Preparation and Characterization of Freestanding Hierarchical Porous TiO2 Monolith Modified with Graphene Oxide
Corresponding Author: Mingce Long
Nano-Micro Letters,
Vol. 4 No. 2 (2012), Article Number: 90-97
Abstract
Catalyst recovery is one of the most important aspects that restrict the application of TiO2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous TiO2 monolith (PTM) with well-defined macroporous and homogeneous mesoporous structure was prepared by using a sol-gel phase separation method. P123 was used as the mesoporous template and graphene oxide was applied to increase the activity and integrity of the monolithic TiO2. According to scanning electron microscopy and the Barrett-Joyner-Halenda measurements, PTM3 is mainly composed of 10 nm anatase crystallines with 3.6 nm mesopores and 2–8 μm macropores. Further characterization suggests carbon and nitrogen have been maintained in the PTM during calcinations so as to induce the visible light activity. The PTM with 0.07 wt% graphene oxide dosage shows high efficiency for methyl orange (MO) decolorization under both full spectrum and visible light irradiation (λ>400 nm). Besides, the monolith remains intact and has good photocatalytic stability after four cyclic experiments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
- A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). http://dx.doi.org/10.1016/j.surfrep.2008.10.001
- M. C. Long and W. M. Cai, Front. Chem. Chin. 6, 190 (2011). http://dx.doi.org/10.1007/s11458-011-0243-8
- J. G. Yu, H. G. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. K. Ho, Thin Solid Films 496, 273 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.352
- H. Han and R. B. Bai, Ind. Eng. Chem. Res. 50, 11922 (2011). http://dx.doi.org/10.1021/ie200787j
- D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin and J. M. Laine, Environ. Sci. Technol. 36, 3834 (2002). http://dx.doi.org/10.1021/es0113605
- N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol. 30, 2806 (1996). http://dx.doi.org/10.1021/es960047d
- G. L. Puma, J. N. Khor and A. Brucato, Environ. Sci. Technol. 38, 3737 (2004). http://dx.doi.org/10.1021/es0301020
- C. Chen, W. M. Cai, M. C. Long, J. Y. Zhang, B. X. Zhou, Y. H. Wu and D. Y. Wu, J. Hazard. Mater. 178, 560 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.01.121
- S. Cao, N. Yao and K. L. Yeung, J. Sol-Gel Sci. Technol. 46, 323 (2008). http://dx.doi.org/10.1007/s10971-008-1701-8
- F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008). http://dx.doi.org/10.1002/adma.200800836
- G. Calzaferri, Top. Catal. 53, 130 (2009). http://dx.doi.org/10.1007/s11244-009-9424-9
- H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater. 22, 951 (2010). http://dx.doi.org/10.1002/adma.200902039
- X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Adv. Funct. Mater. 19, 45 (2009). http://dx.doi.org/10.1002/adfm.200800519
- D. Yang, L. Qi and J. Ma, Adv. Mater. 14, 1543 (2002). http://dx.doi.org/10.1002/1521-4095
- W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo and H. Ogawa, Chem. Mater. 21, 33 (2009). http://dx.doi.org/10.1021/cm702458p
- S. Cao, K. L. Yeung and P. L. Yue, Appl. Catal. B-Environ. 68, 99 (2006). http://dx.doi.org/10.1016/j.apcatb.2006.07.022
- J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 6069 (2006). http://dx.doi.org/10.1021/cm0617485
- J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 864 (2006). http://dx.doi.org/10.1021/cm052155h
- W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
- C. Chen, W. M. Cai, M. C. Long, B. X. Zhou, Y. H. Wu, D. Y. Wu and Y. J. Feng, ACS Nano 4, 6425 (2010). http://dx.doi.org/10.1021/nn102130m
- X. An and J. C. Yu, RSC Adv. 1, 1426 (2011). http://dx.doi.org/10.1039/C1RA00382H
- J. G. Yu, Y. R. Su and B. Cheng, Adv. Funct. Mater. 17, 1984 (2007). http://dx.doi.org/10.1002/adfm.200600933
- L. S. Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946). http://dx.doi.org/10.1063/1.1707771
- X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu, Langmuir 21, 2552 (2005). http://dx.doi.org/10.1021/la047979c
- G. C. Groen, L. A. A. Peffer and J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003). http://dx.doi.org/10.1016/s1387-1811(03)00339-1
- M. C. Long, J. J. Jiang, Y. Li, R.Q. Cao, L. Y. Zhang and W. M. Cai, Nano-Micro Lett. 3, 171 (2011). http://dx.doi.org/10.5101/nml.v3i3.p171-177
- J. Grzechulska and A. W. Morawski, Appl. Catal. B-Environ. 46, 415 (2003). http://dx.doi.org/10.1016/S0926-3373(03)00265-0
- Y. Xie, X. J. Zhao, Y. X. Chen, Q. N. Zhao and Q. H. Yuan, J. Solid State Chem. 180, 3576 (2007). http://dx.doi.org/10.1016/j.jssc.2007.10.023
- F. Zuo, L. Wang, T. Wu, Z. Y. Zhang, D. Borchardt and P. Y. Feng, J. Am. Chem. Soc. 132, 11856 (2010). http://dx.doi.org/10.1021/ja103843d
- D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007). http://dx.doi.org/10.1021/ie061491k
- J. Casanovas, J. M. Ricart, J. Rubio, F. Illas and J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996). http://dx.doi.org/10.1021/ja960338m
- A. E. Aleksenskii, V. Y. Osipov, A. Y. Vul’, B. Y. Ber, A. B. Smirnov, V. G. Melekhin, G. J. Adriaenssens and K. Iakoubovskii, Phys. Solid State 43, 145 (2001). http://dx.doi.org/10.1134/1.1340200
References
M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004
A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). http://dx.doi.org/10.1016/j.surfrep.2008.10.001
M. C. Long and W. M. Cai, Front. Chem. Chin. 6, 190 (2011). http://dx.doi.org/10.1007/s11458-011-0243-8
J. G. Yu, H. G. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. K. Ho, Thin Solid Films 496, 273 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.352
H. Han and R. B. Bai, Ind. Eng. Chem. Res. 50, 11922 (2011). http://dx.doi.org/10.1021/ie200787j
D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin and J. M. Laine, Environ. Sci. Technol. 36, 3834 (2002). http://dx.doi.org/10.1021/es0113605
N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol. 30, 2806 (1996). http://dx.doi.org/10.1021/es960047d
G. L. Puma, J. N. Khor and A. Brucato, Environ. Sci. Technol. 38, 3737 (2004). http://dx.doi.org/10.1021/es0301020
C. Chen, W. M. Cai, M. C. Long, J. Y. Zhang, B. X. Zhou, Y. H. Wu and D. Y. Wu, J. Hazard. Mater. 178, 560 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.01.121
S. Cao, N. Yao and K. L. Yeung, J. Sol-Gel Sci. Technol. 46, 323 (2008). http://dx.doi.org/10.1007/s10971-008-1701-8
F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008). http://dx.doi.org/10.1002/adma.200800836
G. Calzaferri, Top. Catal. 53, 130 (2009). http://dx.doi.org/10.1007/s11244-009-9424-9
H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater. 22, 951 (2010). http://dx.doi.org/10.1002/adma.200902039
X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Adv. Funct. Mater. 19, 45 (2009). http://dx.doi.org/10.1002/adfm.200800519
D. Yang, L. Qi and J. Ma, Adv. Mater. 14, 1543 (2002). http://dx.doi.org/10.1002/1521-4095
W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo and H. Ogawa, Chem. Mater. 21, 33 (2009). http://dx.doi.org/10.1021/cm702458p
S. Cao, K. L. Yeung and P. L. Yue, Appl. Catal. B-Environ. 68, 99 (2006). http://dx.doi.org/10.1016/j.apcatb.2006.07.022
J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 6069 (2006). http://dx.doi.org/10.1021/cm0617485
J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 864 (2006). http://dx.doi.org/10.1021/cm052155h
W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017
C. Chen, W. M. Cai, M. C. Long, B. X. Zhou, Y. H. Wu, D. Y. Wu and Y. J. Feng, ACS Nano 4, 6425 (2010). http://dx.doi.org/10.1021/nn102130m
X. An and J. C. Yu, RSC Adv. 1, 1426 (2011). http://dx.doi.org/10.1039/C1RA00382H
J. G. Yu, Y. R. Su and B. Cheng, Adv. Funct. Mater. 17, 1984 (2007). http://dx.doi.org/10.1002/adfm.200600933
L. S. Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946). http://dx.doi.org/10.1063/1.1707771
X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu, Langmuir 21, 2552 (2005). http://dx.doi.org/10.1021/la047979c
G. C. Groen, L. A. A. Peffer and J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003). http://dx.doi.org/10.1016/s1387-1811(03)00339-1
M. C. Long, J. J. Jiang, Y. Li, R.Q. Cao, L. Y. Zhang and W. M. Cai, Nano-Micro Lett. 3, 171 (2011). http://dx.doi.org/10.5101/nml.v3i3.p171-177
J. Grzechulska and A. W. Morawski, Appl. Catal. B-Environ. 46, 415 (2003). http://dx.doi.org/10.1016/S0926-3373(03)00265-0
Y. Xie, X. J. Zhao, Y. X. Chen, Q. N. Zhao and Q. H. Yuan, J. Solid State Chem. 180, 3576 (2007). http://dx.doi.org/10.1016/j.jssc.2007.10.023
F. Zuo, L. Wang, T. Wu, Z. Y. Zhang, D. Borchardt and P. Y. Feng, J. Am. Chem. Soc. 132, 11856 (2010). http://dx.doi.org/10.1021/ja103843d
D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007). http://dx.doi.org/10.1021/ie061491k
J. Casanovas, J. M. Ricart, J. Rubio, F. Illas and J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996). http://dx.doi.org/10.1021/ja960338m
A. E. Aleksenskii, V. Y. Osipov, A. Y. Vul’, B. Y. Ber, A. B. Smirnov, V. G. Melekhin, G. J. Adriaenssens and K. Iakoubovskii, Phys. Solid State 43, 145 (2001). http://dx.doi.org/10.1134/1.1340200