Novel Nanotrees of Crystalline Nickel formed via Electrolytic Approach
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 3 No. 4 (2011), Article Number: 264-269
Abstract
Tree shaped nickel nanocrystals with long main trunk and highly ordered branches were prepared via electrolytic method in ethylene glycol solution. The morphology and structures of nanotrees of crystalline nickel can be controlled by the processing of the surfactant (PVP) and electrolytic voltage. Magnetic property measurements at room temperature indicated that the as-prepared nanotrees of crystalline nickel possess higher saturation magnetism (M S ) and coercivity (H C ) than that of corresponding bulk nickel materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. G. Sun and Y. N. Xia, Science 13, 298 (2002).
- H. Niu, Q. Chen, M. Ning, Y. Jia and X. Wang, J. Phys. Chem. B 108, 3996 (2004). http://dx.doi.org/10.1021/jp0361172
- Y. W. Jun, Y. Y. Jung and J. Cheon, J. Am. Chem. Soc. 124, 615 (2002). http://dx.doi.org/10.1021/ja016887w
- B. Kim, S. L. Tripp and A. Wei, J. Am. Chem. Soc. 123, 7955 (2001). http://dx.doi.org/10.1021/ja0160344
- Y. H. Ni, X. W. Ge, Z. C. Zhang and Q. Ye, Chem. Mater. 14, 1048 (2002). http://dx.doi.org/10.1021/cm010446u
- O. Metin, V. Mazumder, S. Ozkar and S. Sun, J. Am. Chem. Soc. 132, 1468 (2010). http://dx.doi.org/10.1021/ja909243z
- F. Jia, L. Zhang, X. Shang and Y. Yang, Adv. Mater. 20, 1050 (2008). http://dx.doi.org/10.1002/adma.200702159
- S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char and T. H. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000). http://dx.doi.org/10.1021/ja001628c
- D. Ciuculescu, F. Dumestre, M. Comesana-Hermo, B. Chaudret, M. Spasova, M. Farle and C. Amiens, Chem. Mater. 21, 3987 (2009). http://dx.doi.org/10.1021/cm901349y
- L. Zhang, J. Wang, L. Wei, P. Liu, H. Wei and Y. Zhang, Nano-Micro Lette. 1, 49 (2009).
- X. Liu, R. Li, Y. Wang, G. Qiu, N. Zhang and X. Li, J. Phys. Chem. C 111, 163 (2007). http://dx.doi.org/10.1021/jp0643597
- J. Fang, H. You, P. Kong, Y. Yi, X. Song and B. Ding, Cryst. Growth Des. 7, 864 (2007). http://dx.doi.org/10.1021/cg0604879
- M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu and Z. L. Wang, Angew. Chem. Int. Ed. 44, 4197 (2005). http://dx.doi.org/10.1002/anie.200500448
- V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994). http://dx.doi.org/10.1038/370354a0
- R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. J. Osifchin, Science 273, 1690 (1996). http://dx.doi.org/10.1126/science.273.5282.1690
- A. Sukhanova, A. V. Baranov, T. S. Perova, J. H. M. Cohen, I. Nabiev, Angew. Chem. Int. Ed. 45, 2048 (2006). http://dx.doi.org/10.1002/anie.200503016
- S. O. Cho, E. J. Lee, H. M. Lee, J. G. Kim, Y. J. Kim, Adv. Mater. 18, 60 (2006). http://dx.doi.org/10.1002/adma.200501600
- G. Schmid, Chem. Rev. 92, 1709 (1992). http://dx.doi.org/10.1021/cr00016a002
- X. M. Liu and S. Y. Fu, J. Cryst. Growth 306, 428 (2007). http://dx.doi.org/10.1016/j.jcrysgro.2007.05.031
- L. P. Zhu, H. M. Xiao, W. D. Zhang, Y. Yang and S. Y. Fu, Cryst. Growth Des. 8, 1113 (2008). http://dx.doi.org/10.1021/cg701036k
- P. Liu, Z. Li, B. Zhao, B. Yadian and Y. Zhang, Mater. Lett. 63, 1650 (2009). http://dx.doi.org/10.1016/j.matlet.2009.04.031
- P. Saravanan, T. A. Jose, P. J. Thomas and G. U. Kulkarni, Bull. Mater. Sci. 24, 515 (2001). http://dx.doi.org/10.1007/BF02706724
- C. Liu, L. Guo, R. Wang, Y. Deng, H. Xu and S. Yang, Chem. Commun. 2726 (2004). http://dx.doi.org/10.1039/b411311j
- J. Wang, L. Wei, L. Zhang, Y. Zhang and C. Jiang, Cryst. Eng. Comm. In press, (2012). http://dx.doi.org/10.1039/C1CE06066J
References
Y. G. Sun and Y. N. Xia, Science 13, 298 (2002).
H. Niu, Q. Chen, M. Ning, Y. Jia and X. Wang, J. Phys. Chem. B 108, 3996 (2004). http://dx.doi.org/10.1021/jp0361172
Y. W. Jun, Y. Y. Jung and J. Cheon, J. Am. Chem. Soc. 124, 615 (2002). http://dx.doi.org/10.1021/ja016887w
B. Kim, S. L. Tripp and A. Wei, J. Am. Chem. Soc. 123, 7955 (2001). http://dx.doi.org/10.1021/ja0160344
Y. H. Ni, X. W. Ge, Z. C. Zhang and Q. Ye, Chem. Mater. 14, 1048 (2002). http://dx.doi.org/10.1021/cm010446u
O. Metin, V. Mazumder, S. Ozkar and S. Sun, J. Am. Chem. Soc. 132, 1468 (2010). http://dx.doi.org/10.1021/ja909243z
F. Jia, L. Zhang, X. Shang and Y. Yang, Adv. Mater. 20, 1050 (2008). http://dx.doi.org/10.1002/adma.200702159
S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char and T. H. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000). http://dx.doi.org/10.1021/ja001628c
D. Ciuculescu, F. Dumestre, M. Comesana-Hermo, B. Chaudret, M. Spasova, M. Farle and C. Amiens, Chem. Mater. 21, 3987 (2009). http://dx.doi.org/10.1021/cm901349y
L. Zhang, J. Wang, L. Wei, P. Liu, H. Wei and Y. Zhang, Nano-Micro Lette. 1, 49 (2009).
X. Liu, R. Li, Y. Wang, G. Qiu, N. Zhang and X. Li, J. Phys. Chem. C 111, 163 (2007). http://dx.doi.org/10.1021/jp0643597
J. Fang, H. You, P. Kong, Y. Yi, X. Song and B. Ding, Cryst. Growth Des. 7, 864 (2007). http://dx.doi.org/10.1021/cg0604879
M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu and Z. L. Wang, Angew. Chem. Int. Ed. 44, 4197 (2005). http://dx.doi.org/10.1002/anie.200500448
V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994). http://dx.doi.org/10.1038/370354a0
R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. J. Osifchin, Science 273, 1690 (1996). http://dx.doi.org/10.1126/science.273.5282.1690
A. Sukhanova, A. V. Baranov, T. S. Perova, J. H. M. Cohen, I. Nabiev, Angew. Chem. Int. Ed. 45, 2048 (2006). http://dx.doi.org/10.1002/anie.200503016
S. O. Cho, E. J. Lee, H. M. Lee, J. G. Kim, Y. J. Kim, Adv. Mater. 18, 60 (2006). http://dx.doi.org/10.1002/adma.200501600
G. Schmid, Chem. Rev. 92, 1709 (1992). http://dx.doi.org/10.1021/cr00016a002
X. M. Liu and S. Y. Fu, J. Cryst. Growth 306, 428 (2007). http://dx.doi.org/10.1016/j.jcrysgro.2007.05.031
L. P. Zhu, H. M. Xiao, W. D. Zhang, Y. Yang and S. Y. Fu, Cryst. Growth Des. 8, 1113 (2008). http://dx.doi.org/10.1021/cg701036k
P. Liu, Z. Li, B. Zhao, B. Yadian and Y. Zhang, Mater. Lett. 63, 1650 (2009). http://dx.doi.org/10.1016/j.matlet.2009.04.031
P. Saravanan, T. A. Jose, P. J. Thomas and G. U. Kulkarni, Bull. Mater. Sci. 24, 515 (2001). http://dx.doi.org/10.1007/BF02706724
C. Liu, L. Guo, R. Wang, Y. Deng, H. Xu and S. Yang, Chem. Commun. 2726 (2004). http://dx.doi.org/10.1039/b411311j
J. Wang, L. Wei, L. Zhang, Y. Zhang and C. Jiang, Cryst. Eng. Comm. In press, (2012). http://dx.doi.org/10.1039/C1CE06066J