An Efficient Boron Source Activation Strategy for the Low-Temperature Synthesis of Boron Nitride Nanotubes
Corresponding Author: Yagang Yao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 25
Abstract
Lowering the synthesis temperature of boron nitride nanotubes (BNNTs) is crucial for their development. The primary reason for adopting a high temperature is to enable the effective activation of high-melting-point solid boron. In this study, we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system. This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems. These growth systems have improved catalytic capability and reactivity even under low-temperature conditions, facilitating the synthesis of BNNTs at temperatures as low as 850 °C. In addition, molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains. These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
Highlights:
1 Developed more efficient boron activation strategies, while establishing various low-melting growth systems.
2 The preparation temperature of boron nitride nanotubes has been reduced to 850 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B Condens. Matter 49, 5081–5084 (1994). https://doi.org/10.1103/physrevb.49.5081
- X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335–340 (1994). https://doi.org/10.1209/0295-5075/28/5/007
- N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen et al., Boron nitride nanotubes. Science 269, 966–967 (1995). https://doi.org/10.1126/science.269.5226.966
- N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998). https://doi.org/10.1016/S0038-1098(97)10125-9
- X. Wei, M.-S. Wang, Y. Bando, D. Golberg, Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 22, 4895–4899 (2010). https://doi.org/10.1002/adma.201001829
- Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). https://doi.org/10.1063/1.1667278
- L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014). https://doi.org/10.1021/nn500059s
- X.M. Chen, L.Y. Zhang, C. Park, C.C. Fay, X.Q. Wang et al., Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107, 253105 (2015). https://doi.org/10.1063/1.4936755
- C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel et al., Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 109, 2529–2538 (2008). https://doi.org/10.1002/app.27949
- C.Y. Zhi, Y. Bando, C.C. Tang, Q. Huang, D. Golberg, Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 18, 3900 (2008). https://doi.org/10.1039/b804575e
- C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Grafting boron nitride nanotubes: from polymers to amorphous and graphitic carbon. J. Phys. Chem. C 111, 1230–1233 (2007). https://doi.org/10.1021/jp066052d
- X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando et al., Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem. Commun. 49, 7337–7339 (2013). https://doi.org/10.1039/c3cc42743a
- Z.G. Chen, J. Zou, Q. Liu, C. Sun, G. Liu et al., Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. ACS Nano 2, 1523–1532 (2008). https://doi.org/10.1021/nn800211z
- D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima et al., Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69, 2045–2047 (1996). https://doi.org/10.1063/1.116874
- M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei et al., Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009). https://doi.org/10.1088/0957-4484/20/50/505604
- K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J. Guan et al., Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8, 6211–6220 (2014). https://doi.org/10.1021/nn501661p
- A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 14, 4881–4886 (2014). https://doi.org/10.1021/nl5022915
- I. Narita, T. Oku, Synthesis of boron nitride nanotubes by using YB6 powder. Solid State Commun. 122, 465–468 (2002). https://doi.org/10.1016/S0038-1098(02)00188-6
- J. Cumings, A. Zettl, Mass-production of boron nitride double-wall nanotubes and nanococoons. Chem. Phys. Lett. 316, 211–216 (2000). https://doi.org/10.1016/S0009-2614(99)01277-4
- Y. Chen, L.T. Chadderton, J.F. Gerald, J.S. Williams, A solid–state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74, 2960–2962 (1999). https://doi.org/10.1063/1.123979
- H. Chen, Y. Chen, Y. Liu, L. Fu, C. Huang et al., Over 1.0mm-long boron nitride nanotubes. Chem. Phys. Lett. 463, 130–133 (2008). https://doi.org/10.1016/j.cplett.2008.08.007
- D. Seo, J. Kim, S.-H. Park, Y.-U. Jeong, Y.-S. Seo et al., Synthesis of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder. J. Ind. Eng. Chem. 19, 1117–1122 (2013). https://doi.org/10.1016/j.jiec.2012.12.007
- D. Özmen, N.A. Sezgi, S. Balcı, Synthesis of boron nitride nanotubes from ammonia and a powder mixture of boron and iron oxide. Chem. Eng. J. 219, 28–36 (2013). https://doi.org/10.1016/j.cej.2012.12.057
- L. Li, X. Liu, L. Li, Y. Chen, High yield BNNTs synthesis by promotion effect of milling-assisted precursor. Microelectron. Eng. 110, 256–259 (2013). https://doi.org/10.1016/j.mee.2013.01.044
- J.S. Maria Nithya, A., Pandurangan, Efficient mixed metal oxide routed synthesis of boron nitride nanotubes. RSC Adv. 4, 26697–26705 (2014). https://doi.org/10.1039/C4RA01204F
- P. Ahmad, M.U. Khandaker, Y.M. Amin, Synthesis of boron nitride nanotubes by Argon supported thermal chemical vapor deposition. Phys. E Low Dimension. Syst. Nanostruct. 67, 33–37 (2015). https://doi.org/10.1016/j.physe.2014.11.003
- L. Wang, T. Li, X. Long, X. Wang, Y. Xu et al., Bimetallic catalytic growth of boron nitride nanotubes. Nanoscale 9, 1816–1819 (2017). https://doi.org/10.1039/c6nr08623c
- E. Songfeng, C. Li, T. Li, R. Geng, Q. Li et al., Ammonium-tungstate-promoted growth of boron nitride nanotubes. Nanotechnology 29, 195604 (2018). https://doi.org/10.1088/1361-6528/aab12b
- L. Wang, D. Han, J. Luo, T. Li, Z. Lin et al., Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites. J. Phys. Chem. C 122, 1867–1873 (2018). https://doi.org/10.1021/acs.jpcc.7b10761
- C. Li, X. Long, E. Songfeng, Q. Zhang, T. Li et al., Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Nanoscale 11, 11457–11463 (2019). https://doi.org/10.1039/C9NR03915E
- D. Zhang, K. Zhang, E. Songfeng, D. Liu, C. Li et al., The MgB2-catalyzed growth of boron nitride nanotubes using B/MgO as a boron containing precursor. Nanoscale Adv. 2, 2731–2737 (2020). https://doi.org/10.1039/d0na00433b
- C.H. Lee, J. Wang, V.K. Kayatsha, J.Y. Huang, Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19, 455605 (2008). https://doi.org/10.1088/0957-4484/19/45/455605
- A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology 23, 215601 (2012). https://doi.org/10.1088/0957-4484/23/21/215601
- Y. Huang, Y. Bando, C. Tang, C. Zhi, T. Terao et al., Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology 20, 085705 (2009). https://doi.org/10.1088/0957-4484/20/8/085705
- A.T. Matveev, K.L. Firestein, A.E. Steinman, A.M. Kovalskii, I.V. Sukhorukova et al., Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals. J. Mater. Chem. A 3, 20749–20757 (2015). https://doi.org/10.1039/C5TA05831G
- D. Köken, P. Sungur, H. Cebeci, F.Ç. Cebeci, Revealing the effect of sulfur compounds for low–temperature synthesis of boron nitride nanotubes from boron minerals. ACS Appl. Nano Mater. 5, 2137–2146 (2022). https://doi.org/10.1021/acsanm.1c03858
- S.-H. Chen, J. Su, Y. Wang, Y.-Q. Tang, X.-K. He, Thermodynamic assessment of B2O3–MgO binary system. Calphad 51, 67–74 (2015). https://doi.org/10.1016/j.calphad.2015.07.004
- H.L. Li, R.Y.J. Tay, S.H. Tsang, L. Jing, M.M. Zhu et al., Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Adv. 7, 12511–12517 (2017). https://doi.org/10.1039/C7RA00449D
- R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan et al., Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition. Chem. Mater. 27, 7156–7163 (2015). https://doi.org/10.1021/acs.chemmater.5b03300
- L. Wu, B. Wang, Y. Zhang, L. Li, H.R. Wang et al., Structure and photoluminescence properties of a rare-earth free red-emitting Mn2+-activated KMgBO3. Dalton Trans. 43, 13845–13851 (2014). https://doi.org/10.1039/C4DT01524J
- J. Zheng, Q. Cheng, S. Wu, Y. Zhuang, Z. Guo et al., Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO3 phosphors. Mater. Chem. Phys. 165, 168–176 (2015). https://doi.org/10.1016/j.matchemphys.2015.09.012
- S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys. Rev. B 71, 195415 (2005). https://doi.org/10.1103/physrevb.71.195415
- R. Subbaraman, S.K.R.S. Sankaranarayanan, Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: atomistic simulation study. Phys. Rev. B 84, 075434 (2011). https://doi.org/10.1103/physrevb.84.075434
- R. McCormack, F.D. De, First-principles study of multiple order-disorder transitions in Cd2AgAu Heusler alloys. Phys. Rev. B Condens. Matter 54, 9746–9755 (1996). https://doi.org/10.1103/physrevb.54.9746
- L. Xie, P. Brault, A.-L. Thomann, J.-M. Bauchire, AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl. Surf. Sci. 285, 810–816 (2013). https://doi.org/10.1016/j.apsusc.2013.08.133
- S. Dehghani, Numerical study of long channel carbon nanotube based transistors by considering variation in CNT diameter. J. Nano Res. 61, 78–87 (2020). https://doi.org/10.4028/www.scientific.net/jnanor.61.78
- J.J. Fu, Y.N. Lu, H. Xu, K.F. Huo, X.Z. Wang et al., The synthesis of boron nitride nanotubes by an extended vapour–liquid–solid method. Nanotechnology 15, 727–730 (2004). https://doi.org/10.1088/0957-4484/15/7/003
- B. Santra, H.-Y. Ko, Y.-W. Yeh, F. Martelli, I. Kaganovich et al., Root-growth of boron nitride nanotubes: experiments and ab initio simulations. Nanoscale 10, 22223–22230 (2018). https://doi.org/10.1039/C8NR06217J
- B. McLean, G.B. Webber, A.J. Page, Boron nitride nanotube nucleation via network fusion during catalytic chemical vapor deposition. J. Am. Chem. Soc. 141, 13385–13393 (2019). https://doi.org/10.1021/jacs.9b03484
- N. Wang, L. Ding, T. Li, K. Zhang, L. Wu et al., Self-catalytic ternary compounds for efficient synthesis of high-quality boron nitride nanotubes. Small 19, e2206933 (2023). https://doi.org/10.1002/smll.202206933
- A.B. Meshalkin, A.B. Kaplun, The complex investigation of the phase equilibria and melt characteristics in borate and silicate systems. J. Cryst. Growth 275, e115–e119 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.136
- S.M. Howard, Ellingham diagrams, SD School of Mines and Technology, Rapid City, SD, 2006
- L. Wu, Y. Bai, L. Wu, H. Yi, X. Zhang et al., Analysis of the structure and abnormal photoluminescence of a red-emitting LiMgBO3: Mn2+ phosphor. Dalton Trans. 47, 13094–13105 (2018). https://doi.org/10.1039/C8DT02450B
- J. Zhong, Y. Zhuo, S. Hariyani, W. Zhao, J. Wen et al., Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3: Ce3+. Chem. Mater. 32, 882–888 (2020). https://doi.org/10.1021/acs.chemmater.9b04739
- Z. Wang, M. Zhang, S. Pan, Z. Yang, H. Zhang et al., Exploring the influence of cationic skeletons on the arrangement of isolated BO3 groups based on RbMgBO3, CsZn4(BO3)3 and Cs4Mg4(BO3)4. New J. Chem. 38, 3035–3041 (2014). https://doi.org/10.1039/C4NJ00363B
- Y. Zhu, X. Shen, D. Bao, Y. Shi, H. Huang et al., Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite. J. Polym. Res. 28, 387 (2021). https://doi.org/10.1007/s10965-021-02755-z
References
A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B Condens. Matter 49, 5081–5084 (1994). https://doi.org/10.1103/physrevb.49.5081
X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335–340 (1994). https://doi.org/10.1209/0295-5075/28/5/007
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen et al., Boron nitride nanotubes. Science 269, 966–967 (1995). https://doi.org/10.1126/science.269.5226.966
N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998). https://doi.org/10.1016/S0038-1098(97)10125-9
X. Wei, M.-S. Wang, Y. Bando, D. Golberg, Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 22, 4895–4899 (2010). https://doi.org/10.1002/adma.201001829
Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). https://doi.org/10.1063/1.1667278
L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014). https://doi.org/10.1021/nn500059s
X.M. Chen, L.Y. Zhang, C. Park, C.C. Fay, X.Q. Wang et al., Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107, 253105 (2015). https://doi.org/10.1063/1.4936755
C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel et al., Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 109, 2529–2538 (2008). https://doi.org/10.1002/app.27949
C.Y. Zhi, Y. Bando, C.C. Tang, Q. Huang, D. Golberg, Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 18, 3900 (2008). https://doi.org/10.1039/b804575e
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Grafting boron nitride nanotubes: from polymers to amorphous and graphitic carbon. J. Phys. Chem. C 111, 1230–1233 (2007). https://doi.org/10.1021/jp066052d
X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando et al., Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem. Commun. 49, 7337–7339 (2013). https://doi.org/10.1039/c3cc42743a
Z.G. Chen, J. Zou, Q. Liu, C. Sun, G. Liu et al., Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. ACS Nano 2, 1523–1532 (2008). https://doi.org/10.1021/nn800211z
D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima et al., Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69, 2045–2047 (1996). https://doi.org/10.1063/1.116874
M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei et al., Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009). https://doi.org/10.1088/0957-4484/20/50/505604
K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J. Guan et al., Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8, 6211–6220 (2014). https://doi.org/10.1021/nn501661p
A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma. Nano Lett. 14, 4881–4886 (2014). https://doi.org/10.1021/nl5022915
I. Narita, T. Oku, Synthesis of boron nitride nanotubes by using YB6 powder. Solid State Commun. 122, 465–468 (2002). https://doi.org/10.1016/S0038-1098(02)00188-6
J. Cumings, A. Zettl, Mass-production of boron nitride double-wall nanotubes and nanococoons. Chem. Phys. Lett. 316, 211–216 (2000). https://doi.org/10.1016/S0009-2614(99)01277-4
Y. Chen, L.T. Chadderton, J.F. Gerald, J.S. Williams, A solid–state process for formation of boron nitride nanotubes. Appl. Phys. Lett. 74, 2960–2962 (1999). https://doi.org/10.1063/1.123979
H. Chen, Y. Chen, Y. Liu, L. Fu, C. Huang et al., Over 1.0mm-long boron nitride nanotubes. Chem. Phys. Lett. 463, 130–133 (2008). https://doi.org/10.1016/j.cplett.2008.08.007
D. Seo, J. Kim, S.-H. Park, Y.-U. Jeong, Y.-S. Seo et al., Synthesis of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder. J. Ind. Eng. Chem. 19, 1117–1122 (2013). https://doi.org/10.1016/j.jiec.2012.12.007
D. Özmen, N.A. Sezgi, S. Balcı, Synthesis of boron nitride nanotubes from ammonia and a powder mixture of boron and iron oxide. Chem. Eng. J. 219, 28–36 (2013). https://doi.org/10.1016/j.cej.2012.12.057
L. Li, X. Liu, L. Li, Y. Chen, High yield BNNTs synthesis by promotion effect of milling-assisted precursor. Microelectron. Eng. 110, 256–259 (2013). https://doi.org/10.1016/j.mee.2013.01.044
J.S. Maria Nithya, A., Pandurangan, Efficient mixed metal oxide routed synthesis of boron nitride nanotubes. RSC Adv. 4, 26697–26705 (2014). https://doi.org/10.1039/C4RA01204F
P. Ahmad, M.U. Khandaker, Y.M. Amin, Synthesis of boron nitride nanotubes by Argon supported thermal chemical vapor deposition. Phys. E Low Dimension. Syst. Nanostruct. 67, 33–37 (2015). https://doi.org/10.1016/j.physe.2014.11.003
L. Wang, T. Li, X. Long, X. Wang, Y. Xu et al., Bimetallic catalytic growth of boron nitride nanotubes. Nanoscale 9, 1816–1819 (2017). https://doi.org/10.1039/c6nr08623c
E. Songfeng, C. Li, T. Li, R. Geng, Q. Li et al., Ammonium-tungstate-promoted growth of boron nitride nanotubes. Nanotechnology 29, 195604 (2018). https://doi.org/10.1088/1361-6528/aab12b
L. Wang, D. Han, J. Luo, T. Li, Z. Lin et al., Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites. J. Phys. Chem. C 122, 1867–1873 (2018). https://doi.org/10.1021/acs.jpcc.7b10761
C. Li, X. Long, E. Songfeng, Q. Zhang, T. Li et al., Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Nanoscale 11, 11457–11463 (2019). https://doi.org/10.1039/C9NR03915E
D. Zhang, K. Zhang, E. Songfeng, D. Liu, C. Li et al., The MgB2-catalyzed growth of boron nitride nanotubes using B/MgO as a boron containing precursor. Nanoscale Adv. 2, 2731–2737 (2020). https://doi.org/10.1039/d0na00433b
C.H. Lee, J. Wang, V.K. Kayatsha, J.Y. Huang, Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19, 455605 (2008). https://doi.org/10.1088/0957-4484/19/45/455605
A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology 23, 215601 (2012). https://doi.org/10.1088/0957-4484/23/21/215601
Y. Huang, Y. Bando, C. Tang, C. Zhi, T. Terao et al., Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology 20, 085705 (2009). https://doi.org/10.1088/0957-4484/20/8/085705
A.T. Matveev, K.L. Firestein, A.E. Steinman, A.M. Kovalskii, I.V. Sukhorukova et al., Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals. J. Mater. Chem. A 3, 20749–20757 (2015). https://doi.org/10.1039/C5TA05831G
D. Köken, P. Sungur, H. Cebeci, F.Ç. Cebeci, Revealing the effect of sulfur compounds for low–temperature synthesis of boron nitride nanotubes from boron minerals. ACS Appl. Nano Mater. 5, 2137–2146 (2022). https://doi.org/10.1021/acsanm.1c03858
S.-H. Chen, J. Su, Y. Wang, Y.-Q. Tang, X.-K. He, Thermodynamic assessment of B2O3–MgO binary system. Calphad 51, 67–74 (2015). https://doi.org/10.1016/j.calphad.2015.07.004
H.L. Li, R.Y.J. Tay, S.H. Tsang, L. Jing, M.M. Zhu et al., Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Adv. 7, 12511–12517 (2017). https://doi.org/10.1039/C7RA00449D
R.Y. Tay, H. Li, S.H. Tsang, L. Jing, D. Tan et al., Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition. Chem. Mater. 27, 7156–7163 (2015). https://doi.org/10.1021/acs.chemmater.5b03300
L. Wu, B. Wang, Y. Zhang, L. Li, H.R. Wang et al., Structure and photoluminescence properties of a rare-earth free red-emitting Mn2+-activated KMgBO3. Dalton Trans. 43, 13845–13851 (2014). https://doi.org/10.1039/C4DT01524J
J. Zheng, Q. Cheng, S. Wu, Y. Zhuang, Z. Guo et al., Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO3 phosphors. Mater. Chem. Phys. 165, 168–176 (2015). https://doi.org/10.1016/j.matchemphys.2015.09.012
S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys. Rev. B 71, 195415 (2005). https://doi.org/10.1103/physrevb.71.195415
R. Subbaraman, S.K.R.S. Sankaranarayanan, Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: atomistic simulation study. Phys. Rev. B 84, 075434 (2011). https://doi.org/10.1103/physrevb.84.075434
R. McCormack, F.D. De, First-principles study of multiple order-disorder transitions in Cd2AgAu Heusler alloys. Phys. Rev. B Condens. Matter 54, 9746–9755 (1996). https://doi.org/10.1103/physrevb.54.9746
L. Xie, P. Brault, A.-L. Thomann, J.-M. Bauchire, AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl. Surf. Sci. 285, 810–816 (2013). https://doi.org/10.1016/j.apsusc.2013.08.133
S. Dehghani, Numerical study of long channel carbon nanotube based transistors by considering variation in CNT diameter. J. Nano Res. 61, 78–87 (2020). https://doi.org/10.4028/www.scientific.net/jnanor.61.78
J.J. Fu, Y.N. Lu, H. Xu, K.F. Huo, X.Z. Wang et al., The synthesis of boron nitride nanotubes by an extended vapour–liquid–solid method. Nanotechnology 15, 727–730 (2004). https://doi.org/10.1088/0957-4484/15/7/003
B. Santra, H.-Y. Ko, Y.-W. Yeh, F. Martelli, I. Kaganovich et al., Root-growth of boron nitride nanotubes: experiments and ab initio simulations. Nanoscale 10, 22223–22230 (2018). https://doi.org/10.1039/C8NR06217J
B. McLean, G.B. Webber, A.J. Page, Boron nitride nanotube nucleation via network fusion during catalytic chemical vapor deposition. J. Am. Chem. Soc. 141, 13385–13393 (2019). https://doi.org/10.1021/jacs.9b03484
N. Wang, L. Ding, T. Li, K. Zhang, L. Wu et al., Self-catalytic ternary compounds for efficient synthesis of high-quality boron nitride nanotubes. Small 19, e2206933 (2023). https://doi.org/10.1002/smll.202206933
A.B. Meshalkin, A.B. Kaplun, The complex investigation of the phase equilibria and melt characteristics in borate and silicate systems. J. Cryst. Growth 275, e115–e119 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.136
S.M. Howard, Ellingham diagrams, SD School of Mines and Technology, Rapid City, SD, 2006
L. Wu, Y. Bai, L. Wu, H. Yi, X. Zhang et al., Analysis of the structure and abnormal photoluminescence of a red-emitting LiMgBO3: Mn2+ phosphor. Dalton Trans. 47, 13094–13105 (2018). https://doi.org/10.1039/C8DT02450B
J. Zhong, Y. Zhuo, S. Hariyani, W. Zhao, J. Wen et al., Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3: Ce3+. Chem. Mater. 32, 882–888 (2020). https://doi.org/10.1021/acs.chemmater.9b04739
Z. Wang, M. Zhang, S. Pan, Z. Yang, H. Zhang et al., Exploring the influence of cationic skeletons on the arrangement of isolated BO3 groups based on RbMgBO3, CsZn4(BO3)3 and Cs4Mg4(BO3)4. New J. Chem. 38, 3035–3041 (2014). https://doi.org/10.1039/C4NJ00363B
Y. Zhu, X. Shen, D. Bao, Y. Shi, H. Huang et al., Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite. J. Polym. Res. 28, 387 (2021). https://doi.org/10.1007/s10965-021-02755-z