Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In2S3 Nanosheet Arrays by Atomic Layer Deposition
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 45
Abstract
Photoanodes based on In2S3/ZnO heterojunction nanosheet arrays (NSAs) have been fabricated by atomic layer deposition of ZnO over In2S3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical (PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In2S3/ZnO NSAs have been optimized by modulating the thickness of the ZnO overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In2S3/ZnO-50 NSAs shows a photocurrent density of 1.642 mA cm−2 (1.5 V vs. RHE) and an incident photon-to-current efficiency of 27.64% at 380 nm (1.23 V vs. RHE), which are 70 and 116 times higher than those of the pristine In2S3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In2S3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers, especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
Highlights:
1 The In2S3/ZnO core/shell nanosheet arrays (NSAs) were fabricated by atomic layer deposition of ZnO over In2S3 NSAs, demonstrating highly enhanced photoelectrochemical performance for water splitting.
2 The In2S3/ZnO NSAs exhibit an optimal photocurrent of 1.64 mA cm−2 and incident photon-to-current efficiency of 27.64%, which are 70 and 116 times higher than those of the pristine In2S3 NSAs, respectively.
3 A detailed energy band edge analysis reveals the type-II band alignment of the In2S3/ZnO heterojunction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
- Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, P. Yang, Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11(7), 609–612 (2016). https://doi.org/10.1038/nnano.2016.30
- K. Sivula, R. van de Krol, Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1(2), 15010 (2016). https://doi.org/10.1038/natrevmats.2015.10
- G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao et al., Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation. Nano Lett. 15(7), 4692–4698 (2015). https://doi.org/10.1021/acs.nanolett.5b01547
- H. Dong, X. Song, Z. Ke, X. Xiao, C. Jiang, Construct Fe2+ species and Au ps for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation. Sci. China Mater. (2017). https://doi.org/10.1007/s40843-017-9155-9
- M. Zhou, X.W. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8(6), 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
- M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Hierarchically CuInS2 nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv. Mater. Interfaces 3(20), 1600494 (2016). https://doi.org/10.1002/admi.201600494
- M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 203, 715–724 (2017). https://doi.org/10.1016/j.apcatb.2016.10.051
- M. Li, R. Zhao, Y. Su, Z. Yang, Y. Zhang, Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance. Nanoscale 8(16), 8559–8567 (2016). https://doi.org/10.1039/c5nr06908d
- S. Xie, W. Wei, S. Huang, M. Li, P. Fang, X. Lu, Y. Tong, Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst. J. Power Sources 297, 9–15 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.071
- B. Zhang, F. Wang, C. Zhu, Q. Li, J. Song, M. Zheng, L. Ma, W. Shen, A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). https://doi.org/10.1007/s40820-015-0068-y
- S. Gao, Y. Sun, F. Lei, J. Liu, L. Liang, T. Li, B. Pan, J. Zhou, Y. Xie, Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 8, 205–213 (2014). https://doi.org/10.1016/j.nanoen.2014.05.017
- G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou, P. Hu, Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 5(5), 1989–1995 (2017). https://doi.org/10.1039/c6ta08327g
- J. Luo, S.D. Tilley, L. Steier, M. Schreier, M.T. Mayer, H.J. Fan, M. Grätzel, Solution transformation of Cu2O into CuInS2 for solar water splitting. Nano Lett. 15(2), 1395–1402 (2015). https://doi.org/10.1021/nl504746b
- R. Wu, Y. Xu, R. Xu, Y. Huang, B. Zhang, Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A 3(5), 1930–1934 (2015). https://doi.org/10.1039/c4ta05729e
- J. Zhou, G. Tian, Y. Chen, Y. Shi, C. Tian, K. Pan, H. Fu, Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity. Sci. Rep. 4, 4027 (2014). https://doi.org/10.1038/srep04027
- M. Krbal, J. Prikryl, R. Zazpe, H. Sopha, J.M. Macak, CdS-coated TiO2 nanotube layers: downscaling tube diameter towards efficient heterostructured photoelectrochemical conversion. Nanoscale 9(23), 7755–7759 (2017). https://doi.org/10.1039/c7nr02841e
- S. Guo, L. Wang, C. Zhang, G. Qi, B. Gu, L. Liu, Z. Yuan, A unique semiconductor-carbon-metal hybrid structure design as a counter electrode in dye-sensitized solar cells. Nanoscale 9(20), 6837–6845 (2017). https://doi.org/10.1039/c7nr00718c
- H. Han, F. Riboni, F. Karlicky, S. Kment, A. Goswami, P. Sudhagar, J. Yoo, L. Wang, O. Tomanec, M. Petr, α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale 9(1), 134–142 (2016). https://doi.org/10.1039/c6nr06908h
- F.Y. Su, W.D. Zhang, Y.Y. Liu, R.H. Huang, Y.X. Yu, Growth of porous In2S3 films and their photoelectrochemical properties. J. Solid State Electrochem. 19(8), 2321–2330 (2015). https://doi.org/10.1007/s10008-015-2868-x
- D. Wang, G. Chang, Y. Zhang, J. Chao, J. Yang, S. Su, L. Wang, C. Fan, L. Wang, Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. Nanoscale 8(25), 12697–12701 (2016). https://doi.org/10.1039/c6nr03855g
- L. Wang, L. Xia, Y. Wu, Y. Tian, Zr-doped β-In2S3 ultrathin nanoflakes as photoanodes: enhanced visible-light-driven photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 4(5), 2606–2614 (2016). https://doi.org/10.1021/acssuschemeng.6b00090
- F. Liu, Y. Jiang, J. Yang, M. Hao, Z. Tong, L. Jiang, Z. Wu, MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance. Chem. Commun. 52(9), 1867–1870 (2016). https://doi.org/10.1039/c5cc09601d
- Y. Tian, L. Wang, H. Tang, W. Zhou, Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3(21), 11294–11301 (2015). https://doi.org/10.1039/c5ta01958c
- F. Lei, L. Zhang, Y. Sun, L. Liang, K. Liu et al., Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. Int. Edit. 54(32), 9266–9270 (2015). https://doi.org/10.1002/anie.201503410
- P. Peerakiatkhajohn, J.H. Yun, H. Chen, M. Lyu, T. Butburee, L. Wang, Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 28(30), 6405–6410 (2016). https://doi.org/10.1002/adma.201601525
- Y. Li, X. Wei, B. Zhu, H. Wang, Y. Tang, T.C. Sum, X. Chen, Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale 8(21), 11284–11290 (2016). https://doi.org/10.1039/c6nr02430k
- K. Feng, W. Li, S. Xie, X. Lu, Nickel hydroxide decorated hydrogenated zinc oxide nanorod arrays with enhanced photoelectrochemical performance. Electrochim. Acta 137(8), 108–113 (2014). https://doi.org/10.1016/j.electacta.2014.05.152
- C.H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution. J. Power Sources 247(3), 545–550 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.015
- Y. Wang, W. Tian, L. Chen, F. Cao, J. Guo, L. Li, Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 9(46), 40235–40243 (2017). https://doi.org/10.1021/acsami.7b11510
- P. Varadhan, H.C. Fu, D. Priante, J.R.D. Retamal, C. Zhao et al., Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 17(3), 1520–1528 (2017). https://doi.org/10.1021/acs.nanolett.6b04559
- S.Y. Chae, S.J. Park, S.G. Han, H. Jung, C.W. Kim, C. Jeong, O.S. Joo, B.K. Min, Y.J. Hwang, Enhanced photocurrents with ZnS passivated Cu(In, Ga)(Se, S)2 photocathodes synthesized using a nonvacuum process for solar water splitting. J. Am. Chem. Soc. 138(48), 15673–15681 (2016). https://doi.org/10.1021/jacs.6b09595
- M. Li, X. Tu, Y. Su, J. Lu, J. Hu, B. Cai, Z. Zhou, Z. Yang, Y. Zhang, Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 10, 1153–1161 (2018). https://doi.org/10.1039/C7NR06182J
- J.M. Li, H.Y. Cheng, Y.H. Chiu, Y.J. Hsu, ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 8(34), 15720–15729 (2016). https://doi.org/10.1039/c6nr05605a
- C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3(10), 1500405 (2016). https://doi.org/10.1002/advs.201500405
- L.Y. Lin, J.-L. Yu, S.Y. Yu, PMLu Cheng, Influence of Ag and Sn incorporation in In2S3 thin films. Chin. Phys. B 24(7), 078103 (2015). https://doi.org/10.1088/1674-1056/24/7/078103
- E.M. Bachari, G. Baud, S.B. Amor, M. Jacquet, Structural and optical properties of sputtered ZnO films. Thin Solid Films 348(1–2), 165–172 (1999). https://doi.org/10.1016/S0040-6090(99)00060-7
- L. Rayleigh, On reflection of vibrations at the confines of two media between which the transition is gradual. Proc. Lond. . Soc. 1(1), 51–56 (1879). https://doi.org/10.1112/plms/s1-11.1.51
- K.Y. Ko, J.G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
- Z. Tian, H. Cui, G. Zhu, W. Zhao, J.J. Xu, F. Shao, J. He, F. Huang, Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J. Power Sources 325, 697–705 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.074
- S.R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S.D. Tilley, M. Grätzel, J.R. Durrant, Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136(28), 9854–9857 (2014). https://doi.org/10.1021/ja504473e
References
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). https://doi.org/10.1038/238037a0
Y. Su, C. Liu, S. Brittman, J. Tang, A. Fu, N. Kornienko, Q. Kong, P. Yang, Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11(7), 609–612 (2016). https://doi.org/10.1038/nnano.2016.30
K. Sivula, R. van de Krol, Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1(2), 15010 (2016). https://doi.org/10.1038/natrevmats.2015.10
G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao et al., Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation. Nano Lett. 15(7), 4692–4698 (2015). https://doi.org/10.1021/acs.nanolett.5b01547
H. Dong, X. Song, Z. Ke, X. Xiao, C. Jiang, Construct Fe2+ species and Au ps for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation. Sci. China Mater. (2017). https://doi.org/10.1007/s40843-017-9155-9
M. Zhou, X.W. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8(6), 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Hierarchically CuInS2 nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv. Mater. Interfaces 3(20), 1600494 (2016). https://doi.org/10.1002/admi.201600494
M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 203, 715–724 (2017). https://doi.org/10.1016/j.apcatb.2016.10.051
M. Li, R. Zhao, Y. Su, Z. Yang, Y. Zhang, Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance. Nanoscale 8(16), 8559–8567 (2016). https://doi.org/10.1039/c5nr06908d
S. Xie, W. Wei, S. Huang, M. Li, P. Fang, X. Lu, Y. Tong, Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst. J. Power Sources 297, 9–15 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.071
B. Zhang, F. Wang, C. Zhu, Q. Li, J. Song, M. Zheng, L. Ma, W. Shen, A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties. Nano-Micro Lett. 8(2), 137–142 (2016). https://doi.org/10.1007/s40820-015-0068-y
S. Gao, Y. Sun, F. Lei, J. Liu, L. Liang, T. Li, B. Pan, J. Zhou, Y. Xie, Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 8, 205–213 (2014). https://doi.org/10.1016/j.nanoen.2014.05.017
G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou, P. Hu, Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 5(5), 1989–1995 (2017). https://doi.org/10.1039/c6ta08327g
J. Luo, S.D. Tilley, L. Steier, M. Schreier, M.T. Mayer, H.J. Fan, M. Grätzel, Solution transformation of Cu2O into CuInS2 for solar water splitting. Nano Lett. 15(2), 1395–1402 (2015). https://doi.org/10.1021/nl504746b
R. Wu, Y. Xu, R. Xu, Y. Huang, B. Zhang, Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A 3(5), 1930–1934 (2015). https://doi.org/10.1039/c4ta05729e
J. Zhou, G. Tian, Y. Chen, Y. Shi, C. Tian, K. Pan, H. Fu, Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity. Sci. Rep. 4, 4027 (2014). https://doi.org/10.1038/srep04027
M. Krbal, J. Prikryl, R. Zazpe, H. Sopha, J.M. Macak, CdS-coated TiO2 nanotube layers: downscaling tube diameter towards efficient heterostructured photoelectrochemical conversion. Nanoscale 9(23), 7755–7759 (2017). https://doi.org/10.1039/c7nr02841e
S. Guo, L. Wang, C. Zhang, G. Qi, B. Gu, L. Liu, Z. Yuan, A unique semiconductor-carbon-metal hybrid structure design as a counter electrode in dye-sensitized solar cells. Nanoscale 9(20), 6837–6845 (2017). https://doi.org/10.1039/c7nr00718c
H. Han, F. Riboni, F. Karlicky, S. Kment, A. Goswami, P. Sudhagar, J. Yoo, L. Wang, O. Tomanec, M. Petr, α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale 9(1), 134–142 (2016). https://doi.org/10.1039/c6nr06908h
F.Y. Su, W.D. Zhang, Y.Y. Liu, R.H. Huang, Y.X. Yu, Growth of porous In2S3 films and their photoelectrochemical properties. J. Solid State Electrochem. 19(8), 2321–2330 (2015). https://doi.org/10.1007/s10008-015-2868-x
D. Wang, G. Chang, Y. Zhang, J. Chao, J. Yang, S. Su, L. Wang, C. Fan, L. Wang, Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. Nanoscale 8(25), 12697–12701 (2016). https://doi.org/10.1039/c6nr03855g
L. Wang, L. Xia, Y. Wu, Y. Tian, Zr-doped β-In2S3 ultrathin nanoflakes as photoanodes: enhanced visible-light-driven photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 4(5), 2606–2614 (2016). https://doi.org/10.1021/acssuschemeng.6b00090
F. Liu, Y. Jiang, J. Yang, M. Hao, Z. Tong, L. Jiang, Z. Wu, MoS2 nanodot decorated In2S3 nanoplates: a novel heterojunction with enhanced photoelectrochemical performance. Chem. Commun. 52(9), 1867–1870 (2016). https://doi.org/10.1039/c5cc09601d
Y. Tian, L. Wang, H. Tang, W. Zhou, Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3(21), 11294–11301 (2015). https://doi.org/10.1039/c5ta01958c
F. Lei, L. Zhang, Y. Sun, L. Liang, K. Liu et al., Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. Int. Edit. 54(32), 9266–9270 (2015). https://doi.org/10.1002/anie.201503410
P. Peerakiatkhajohn, J.H. Yun, H. Chen, M. Lyu, T. Butburee, L. Wang, Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 28(30), 6405–6410 (2016). https://doi.org/10.1002/adma.201601525
Y. Li, X. Wei, B. Zhu, H. Wang, Y. Tang, T.C. Sum, X. Chen, Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale 8(21), 11284–11290 (2016). https://doi.org/10.1039/c6nr02430k
K. Feng, W. Li, S. Xie, X. Lu, Nickel hydroxide decorated hydrogenated zinc oxide nanorod arrays with enhanced photoelectrochemical performance. Electrochim. Acta 137(8), 108–113 (2014). https://doi.org/10.1016/j.electacta.2014.05.152
C.H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution. J. Power Sources 247(3), 545–550 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.015
Y. Wang, W. Tian, L. Chen, F. Cao, J. Guo, L. Li, Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 9(46), 40235–40243 (2017). https://doi.org/10.1021/acsami.7b11510
P. Varadhan, H.C. Fu, D. Priante, J.R.D. Retamal, C. Zhao et al., Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 17(3), 1520–1528 (2017). https://doi.org/10.1021/acs.nanolett.6b04559
S.Y. Chae, S.J. Park, S.G. Han, H. Jung, C.W. Kim, C. Jeong, O.S. Joo, B.K. Min, Y.J. Hwang, Enhanced photocurrents with ZnS passivated Cu(In, Ga)(Se, S)2 photocathodes synthesized using a nonvacuum process for solar water splitting. J. Am. Chem. Soc. 138(48), 15673–15681 (2016). https://doi.org/10.1021/jacs.6b09595
M. Li, X. Tu, Y. Su, J. Lu, J. Hu, B. Cai, Z. Zhou, Z. Yang, Y. Zhang, Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 10, 1153–1161 (2018). https://doi.org/10.1039/C7NR06182J
J.M. Li, H.Y. Cheng, Y.H. Chiu, Y.J. Hsu, ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 8(34), 15720–15729 (2016). https://doi.org/10.1039/c6nr05605a
C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3(10), 1500405 (2016). https://doi.org/10.1002/advs.201500405
L.Y. Lin, J.-L. Yu, S.Y. Yu, PMLu Cheng, Influence of Ag and Sn incorporation in In2S3 thin films. Chin. Phys. B 24(7), 078103 (2015). https://doi.org/10.1088/1674-1056/24/7/078103
E.M. Bachari, G. Baud, S.B. Amor, M. Jacquet, Structural and optical properties of sputtered ZnO films. Thin Solid Films 348(1–2), 165–172 (1999). https://doi.org/10.1016/S0040-6090(99)00060-7
L. Rayleigh, On reflection of vibrations at the confines of two media between which the transition is gradual. Proc. Lond. . Soc. 1(1), 51–56 (1879). https://doi.org/10.1112/plms/s1-11.1.51
K.Y. Ko, J.G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
Z. Tian, H. Cui, G. Zhu, W. Zhao, J.J. Xu, F. Shao, J. He, F. Huang, Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J. Power Sources 325, 697–705 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.074
S.R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S.D. Tilley, M. Grätzel, J.R. Durrant, Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136(28), 9854–9857 (2014). https://doi.org/10.1021/ja504473e