–120 (2015). doi:10.1007/s40820-015-0057-1
- H. Bai, L. Zhao, C.H. Lu, C. Li, G.Q. Shi, Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 50(14), 3292–3301 (2009). doi:10.1016/j.polymer.2009.04.066
- M.R. Mohammadi, D.J. Fray, Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors: controlling the physical and sensing properties. Sens. Actuators B 141(1), 76–84 (2009). doi:10.1016/j.snb.2009.05.026
- J.S. Lee, O.S. Kwon, S.J. Park, E.Y. Park, S.A. You, H. Yoon, J. Jang, Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5(10), 7992–8001 (2011). doi:10.1021/nn202471f
- C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). doi:10.1039/c2nr31467c
- D. Wang, A. Chen, A.K. Jen, Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys. Chem. Chem. Phys. 15(14), 5017–5021 (2013). doi:10.1039/c3cp43454k
- G. Yang, C. Lee, J. Kim, F. Ren, S.J. Pearton, Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013). doi:10.1039/c2cp43717a
- Z. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, P. Avouris, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5(7), 1497–1502 (2005). doi:10.1021/Nl0508624
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
- Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). doi:10.1038/nature04235
- C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). doi:10.1126/science.1125925
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401
- Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). doi:10.1103/PhysRevLett.97.216803
- S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
- M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007). doi:10.1103/PhysRevLett.98.206805
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
- D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). doi:10.1038/nnano.2007.451
- X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/science.1150878
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi:10.1126/science.1156965
- M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
- X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008). doi:10.1021/nl072838r
- A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). doi:10.1103/RevModPhys.81.109
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719
- X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). doi:10.1126/science.1171245
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). doi:10.1039/b917103g
- R. Bogue, Nanomaterials for gas sensing: a review of recent research. Sensor Rev. 34(1), 1–8 (2014). doi:10.1108/Sr-03-2013-637
- L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J.D. Plessis, S.H. Han et al., Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114(39), 16168–16173 (2010). doi:10.1021/Jp103134u
- X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/C2jm16709c
- Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9(4), 1472–1475 (2009). doi:10.1021/nl8033637
- M. Malekalaie, M. Jahangiri, A.M. Rashidi, A. Haghighiasl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Mater. Sci. Semicon. Process. 38, 93–100 (2015). doi:10.1016/j.mssp.2015.03.034
- J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009). doi:10.1021/nn800593m
- Q. Ji, I. Honma, S.M. Paek, M. Akada, J.P. Hill, A. Vinu, K. Ariga, Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 49(50), 9737–9979 (2010). doi:10.1002/anie.201004929
- M.M. Alaie, M. Jahangiri, A.M. Rashidi, A.H. Asl, N. Izadi, A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide. J. Ind. Eng. Chem. 29, 97–103 (2015). doi:10.1016/j.jiec.2015.03.021
- S.M.J. Khadem, Y. Abdi, S. Darbari, F. Ostovari, Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors. Curr. Appl. Phys. 14(11), 1498–1503 (2014). doi:10.1016/j.cap.2014.07.020
- G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009). doi:10.1088/0957-4484/20/44/445502
- G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5(2), 1154–1164 (2011). doi:10.1021/nn102803q
- S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012). doi:10.1021/nl3001293
- H.J. Song, L.C. Zhang, C.L. He, Y. Qu, Y.F. Tian, Y. Lv, Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem. 21(16), 5972–5977 (2011). doi:10.1039/C0jm04331a
- J. Yi, W. Park II, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155(1), 264–269 (2011). doi:10.1039/C0jm04331a
- E. Akbari, V.K. Arora, A. Enzevaee, M.T. Ahmadi, M. Khaledian, R. Yusof, Gas concentration effects on the sensing properties of bilayer graphene. Plasmonics 9(4), 987–992 (2014). doi:10.1007/s11468-014-9705-4
- A. Omidvar, A. Mohajeri, Edge-functionalized graphene nanoflakes as selective gas sensors. Sens. Actuators B 202, 622–630 (2014). doi:10.1016/j.snb.2014.05.136
- E. Akbari, V.K. Arora, A. Enzevaee, M.T. Ahmadi, M. Saeidmanesh, M. Khaledian, H. Karimi, R. Yusof, An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J. Nanotech. 5, 726–734 (2014). doi:10.3762/bjnano.5.85
- R. Bogue, Graphene sensors: a review of recent developments. Sensor Rev. 34(3), 233–238 (2014). doi:10.1108/Sr-03-2014-631
- W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). doi:10.1039/C3ta11774j
- T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
- P.J. Shaver, Activated tungsten oxide gas detectors. Appl. Phys. Lett. 11(8), 255 (1967). doi:10.1063/1.1755123
- Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013). doi:10.1016/j.snb.2013.01.014
- E. Akbari, R. Yusof, M.T. Ahmadi, A. Enzevaee, M.J. Kiani, H. Karimi, M. Rahmani, Bilayer graphene application on NO2 sensor modelling. J. Nanomater. 2014, 1–7 (2014). doi:10.1155/2014/534105
- N.T. Hu, Y.Y. Wang, J. Chai, R.G. Gao, Z. Yang, E.S.W. Kong, Y.F. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B 163(1), 107–114 (2012). doi:10.1016/j.snb.2012.01.016
- K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). doi:10.1021/Jp900791y
- K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem. 18(13), 1517–1523 (2008). doi:10.1039/B716536f
- R. Paola, H. Anming, C. Giuseppe, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). doi:10.5101/nml.v5i4.p260-273
- Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
- C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004). doi:10.1021/Jp040650f
- T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3), 261–270 (1992). doi:10.1016/0039-6028(92)90183-7
- S. Marchini, S. Gunther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007). doi:10.1103/Physrevb.76.075429
- J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008). doi:10.1021/nl0728874
- V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). doi:10.1038/nnano.2008.329
- B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). doi:10.1098/rstl.1859.0013
- L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898). doi:10.1002/cber.18980310237
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. JACS 80(6), 1339–1339 (1958). doi:10.1021/ja01539a017
- J.Y. Cao, L.Z. Song, J.L. Tang, J. Xu, W.C. Wang, Z.D. Chen, Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation. Appl. Surf. Sci. 274, 138–143 (2013). doi:10.1016/j.apsusc.2013.02.133
- C. Botas, P. Alvarez, P. Blanco, M. Granda, C. Blanco et al., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013). doi:10.1016/j.carbon.2013.08.009
- T. Chen, B. Zeng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, X.Z. Yang, Z.M. Li, High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified hummers method. J. Phys. Conf. Ser. 188, 012051 (2009). doi:10.1088/1742-6596/188/1/012051
- C.I. Chang, K.H. Chang, H.H. Shen, C.C. Hu, A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J. Taiwan. Inst. Chem. E 45(5), 2762–2769 (2014). doi:10.1016/j.jtice.2014.05.030
- H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
- X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). doi:10.1002/adma.200801306
- G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). doi:10.1021/jp710931h
- H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). doi:10.1002/adfm.200900167
- M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry15(25), 6116–6120 (2009). doi:10.1002/chem.200900596
- Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009). doi:10.1021/cm9006603
- W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010). doi:10.1016/j.carbon.2009.11.037
- Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). doi:10.1016/j.carbon.2009.12.063
- M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). doi:10.1021/jp100603h
- X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2010). doi:10.1021/jp909284g
- S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010). doi:10.1002/adma.201000520
- S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). doi:10.1016/j.carbon.2010.08.006
- V.H. Pham, T.V. Cuong, T.-D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, J.S. Chung, One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 46(24), 4375–4377 (2010). doi:10.1039/c0cc00363h
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). doi:10.1039/b917705a
- J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9), 5245–5252 (2010). doi:10.1021/nn1015506
- C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). doi:10.1021/nn1002387
- Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). doi:10.1021/nn102339t
- Y. Guo, B. Wu, H. Liu, Y. Ma, Y. Yang, J. Zheng, G. Yu, Y. Liu, Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv. Mater. 23(40), 4626–4630 (2011). doi:10.1002/adma.201103120
- D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115(23), 11327–11335 (2011). doi:10.1021/jp110001y
- P. Sungjin, A. Jinho, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). doi:10.1016/j.carbon.2011.02.071
- O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012). doi:10.1016/j.carbon.2012.02.087
- A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 24(12), 2292–2298 (2012). doi:10.1021/cm300382b
- Y. Shen, T. Jing, W. Ren, J. Zhang, Z.-G. Jiang, Z.-Z. Yu, A. Dasari, Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos. Sci. Technol. 72(12), 1430–1435 (2012). doi:10.1016/j.compscitech.2012.05.018
- P. Solis-Fernandez, R. Rozada, J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Merino, L. Guardia, A. Martinez-Alonso, J.M.D. Tascon, Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. J. Alloys Compd. 536, S532–S537 (2012). doi:10.1016/j.jallcom.2012.01.102
- D. Thanh Truong, P. Viet Hung, V. Bao Khanh, S.H. Hur, E.W. Shin, E.J. Kim, J.S. Chung, J.M.D. Tascon, Clean and effective catalytic reduction of graphene oxide using atomic hydrogen spillover on Pt/gamma-Al2O3 catalyst. Mater. Lett. 86, 161–164 (2012). doi:10.1016/j.matlet.2012.07.063
- C.K. Chua, M. Pumera, Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A 1(5), 1892–1898 (2013). doi:10.1039/c2ta00665k
- P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 91, 125–128 (2013). doi:10.1016/j.matlet.2012.09.085
- X.L. Huang, N.T. Hu, Y.Y. Wang, Y.F. Zhang, Ammonia gas sensor based on aniline reduced graphene oxide. Adv. Mater. Res. 669, 79–84 (2013). doi:10.4028/www.scientific.net/AMR.669.79
- X.L. Huang, N.T. Hu, L.L. Zhang, L.M. Wei, H. Wei, Y.F. Zhang, The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide. Synth. Met. 185, 25–30 (2013). doi:10.1016/j.synthmet.2013.09.034
- Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like alpha-Fe2O3 and reduced graphene oxide. RSC Adv. 4(101), 57493–57500 (2014). doi:10.1039/C4ra10136g
- C. Xiangfeng, H. Tao, G. Feng, D. Yongping, S. Wenqi, B. Linshan, Gas sensing properties of graphene-WO3 composites prepared by hydrothermal method. Mat. Sci. Eng. B 193, 97–104 (2015). doi:10.1016/j.mseb.2014.11.011
- S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. JACS 134(10), 4905–4917 (2012). doi:10.1021/ja211683m
- M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 78, 159–165 (2012). doi:10.1016/j.sse.2012.05.059
- F. Yavari, E. Castillo, H. Gullapalli, P.M. Ajayan, N. Koratkar, High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100, 203120 (2012). doi:10.1063/1.4720074
- Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 15(11), 2971–2981 (2014). doi:10.1016/j.orgel.2014.08.044
- X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. Siu-Wai Kong, H. Wei, Y. Zhang, Reduced graphene oxide-polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488 (2012). doi:10.1039/c2jm34340a
- N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 025502 (2014). doi:10.1088/0957-4484/25/2/025502
- Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng, Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9(1), 251 (2014). doi:10.1186/1556-276X-9-251
- M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia. J. Appl. Phys. 112, 064304 (2012). doi:10.1063/1.4752272
- Z. Ben Aziza, Q. Zhang, D. Baillargeat, Graphene/mica based ammonia gas sensors. Appl. Phys. Lett. 105, 254102 (2014). doi:10.1063/1.4905039
- A. Inaba, K. Yoo, Y. Takei, K. Matsumoto, I. Shimoyama, Ammonia gas sensing using a graphene field-effect transistor gated by ionic liquid. Sens. Actuators B 195, 15–21 (2014). doi:10.1016/j.snb.2013.12.118
- Z.B. Ye, Y.D. Jiang, H.L. Tai, Z. Yuan, The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr. Ferroelectr. 154(1), 73–81 (2014). doi:10.1080/10584587.2014.904148
- S. Yoo, X. Li, Y. Wu, W.H. Liu, X.L. Wang, W.H. Yi, Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J. Nanomater. 2014, 1–6 (2014). doi:10.1155/2014/497384
- H. Meng, W. Yang, K. Ding, L. Feng, Y.F. Guan, Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J. Mater. Chem. A 3(3), 1174–1181 (2015). doi:10.1039/C4ta06024e
- H. Choi, H.Y. Jeong, D.S. Lee, C.G. Choi, S.Y. Choi, Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Lett. 14(3), 186–189 (2013). doi:10.5714/Cl.2013.14.3.186
- L.T. Hoa, H.N. Tien, V.H. Luan, J.S. Chung, S.H. Hur, Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens. Actuators B 185, 701–705 (2013). doi:10.1016/j.snb.2013.05.050
- L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interface 6(10), 7426–7433 (2014). doi:10.1021/am500843p
- Y. Ju Yun, W.G. Hong, N.-J. Choi, B. Hoon Kim, Y. Jun, H.-K. Lee, Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904–10904 (2015). doi:10.1038/srep10904
- R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A.L. Spetz, R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B 155(2), 451–455 (2011). doi:10.1016/j.snb.2010.12.046
- M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.B. Yoo, S.H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166, 172–176 (2012). doi:10.1016/j.snb.2012.02.036
- C. Lee, J. Ahn, K.B. Lee, D. Kim, J. Kim, Graphene-based flexible NO2 chemical sensors. Thin Solid Films 520(16), 5459–5462 (2012). doi:10.1016/j.tsf.2012.03.095
- S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Faster response of NO(2) sensing in graphene-WO(3) nanocomposites. Nanotechnology 23(20), 205501 (2012). doi:10.1088/0957-4484/23/20/205501
- J.L. Huang, G.Z. Xie, Y. Zhou, T. Xie, H.L. Tai, G.J. Yang, Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature. Proc. SPIE 9285, 92850B–92851B (2014). doi:10.1117/12.2069492
- S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014). doi:10.1016/j.snb.2014.05.086
- X. Liu, J.S. Cui, J.B. Sun, X.T. Zhang, 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 4(43), 22601–22605 (2014). doi:10.1039/C4ra02453b
- C. Piloto, M. Notarianni, M. Shafiei, E. Taran, D. Galpaya, C. Yan, N. Motta, Highly NO2 sensitive caesium doped graphene oxide conductometric sensors. Beilstein. J. Nanotechnol. 5, 1073–1081 (2014). doi:10.3762/bjnano.5.120
- P.G. Su, H.C. Shieh, Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens. Actuators B 190, 865–872 (2014). doi:10.1016/j.snb.2013.09.078
- H. Zhang, J.C. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014). doi:10.1016/j.snb.2013.08.067
- P.-G. Su, S.-L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132, 398–405 (2015). doi:10.1016/j.Talanta2014.09.034
- F. Gu, R. Nie, D. Han, Z. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015). doi:10.1016/j.snb.2015.04.119
- J.L. Johnson, A. Behnam, S.J. Pearton, A. Ural, Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22(43), 4877–4880 (2010). doi:10.1002/adma.201001798
- B.H. Chu, C.F. Lo, J. Nicolosi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, F. Ren, Hydrogen detection using platinum coated graphene grown on SiC. Sens. Actuators B 157(2), 500–503 (2011). doi:10.1016/j.snb.2011.05.007
- B.H. Chu, J. Nicolosi, C.F. Lo, W. Strupinski, S.J. Pearton, F. Ren, Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem. Solid-State Lett. 14(7), K43–K45 (2011). doi:10.1149/1.3589250
- R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, K. Muellen, Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layers. Nanotechnology 22(27), 275719 (2011). doi:10.1088/0957-4484/22/27/275719
- Q.G. Jiang, Z.M. Ao, W.T. Zheng, S. Li, Q. Jiang, Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15(48), 21016–21022 (2013). doi:10.1039/c3cp52976b
- A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3), 382–386 (2009). doi:10.1039/b9nr00015a
- M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R.B. Kaner, K. Kalantar-Zadeh, W. Wlodarski, Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C 114(32), 13796–13801 (2010). doi:10.1021/jp104459s
- U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene: palladium nanocomposite. Electrochimi. Acta 56(10), 3707–3712 (2011). doi:10.1016/j.electacta.2010.10.078
- M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012). doi:10.1016/j.snb.2012.05.031
- R.C. Ehemann, P.S. Krstic, J. Dadras, P.R.C. Kent, J. Jakowski, Detection of hydrogen using graphene. Nanoscale Res. Lett. 7, 1–14 (2012). doi:10.1186/1556-276x-7-198
- A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energ. 37(20), 15423–15432 (2012). doi:10.1016/j.ijhydene.2012.08.011
- P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). doi:10.1002/anie.201204373
- X. Chen, F.M. Yasin, P.K. Eggers, R.A. Boulos, X. Duan, R.N. Lamb, K.S. Iyer, C.L. Raston, Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv. 3(10), 3213–3217 (2013). doi:10.1039/c3ra22986f
- D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrogen Energ. 39(1), 620–629 (2014). doi:10.1016/j.ijhydene.2013.08.107
- B. Singh, J. Wang, S. Rathi, G.-H. Kim, Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications. Appl. Phys. Lett. 106, 203106 (2015). doi:10.1063/1.4921524
- J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, T. Lee, A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interface 7(6), 3554–3561 (2015). doi:10.1021/am5073645
- Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7(22), 10078–10084 (2015). doi:10.1039/c5nr01924a
- Y. Zheng, D. Lee, H.Y. Koo, S. Maeng, Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon 81, 54–62 (2015). doi:10.1016/j.carbon.2014.09.023
- K.R. Nemade, S.A. Waghuley, Chemiresistive gas sensing by few-layered graphene. J. Electron. Mater. 42(10), 2857–2866 (2013). doi:10.1007/s11664-013-2699-4
- K.R. Nemade, A. Waghuley, Carbon dioxide gas sensing application of graphene/Y2O3 quantum dots composite. Int. J. Mod. Phys. 22, 380–384 (2013). doi:10.1142/s2010194513010404
- K.R. Nemade, S.A. Waghuley, Role of defects concentration on optical and carbon dioxide gas sensing properties of Sb2O3/graphene composites. Opt. Mater. 36(3), 712–716 (2014). doi:10.1016/j.optmat.2013.11.024
- K.R. Nemade, S.A. Waghuley, Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88(6), 577–583 (2014). doi:10.1007/s12648-014-0454-1
- C.-S. Liu, R. Jia, X.-J. Ye, Z. Zeng, Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide. J. Chem. Phys. 139(3), 034704 (2013). doi:10.1063/1.4813528
- Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013). doi:10.1109/jsen.2012.2227597
- H.J. Yoon, D.H. Jun, J.H. Yang, Z.X. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157(1), 310–313 (2011). doi:10.1016/j.snb.2011.03.035
- S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014). doi:10.1016/j.snb.2013.12.017
- F. Shen, D. Wang, R. Liu, X. Pei, T. Zhang, J. Jin, Edge-tailored graphene oxide nanosheet-based field effect transistors for fast and reversible electronic detection of sulfur dioxide. Nanoscale 5(2), 537–540 (2013). doi:10.1039/c2nr32752j
- X.-Y. Liu, J.-M. Zhang, K.-W. Xu, V. Ji, Improving SO2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study. Appl. Surf. Sci. 313, 405–410 (2014). doi:10.1016/j.apsusc.2014.05.223
- L. Shao, G. Chen, H. Ye, H. Niu, Y. Wu, Y. Zhu, B. Ding, Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys. Lett. A 378(7–8), 667–671 (2014). doi:10.1016/j.physleta.2013.12.042
- Q. Xian, M. Qingyuan, F. Yuan, Ping, Strain effects on enhanced hydrogen sulphide detection capability of Ag-decorated defective graphene. Mod. Phys. Lett. B 26(25), 1250166 (2012). doi:10.1142/s0217984912501667
- L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen, Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4), 1564–1569 (2013). doi:10.1039/c2nr33164k
- Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li et al., A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A 2(19), 6714–6717 (2014). doi:10.1039/c3ta15180h
- Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R.D. Piner, R.S. Ruoff, Detection of sulfur dioxide gas with graphene field effect transistor. Appl. Phys. Lett. 100, 163114 (2012). doi:10.1063/1.4704803
- Q. Xian, M. Qing, Yuan, G. Yu Fei, Ag supported Si-doped graphene for hydrogen sulphide detection: a first-principles investigation. Adv. Mater. Res. 602–604, 37–40 (2013). doi:10.4028/www.scientific.net/AMR.602-604.37
- Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo, F. Li, Understanding dopant and defect effect on H2S sensing performances of graphene: a first-principles study. Comp. Mater. Sci. 69, 222–228 (2013). doi:10.1016/j.commatsci.2012.11.048
- S. Cho, J.S. Lee, J. Jun, S.G. Kim, J. Jang, Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale 6(24), 15181–15195 (2014). doi:10.1039/c4nr04413d
- S.-J. Choi, B.-H. Jang, S.-J. Lee, B.K. Min, A. Rothschild, I.-D. Kim, Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interface 6(4), 2588–2597 (2014). doi:10.1021/am405088q
- S.-J. Choi, C. Choi, S.-J. Kim, H.-J. Cho, M. Hakim, S. Jeon, I.-D. Kim, Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep. 5, 8067 (2015). doi:10.1038/srep08067
- M. Berahman, M.H. Sheikhi, Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sens. Actuators B 219, 338–345 (2015). doi:10.1016/j.snb.2015.04.114
- S.A. Tawfik, X.Y. Cui, D.J. Carter, S.P. Ringer, C. Stampfl, Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Phys. Chem. Chem. Phys. 17(10), 6925–6932 (2015). doi:10.1039/c4cp05919k
- V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010). doi:10.1002/anie.200905089
- Z. Jiang, J. Wang, L. Meng, Y. Huang, L. Liu, A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chem. Commun. 47(22), 6350–6352 (2011). doi:10.1039/c1cc11711d
- H. Zhang, A. Kulkarni, H. Kim, D. Woo, Y.-J. Kim, B.H. Hong, J.-B. Choi, T. Kim, Detection of acetone vapor using graphene on polymer optical fiber. J. Nanosci. Nanotechno. 11(7), 5939–5943 (2011). doi:10.1166/jnn.2011.4408
- M. Gautam, A.H. Jayatissa, Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 112, 114326 (2012). doi:10.1063/1.4768724
- L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem. Commun. 46(32), 5882–5884 (2010). doi:10.1039/c0cc01212b
- L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101, 192–197 (2012). doi:10.1016/j.Talanta2012.08.048
- M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.1016/j.bios.2013.01.073
- V.V. Singh, A.K. Nigam, S.S. Yadav, B.K. Tripathi, A. Srivastava, M. Boopathi, B. Singh, Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant. Sens. Actuators B 188, 1218–1224 (2013). doi:10.1016/j.snb.2013.08.013
- M.D. Ganji, Z. Dalirandeh, A. Khosravi, A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection. Mater. Chem. Phys. 145(1–2), 260–267 (2014). doi:10.1016/j.matchemphys.2014.02.021
- B. Chen, H. Liu, X. Li, C. Lu, Y. Ding, B. Lu, Fabrication of a graphene field effect transistor array on microchannels for ethanol sensing. Appl. Surf. Sci. 258(6), 1971–1975 (2012). doi:10.1016/j.apsusc.2011.05.101
- L. Zhang, C. Li, A. Liu, G. Shi, Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. J. Mater. Chem. 22(17), 8438–8443 (2012). doi:10.1039/c2jm16552j
- P. Sun, Y. Cai, S. Du, X. Xu, L. You, J. Ma, F. Liu, X. Liang, Y. Sun, G. Lu, Hierarchical alpha-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B 182, 336–343 (2013). doi:10.1016/j.snb.2013.03.019
- F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, L. Shen, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B 188, 469–474 (2013). doi:10.1016/j.snb.2013.06.065
- M. Moradi, M. Noei, A.A. Peyghan, DFT studies of Si- and Al-doping effects on the acetone sensing properties of BC3 graphene. Mol. Phys. 111(21), 3320–3326 (2013). doi:10.1080/00268976.2013.783720
- X. Wang, X. Sun, P.A. Hu, J. Zhang, L. Wang, W. Feng, S. Lei, B. Yang, W. Cao, Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv. Funct. Mater. 23(48), 6044–6050 (2013). doi:10.1002/adfm.201301044
- S.-J. Choi, W.-H. Ryu, S.-J. Kim, H.-J. Cho, I.-D. Kim, Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J. Mater. Chem. B 2(41), 7160–7167 (2014). doi:10.1039/c4tb00767k
- T. Kavinkumar, D. Sastikumar, S. Manivannan, Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature. Proceedings of SPIE 9270, Optoel. Dev. Integr. V, 92700U (2014). doi:10.1117/12.2071841
- A. Aziz, H.N. Lim, S.H. Girei, M.H. Yaacob, M.A. Mandi, N.M. Huang, A. Pandikumar, Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B 206, 119–125 (2015). doi:10.1016/j.snb.2014.09.035
- A.S.M.I. Uddin, P. Duy-Thach, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015). doi:10.1016/j.snb.2014.10.091
- A.S.M.I. Uddin, K.-W. Lee, G.-S. Chung, Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens. Actuators B 216, 33–40 (2015). doi:10.1016/j.snb.2015.04.028
- X. Chaonan, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 3(2), 147–155 (1991). doi:10.1016/0925-4005(91)80207-Z
- A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95(11), 6374–6380 (2004). doi:10.1063/1.1728314
- J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140(1), 319–336 (2009). doi:10.1016/j.snb.2009.04.026
- L. Sang-Zi, C. Gugang, A.R. Harutyunyan, J.O. Sofo, Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B: Condens. Matter 90(11), 115410 (2014). doi:10.1103/PhysRevB.90.115410
- N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325(1–2), 254–258 (1998). doi:10.1016/s0040-6090(98)00501-x
- N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63–75 (2003). doi:10.1023/a:1023436725457
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991). doi:10.1016/0925-4005(91)80213-4
- M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases. Sens. Actuators B 35(1–3), 62–67 (1996). doi:10.1016/s0925-4005(96)02015-1
- Y. Zhou, Y.D. Jiang, T. Xie, H.L. Tai, G.Z. Xie, A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B 203, 135–142 (2014). doi:10.1016/j.snb.2014.06.105
- M. Zhu, X. Li, S. Chung, L. Zhao, X. Li, X. Zang, K. Wang, J. Wei, M. Zhong, K. Zhou, D. Xie, H. Zhu, Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 84, 138–145 (2015). doi:10.1016/j.carbon.2014.12.008
- R.-C. Wang, Y.-M. Chang, Switch of p-n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive. Carbon 91, 416–422 (2015). doi:10.1016/j.carbon.2015.05.012
- F. Yavari, Z.P. Chen, A.V. Thomas, W.C. Ren, H.M. Cheng, N. Koratkar, High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011). doi:10.1038/srep00166
- S. Yi, S.Q. Tian, D.W. Zeng, K. Xu, S.P. Zhang, C.S. Xie, An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance. Sens. Actuators B 185, 345–353 (2013). doi:10.1016/j.snb.2013.05.007
- X. Huang, J. Lin, Z. Pi, Z. Yu, Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO(2) gas sensor. Talanta 64, 538–545 (2004). doi:10.1016/j.Talanta.2004.03.022
- X.J. Huang, L.C. Wang, Y.F. Sun, F.L. Meng, J.H. Liu, Quantitative analysis of pesticide residue based on the dynamic response of a single SnO2 gas sensor. Sens. Actuators B 99(2–3), 330–335 (2004). doi:10.1016/j.snb.2003.11.032
- X.J. Huang, J.H. Liu, D.L. Shao, Z.X. Pi, Z.L. Yu, Rectangular mode of operation for detecting pesticide residue by using a single SnO2-based gas sensor. Sens. Actuators B 96(3), 630–635 (2003). doi:10.1016/j.snb.2003.07.006
References
J.G. Stevens, L.H. Bowen, K.M. Whatley, Moessbauer spectroscopy. Anal. Chem. 62(12), 125R–139R (1990). doi:10.1021/ac00211a003
J. Janata, Chemical sensors. Anal. Chem. 64(12), 196–219 (1992). doi:10.1021/ac00036a012
J. Janata, M. Josowicz, D.M. DeVaney, Chemical sensors. Anal. Chem. 66(12), 207R–228R (1994). doi:10.1021/ac00084a010
J. Janata, M. Josowicz, P. Vanýsek, D.M. DeVaney, Chemical sensors. Anal. Chem. 70(12), 179–208 (1998). doi:10.1021/a1980010w
F. Zee, J.W. Judy, Micromachined polymer-based chemical gas sensor array. Sens. Actuators B 72(2), 120–128 (2001). doi:10.1016/S0925-4005(00)00638-9
Y. Itagaki, K. Deki, S. Nakashima, Y. Sadaoka, Toxic gas detection using porphyrin dispersed polymer composites. Sens. Actuators B 108(1–2), 393–397 (2005). doi:10.1016/j.snb.2004.10.055
H.K. Imad, H.A. Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 7(2), 97–120 (2015). doi:10.1007/s40820-015-0057-1
H. Bai, L. Zhao, C.H. Lu, C. Li, G.Q. Shi, Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 50(14), 3292–3301 (2009). doi:10.1016/j.polymer.2009.04.066
M.R. Mohammadi, D.J. Fray, Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors: controlling the physical and sensing properties. Sens. Actuators B 141(1), 76–84 (2009). doi:10.1016/j.snb.2009.05.026
J.S. Lee, O.S. Kwon, S.J. Park, E.Y. Park, S.A. You, H. Yoon, J. Jang, Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5(10), 7992–8001 (2011). doi:10.1021/nn202471f
C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). doi:10.1039/c2nr31467c
D. Wang, A. Chen, A.K. Jen, Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys. Chem. Chem. Phys. 15(14), 5017–5021 (2013). doi:10.1039/c3cp43454k
G. Yang, C. Lee, J. Kim, F. Ren, S.J. Pearton, Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013). doi:10.1039/c2cp43717a
Z. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, P. Avouris, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5(7), 1497–1502 (2005). doi:10.1021/Nl0508624
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). doi:10.1038/nature04235
C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). doi:10.1126/science.1125925
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401
Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). doi:10.1103/PhysRevLett.97.216803
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007). doi:10.1103/PhysRevLett.98.206805
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). doi:10.1038/nnano.2007.451
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/science.1150878
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi:10.1126/science.1156965
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008). doi:10.1021/nl072838r
A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). doi:10.1103/RevModPhys.81.109
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719
X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). doi:10.1126/science.1171245
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). doi:10.1039/b917103g
R. Bogue, Nanomaterials for gas sensing: a review of recent research. Sensor Rev. 34(1), 1–8 (2014). doi:10.1108/Sr-03-2013-637
L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J.D. Plessis, S.H. Han et al., Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114(39), 16168–16173 (2010). doi:10.1021/Jp103134u
X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/C2jm16709c
Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9(4), 1472–1475 (2009). doi:10.1021/nl8033637
M. Malekalaie, M. Jahangiri, A.M. Rashidi, A. Haghighiasl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide. Mater. Sci. Semicon. Process. 38, 93–100 (2015). doi:10.1016/j.mssp.2015.03.034
J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009). doi:10.1021/nn800593m
Q. Ji, I. Honma, S.M. Paek, M. Akada, J.P. Hill, A. Vinu, K. Ariga, Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 49(50), 9737–9979 (2010). doi:10.1002/anie.201004929
M.M. Alaie, M. Jahangiri, A.M. Rashidi, A.H. Asl, N. Izadi, A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide. J. Ind. Eng. Chem. 29, 97–103 (2015). doi:10.1016/j.jiec.2015.03.021
S.M.J. Khadem, Y. Abdi, S. Darbari, F. Ostovari, Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors. Curr. Appl. Phys. 14(11), 1498–1503 (2014). doi:10.1016/j.cap.2014.07.020
G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009). doi:10.1088/0957-4484/20/44/445502
G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5(2), 1154–1164 (2011). doi:10.1021/nn102803q
S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012). doi:10.1021/nl3001293
H.J. Song, L.C. Zhang, C.L. He, Y. Qu, Y.F. Tian, Y. Lv, Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem. 21(16), 5972–5977 (2011). doi:10.1039/C0jm04331a
J. Yi, W. Park II, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155(1), 264–269 (2011). doi:10.1039/C0jm04331a
E. Akbari, V.K. Arora, A. Enzevaee, M.T. Ahmadi, M. Khaledian, R. Yusof, Gas concentration effects on the sensing properties of bilayer graphene. Plasmonics 9(4), 987–992 (2014). doi:10.1007/s11468-014-9705-4
A. Omidvar, A. Mohajeri, Edge-functionalized graphene nanoflakes as selective gas sensors. Sens. Actuators B 202, 622–630 (2014). doi:10.1016/j.snb.2014.05.136
E. Akbari, V.K. Arora, A. Enzevaee, M.T. Ahmadi, M. Saeidmanesh, M. Khaledian, H. Karimi, R. Yusof, An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J. Nanotech. 5, 726–734 (2014). doi:10.3762/bjnano.5.85
R. Bogue, Graphene sensors: a review of recent developments. Sensor Rev. 34(3), 233–238 (2014). doi:10.1108/Sr-03-2014-631
W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). doi:10.1039/C3ta11774j
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
P.J. Shaver, Activated tungsten oxide gas detectors. Appl. Phys. Lett. 11(8), 255 (1967). doi:10.1063/1.1755123
Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013). doi:10.1016/j.snb.2013.01.014
E. Akbari, R. Yusof, M.T. Ahmadi, A. Enzevaee, M.J. Kiani, H. Karimi, M. Rahmani, Bilayer graphene application on NO2 sensor modelling. J. Nanomater. 2014, 1–7 (2014). doi:10.1155/2014/534105
N.T. Hu, Y.Y. Wang, J. Chai, R.G. Gao, Z. Yang, E.S.W. Kong, Y.F. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B 163(1), 107–114 (2012). doi:10.1016/j.snb.2012.01.016
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). doi:10.1021/Jp900791y
K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem. 18(13), 1517–1523 (2008). doi:10.1039/B716536f
R. Paola, H. Anming, C. Giuseppe, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). doi:10.5101/nml.v5i4.p260-273
Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004). doi:10.1021/Jp040650f
T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3), 261–270 (1992). doi:10.1016/0039-6028(92)90183-7
S. Marchini, S. Gunther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007). doi:10.1103/Physrevb.76.075429
J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008). doi:10.1021/nl0728874
V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). doi:10.1038/nnano.2008.329
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). doi:10.1098/rstl.1859.0013
L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898). doi:10.1002/cber.18980310237
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. JACS 80(6), 1339–1339 (1958). doi:10.1021/ja01539a017
J.Y. Cao, L.Z. Song, J.L. Tang, J. Xu, W.C. Wang, Z.D. Chen, Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation. Appl. Surf. Sci. 274, 138–143 (2013). doi:10.1016/j.apsusc.2013.02.133
C. Botas, P. Alvarez, P. Blanco, M. Granda, C. Blanco et al., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013). doi:10.1016/j.carbon.2013.08.009
T. Chen, B. Zeng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, X.Z. Yang, Z.M. Li, High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified hummers method. J. Phys. Conf. Ser. 188, 012051 (2009). doi:10.1088/1742-6596/188/1/012051
C.I. Chang, K.H. Chang, H.H. Shen, C.C. Hu, A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J. Taiwan. Inst. Chem. E 45(5), 2762–2769 (2014). doi:10.1016/j.jtice.2014.05.030
H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). doi:10.1002/adma.200801306
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). doi:10.1021/jp710931h
H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). doi:10.1002/adfm.200900167
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry15(25), 6116–6120 (2009). doi:10.1002/chem.200900596
Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009). doi:10.1021/cm9006603
W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010). doi:10.1016/j.carbon.2009.11.037
Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). doi:10.1016/j.carbon.2009.12.063
M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). doi:10.1021/jp100603h
X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2010). doi:10.1021/jp909284g
S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010). doi:10.1002/adma.201000520
S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). doi:10.1016/j.carbon.2010.08.006
V.H. Pham, T.V. Cuong, T.-D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, J.S. Chung, One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 46(24), 4375–4377 (2010). doi:10.1039/c0cc00363h
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). doi:10.1039/b917705a
J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9), 5245–5252 (2010). doi:10.1021/nn1015506
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). doi:10.1021/nn1002387
Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). doi:10.1021/nn102339t
Y. Guo, B. Wu, H. Liu, Y. Ma, Y. Yang, J. Zheng, G. Yu, Y. Liu, Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv. Mater. 23(40), 4626–4630 (2011). doi:10.1002/adma.201103120
D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115(23), 11327–11335 (2011). doi:10.1021/jp110001y
P. Sungjin, A. Jinho, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). doi:10.1016/j.carbon.2011.02.071
O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012). doi:10.1016/j.carbon.2012.02.087
A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 24(12), 2292–2298 (2012). doi:10.1021/cm300382b
Y. Shen, T. Jing, W. Ren, J. Zhang, Z.-G. Jiang, Z.-Z. Yu, A. Dasari, Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos. Sci. Technol. 72(12), 1430–1435 (2012). doi:10.1016/j.compscitech.2012.05.018
P. Solis-Fernandez, R. Rozada, J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Merino, L. Guardia, A. Martinez-Alonso, J.M.D. Tascon, Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. J. Alloys Compd. 536, S532–S537 (2012). doi:10.1016/j.jallcom.2012.01.102
D. Thanh Truong, P. Viet Hung, V. Bao Khanh, S.H. Hur, E.W. Shin, E.J. Kim, J.S. Chung, J.M.D. Tascon, Clean and effective catalytic reduction of graphene oxide using atomic hydrogen spillover on Pt/gamma-Al2O3 catalyst. Mater. Lett. 86, 161–164 (2012). doi:10.1016/j.matlet.2012.07.063
C.K. Chua, M. Pumera, Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A 1(5), 1892–1898 (2013). doi:10.1039/c2ta00665k
P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 91, 125–128 (2013). doi:10.1016/j.matlet.2012.09.085
X.L. Huang, N.T. Hu, Y.Y. Wang, Y.F. Zhang, Ammonia gas sensor based on aniline reduced graphene oxide. Adv. Mater. Res. 669, 79–84 (2013). doi:10.4028/www.scientific.net/AMR.669.79
X.L. Huang, N.T. Hu, L.L. Zhang, L.M. Wei, H. Wei, Y.F. Zhang, The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide. Synth. Met. 185, 25–30 (2013). doi:10.1016/j.synthmet.2013.09.034
Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like alpha-Fe2O3 and reduced graphene oxide. RSC Adv. 4(101), 57493–57500 (2014). doi:10.1039/C4ra10136g
C. Xiangfeng, H. Tao, G. Feng, D. Yongping, S. Wenqi, B. Linshan, Gas sensing properties of graphene-WO3 composites prepared by hydrothermal method. Mat. Sci. Eng. B 193, 97–104 (2015). doi:10.1016/j.mseb.2014.11.011
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. JACS 134(10), 4905–4917 (2012). doi:10.1021/ja211683m
M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 78, 159–165 (2012). doi:10.1016/j.sse.2012.05.059
F. Yavari, E. Castillo, H. Gullapalli, P.M. Ajayan, N. Koratkar, High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100, 203120 (2012). doi:10.1063/1.4720074
Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 15(11), 2971–2981 (2014). doi:10.1016/j.orgel.2014.08.044
X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. Siu-Wai Kong, H. Wei, Y. Zhang, Reduced graphene oxide-polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488 (2012). doi:10.1039/c2jm34340a
N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 025502 (2014). doi:10.1088/0957-4484/25/2/025502
Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng, Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9(1), 251 (2014). doi:10.1186/1556-276X-9-251
M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia. J. Appl. Phys. 112, 064304 (2012). doi:10.1063/1.4752272
Z. Ben Aziza, Q. Zhang, D. Baillargeat, Graphene/mica based ammonia gas sensors. Appl. Phys. Lett. 105, 254102 (2014). doi:10.1063/1.4905039
A. Inaba, K. Yoo, Y. Takei, K. Matsumoto, I. Shimoyama, Ammonia gas sensing using a graphene field-effect transistor gated by ionic liquid. Sens. Actuators B 195, 15–21 (2014). doi:10.1016/j.snb.2013.12.118
Z.B. Ye, Y.D. Jiang, H.L. Tai, Z. Yuan, The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr. Ferroelectr. 154(1), 73–81 (2014). doi:10.1080/10584587.2014.904148
S. Yoo, X. Li, Y. Wu, W.H. Liu, X.L. Wang, W.H. Yi, Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J. Nanomater. 2014, 1–6 (2014). doi:10.1155/2014/497384
H. Meng, W. Yang, K. Ding, L. Feng, Y.F. Guan, Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J. Mater. Chem. A 3(3), 1174–1181 (2015). doi:10.1039/C4ta06024e
H. Choi, H.Y. Jeong, D.S. Lee, C.G. Choi, S.Y. Choi, Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Lett. 14(3), 186–189 (2013). doi:10.5714/Cl.2013.14.3.186
L.T. Hoa, H.N. Tien, V.H. Luan, J.S. Chung, S.H. Hur, Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens. Actuators B 185, 701–705 (2013). doi:10.1016/j.snb.2013.05.050
L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interface 6(10), 7426–7433 (2014). doi:10.1021/am500843p
Y. Ju Yun, W.G. Hong, N.-J. Choi, B. Hoon Kim, Y. Jun, H.-K. Lee, Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904–10904 (2015). doi:10.1038/srep10904
R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A.L. Spetz, R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B 155(2), 451–455 (2011). doi:10.1016/j.snb.2010.12.046
M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.B. Yoo, S.H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166, 172–176 (2012). doi:10.1016/j.snb.2012.02.036
C. Lee, J. Ahn, K.B. Lee, D. Kim, J. Kim, Graphene-based flexible NO2 chemical sensors. Thin Solid Films 520(16), 5459–5462 (2012). doi:10.1016/j.tsf.2012.03.095
S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Faster response of NO(2) sensing in graphene-WO(3) nanocomposites. Nanotechnology 23(20), 205501 (2012). doi:10.1088/0957-4484/23/20/205501
J.L. Huang, G.Z. Xie, Y. Zhou, T. Xie, H.L. Tai, G.J. Yang, Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature. Proc. SPIE 9285, 92850B–92851B (2014). doi:10.1117/12.2069492
S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014). doi:10.1016/j.snb.2014.05.086
X. Liu, J.S. Cui, J.B. Sun, X.T. Zhang, 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 4(43), 22601–22605 (2014). doi:10.1039/C4ra02453b
C. Piloto, M. Notarianni, M. Shafiei, E. Taran, D. Galpaya, C. Yan, N. Motta, Highly NO2 sensitive caesium doped graphene oxide conductometric sensors. Beilstein. J. Nanotechnol. 5, 1073–1081 (2014). doi:10.3762/bjnano.5.120
P.G. Su, H.C. Shieh, Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens. Actuators B 190, 865–872 (2014). doi:10.1016/j.snb.2013.09.078
H. Zhang, J.C. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014). doi:10.1016/j.snb.2013.08.067
P.-G. Su, S.-L. Peng, Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132, 398–405 (2015). doi:10.1016/j.Talanta2014.09.034
F. Gu, R. Nie, D. Han, Z. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015). doi:10.1016/j.snb.2015.04.119
J.L. Johnson, A. Behnam, S.J. Pearton, A. Ural, Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22(43), 4877–4880 (2010). doi:10.1002/adma.201001798
B.H. Chu, C.F. Lo, J. Nicolosi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, F. Ren, Hydrogen detection using platinum coated graphene grown on SiC. Sens. Actuators B 157(2), 500–503 (2011). doi:10.1016/j.snb.2011.05.007
B.H. Chu, J. Nicolosi, C.F. Lo, W. Strupinski, S.J. Pearton, F. Ren, Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem. Solid-State Lett. 14(7), K43–K45 (2011). doi:10.1149/1.3589250
R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, K. Muellen, Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layers. Nanotechnology 22(27), 275719 (2011). doi:10.1088/0957-4484/22/27/275719
Q.G. Jiang, Z.M. Ao, W.T. Zheng, S. Li, Q. Jiang, Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15(48), 21016–21022 (2013). doi:10.1039/c3cp52976b
A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3), 382–386 (2009). doi:10.1039/b9nr00015a
M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R.B. Kaner, K. Kalantar-Zadeh, W. Wlodarski, Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C 114(32), 13796–13801 (2010). doi:10.1021/jp104459s
U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene: palladium nanocomposite. Electrochimi. Acta 56(10), 3707–3712 (2011). doi:10.1016/j.electacta.2010.10.078
M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012). doi:10.1016/j.snb.2012.05.031
R.C. Ehemann, P.S. Krstic, J. Dadras, P.R.C. Kent, J. Jakowski, Detection of hydrogen using graphene. Nanoscale Res. Lett. 7, 1–14 (2012). doi:10.1186/1556-276x-7-198
A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energ. 37(20), 15423–15432 (2012). doi:10.1016/j.ijhydene.2012.08.011
P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). doi:10.1002/anie.201204373
X. Chen, F.M. Yasin, P.K. Eggers, R.A. Boulos, X. Duan, R.N. Lamb, K.S. Iyer, C.L. Raston, Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv. 3(10), 3213–3217 (2013). doi:10.1039/c3ra22986f
D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrogen Energ. 39(1), 620–629 (2014). doi:10.1016/j.ijhydene.2013.08.107
B. Singh, J. Wang, S. Rathi, G.-H. Kim, Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications. Appl. Phys. Lett. 106, 203106 (2015). doi:10.1063/1.4921524
J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, T. Lee, A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interface 7(6), 3554–3561 (2015). doi:10.1021/am5073645
Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7(22), 10078–10084 (2015). doi:10.1039/c5nr01924a
Y. Zheng, D. Lee, H.Y. Koo, S. Maeng, Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon 81, 54–62 (2015). doi:10.1016/j.carbon.2014.09.023
K.R. Nemade, S.A. Waghuley, Chemiresistive gas sensing by few-layered graphene. J. Electron. Mater. 42(10), 2857–2866 (2013). doi:10.1007/s11664-013-2699-4
K.R. Nemade, A. Waghuley, Carbon dioxide gas sensing application of graphene/Y2O3 quantum dots composite. Int. J. Mod. Phys. 22, 380–384 (2013). doi:10.1142/s2010194513010404
K.R. Nemade, S.A. Waghuley, Role of defects concentration on optical and carbon dioxide gas sensing properties of Sb2O3/graphene composites. Opt. Mater. 36(3), 712–716 (2014). doi:10.1016/j.optmat.2013.11.024
K.R. Nemade, S.A. Waghuley, Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88(6), 577–583 (2014). doi:10.1007/s12648-014-0454-1
C.-S. Liu, R. Jia, X.-J. Ye, Z. Zeng, Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide. J. Chem. Phys. 139(3), 034704 (2013). doi:10.1063/1.4813528
Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013). doi:10.1109/jsen.2012.2227597
H.J. Yoon, D.H. Jun, J.H. Yang, Z.X. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157(1), 310–313 (2011). doi:10.1016/j.snb.2011.03.035
S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014). doi:10.1016/j.snb.2013.12.017
F. Shen, D. Wang, R. Liu, X. Pei, T. Zhang, J. Jin, Edge-tailored graphene oxide nanosheet-based field effect transistors for fast and reversible electronic detection of sulfur dioxide. Nanoscale 5(2), 537–540 (2013). doi:10.1039/c2nr32752j
X.-Y. Liu, J.-M. Zhang, K.-W. Xu, V. Ji, Improving SO2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study. Appl. Surf. Sci. 313, 405–410 (2014). doi:10.1016/j.apsusc.2014.05.223
L. Shao, G. Chen, H. Ye, H. Niu, Y. Wu, Y. Zhu, B. Ding, Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys. Lett. A 378(7–8), 667–671 (2014). doi:10.1016/j.physleta.2013.12.042
Q. Xian, M. Qingyuan, F. Yuan, Ping, Strain effects on enhanced hydrogen sulphide detection capability of Ag-decorated defective graphene. Mod. Phys. Lett. B 26(25), 1250166 (2012). doi:10.1142/s0217984912501667
L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen, Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4), 1564–1569 (2013). doi:10.1039/c2nr33164k
Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li et al., A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A 2(19), 6714–6717 (2014). doi:10.1039/c3ta15180h
Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R.D. Piner, R.S. Ruoff, Detection of sulfur dioxide gas with graphene field effect transistor. Appl. Phys. Lett. 100, 163114 (2012). doi:10.1063/1.4704803
Q. Xian, M. Qing, Yuan, G. Yu Fei, Ag supported Si-doped graphene for hydrogen sulphide detection: a first-principles investigation. Adv. Mater. Res. 602–604, 37–40 (2013). doi:10.4028/www.scientific.net/AMR.602-604.37
Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo, F. Li, Understanding dopant and defect effect on H2S sensing performances of graphene: a first-principles study. Comp. Mater. Sci. 69, 222–228 (2013). doi:10.1016/j.commatsci.2012.11.048
S. Cho, J.S. Lee, J. Jun, S.G. Kim, J. Jang, Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale 6(24), 15181–15195 (2014). doi:10.1039/c4nr04413d
S.-J. Choi, B.-H. Jang, S.-J. Lee, B.K. Min, A. Rothschild, I.-D. Kim, Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interface 6(4), 2588–2597 (2014). doi:10.1021/am405088q
S.-J. Choi, C. Choi, S.-J. Kim, H.-J. Cho, M. Hakim, S. Jeon, I.-D. Kim, Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci. Rep. 5, 8067 (2015). doi:10.1038/srep08067
M. Berahman, M.H. Sheikhi, Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sens. Actuators B 219, 338–345 (2015). doi:10.1016/j.snb.2015.04.114
S.A. Tawfik, X.Y. Cui, D.J. Carter, S.P. Ringer, C. Stampfl, Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Phys. Chem. Chem. Phys. 17(10), 6925–6932 (2015). doi:10.1039/c4cp05919k
V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010). doi:10.1002/anie.200905089
Z. Jiang, J. Wang, L. Meng, Y. Huang, L. Liu, A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chem. Commun. 47(22), 6350–6352 (2011). doi:10.1039/c1cc11711d
H. Zhang, A. Kulkarni, H. Kim, D. Woo, Y.-J. Kim, B.H. Hong, J.-B. Choi, T. Kim, Detection of acetone vapor using graphene on polymer optical fiber. J. Nanosci. Nanotechno. 11(7), 5939–5943 (2011). doi:10.1166/jnn.2011.4408
M. Gautam, A.H. Jayatissa, Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 112, 114326 (2012). doi:10.1063/1.4768724
L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem. Commun. 46(32), 5882–5884 (2010). doi:10.1039/c0cc01212b
L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101, 192–197 (2012). doi:10.1016/j.Talanta2012.08.048
M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.1016/j.bios.2013.01.073
V.V. Singh, A.K. Nigam, S.S. Yadav, B.K. Tripathi, A. Srivastava, M. Boopathi, B. Singh, Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant. Sens. Actuators B 188, 1218–1224 (2013). doi:10.1016/j.snb.2013.08.013
M.D. Ganji, Z. Dalirandeh, A. Khosravi, A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection. Mater. Chem. Phys. 145(1–2), 260–267 (2014). doi:10.1016/j.matchemphys.2014.02.021
B. Chen, H. Liu, X. Li, C. Lu, Y. Ding, B. Lu, Fabrication of a graphene field effect transistor array on microchannels for ethanol sensing. Appl. Surf. Sci. 258(6), 1971–1975 (2012). doi:10.1016/j.apsusc.2011.05.101
L. Zhang, C. Li, A. Liu, G. Shi, Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. J. Mater. Chem. 22(17), 8438–8443 (2012). doi:10.1039/c2jm16552j
P. Sun, Y. Cai, S. Du, X. Xu, L. You, J. Ma, F. Liu, X. Liang, Y. Sun, G. Lu, Hierarchical alpha-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B 182, 336–343 (2013). doi:10.1016/j.snb.2013.03.019
F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, L. Shen, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B 188, 469–474 (2013). doi:10.1016/j.snb.2013.06.065
M. Moradi, M. Noei, A.A. Peyghan, DFT studies of Si- and Al-doping effects on the acetone sensing properties of BC3 graphene. Mol. Phys. 111(21), 3320–3326 (2013). doi:10.1080/00268976.2013.783720
X. Wang, X. Sun, P.A. Hu, J. Zhang, L. Wang, W. Feng, S. Lei, B. Yang, W. Cao, Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv. Funct. Mater. 23(48), 6044–6050 (2013). doi:10.1002/adfm.201301044
S.-J. Choi, W.-H. Ryu, S.-J. Kim, H.-J. Cho, I.-D. Kim, Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J. Mater. Chem. B 2(41), 7160–7167 (2014). doi:10.1039/c4tb00767k
T. Kavinkumar, D. Sastikumar, S. Manivannan, Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature. Proceedings of SPIE 9270, Optoel. Dev. Integr. V, 92700U (2014). doi:10.1117/12.2071841
A. Aziz, H.N. Lim, S.H. Girei, M.H. Yaacob, M.A. Mandi, N.M. Huang, A. Pandikumar, Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B 206, 119–125 (2015). doi:10.1016/j.snb.2014.09.035
A.S.M.I. Uddin, P. Duy-Thach, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015). doi:10.1016/j.snb.2014.10.091
A.S.M.I. Uddin, K.-W. Lee, G.-S. Chung, Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens. Actuators B 216, 33–40 (2015). doi:10.1016/j.snb.2015.04.028
X. Chaonan, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B 3(2), 147–155 (1991). doi:10.1016/0925-4005(91)80207-Z
A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95(11), 6374–6380 (2004). doi:10.1063/1.1728314
J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140(1), 319–336 (2009). doi:10.1016/j.snb.2009.04.026
L. Sang-Zi, C. Gugang, A.R. Harutyunyan, J.O. Sofo, Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B: Condens. Matter 90(11), 115410 (2014). doi:10.1103/PhysRevB.90.115410
N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325(1–2), 254–258 (1998). doi:10.1016/s0040-6090(98)00501-x
N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63–75 (2003). doi:10.1023/a:1023436725457
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991). doi:10.1016/0925-4005(91)80213-4
M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases. Sens. Actuators B 35(1–3), 62–67 (1996). doi:10.1016/s0925-4005(96)02015-1
Y. Zhou, Y.D. Jiang, T. Xie, H.L. Tai, G.Z. Xie, A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B 203, 135–142 (2014). doi:10.1016/j.snb.2014.06.105
M. Zhu, X. Li, S. Chung, L. Zhao, X. Li, X. Zang, K. Wang, J. Wei, M. Zhong, K. Zhou, D. Xie, H. Zhu, Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 84, 138–145 (2015). doi:10.1016/j.carbon.2014.12.008
R.-C. Wang, Y.-M. Chang, Switch of p-n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive. Carbon 91, 416–422 (2015). doi:10.1016/j.carbon.2015.05.012
F. Yavari, Z.P. Chen, A.V. Thomas, W.C. Ren, H.M. Cheng, N. Koratkar, High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011). doi:10.1038/srep00166
S. Yi, S.Q. Tian, D.W. Zeng, K. Xu, S.P. Zhang, C.S. Xie, An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance. Sens. Actuators B 185, 345–353 (2013). doi:10.1016/j.snb.2013.05.007
X. Huang, J. Lin, Z. Pi, Z. Yu, Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO(2) gas sensor. Talanta 64, 538–545 (2004). doi:10.1016/j.Talanta.2004.03.022
X.J. Huang, L.C. Wang, Y.F. Sun, F.L. Meng, J.H. Liu, Quantitative analysis of pesticide residue based on the dynamic response of a single SnO2 gas sensor. Sens. Actuators B 99(2–3), 330–335 (2004). doi:10.1016/j.snb.2003.11.032
X.J. Huang, J.H. Liu, D.L. Shao, Z.X. Pi, Z.L. Yu, Rectangular mode of operation for detecting pesticide residue by using a single SnO2-based gas sensor. Sens. Actuators B 96(3), 630–635 (2003). doi:10.1016/j.snb.2003.07.006